SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION FOR THE SQUARE ROOT AND CUBE ROOT FUNCTIONS

Morris Jack DeLeon
Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431
(Submitted June 1993)

In the first section we shall consider three sequences associated with the square root function. In the second section we shall consider three sequences associated with the cube root function. In the third section, after considering three different sequences associated with the square root function, we make comparisons with the hope (unfulfilled) of a possible generalization.

1. THE SQUARE ROOT FUNCTION

In [1], Eric Wingler showed that repeated use of the identity

$$
\sqrt{1+r}=\frac{2 r+2}{r+2} \sqrt{1+\frac{r^{2}}{4 r+4}}
$$

leads to an infinite product expansion of $\sqrt{1+r}$ in the following manner: For $a_{1}>-1$ and n a positive integer, defining

$$
a_{n+1}=\frac{a_{n}^{2}}{4 a_{n}+4} \text { and } b_{n}=\frac{2 a_{n}+2}{a_{n}+2}
$$

implies $\sqrt{1+a_{1}}=\prod_{i=1}^{\infty} b_{i}$.
In the sequel, n will always denote a positive integer and, a propos the preceding product, for $n \geq 1$, define $c_{n}=b_{1} b_{2} b_{3} \ldots b_{n}$.

In Definition 1 we shall define three sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$, which will depend on a_{1} and which are related to $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$. These definitions are motivated by our desire to have, when a_{1} is a positive integer, x_{n}, y_{n}, and z_{n} be integers such that $c_{n}=x_{n} / y_{n},\left(x_{n}, y_{n}\right)=1$, and z_{n} is the numerator of a_{n+1} when it is written as a reduced fraction with positive numerator. As can be seen from Theorem 2 and Lemma 3, these definitions will give us even more than what we desire.

Definition 1: Define the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ as follows:
For $2 \mid a_{1}$, define

$$
x_{1}=a_{1}+1, y_{1}=\frac{1}{2} a_{1}+1, \text { and } z_{1}=\left(\frac{a_{1}}{2}\right)^{2} ;
$$

otherwise,

$$
x_{1}=2 a_{1}+2, y_{1}=a_{1}+2, \text { and } z_{1}=a_{1}^{2} .
$$

For $4 \mid a_{1}$ and $n \geq 1$, define

$$
x_{n+1}=x_{n} y_{n}, \quad y_{n+1}=y_{n}^{2}-\frac{z_{n}}{2}, \quad \text { and } z_{n+1}=\left(\frac{z_{n}}{2}\right)^{2} ;
$$

otherwise,

$$
x_{n+1}=2 x_{n} y_{n}, \quad y_{n+1}=2 y_{n}^{2}-z_{n}, \quad \text { and } z_{n+1}=z_{n}^{2}
$$

As an example, for $a_{1}=6$, we have that the first five terms of each of our six sequences are:

$$
\begin{array}{lllll}
a_{1}=6 & a_{2}=\frac{9}{7} & a_{3}=\frac{81}{448} & a_{4}=\frac{6561}{947968} & a_{5}=\frac{43046721}{3619451788288} \\
b_{1}=\frac{7}{4} & b_{2}=\frac{32}{23} & b_{3}=\frac{1058}{977} & b_{4}=\frac{1900058}{1902497} & b_{5}=\frac{723398967018}{7238946623297} \\
c_{1}=\frac{7}{4} & c_{2}=\frac{56}{23} & c_{3}=\frac{2576}{977} & c_{4}=\frac{5033504}{1902497} & c_{5}=\frac{19152452518976}{7238946232976} \\
x_{1}=7 & x_{2}=56 & x_{3}=2576 & x_{4}=5033504 & x_{5}=19152452518976 \\
y_{1}=4 & y_{2}=23 & y_{3}=977 & y_{4}=1902497 & y_{5}=7238946623297 \\
z_{1}=9 & z_{2}=81 & z_{3}=6561 & z_{4}=43046721 & z_{5}=1853020188851841 .
\end{array}
$$

We also have that $a_{6}=\frac{1853020188851841}{52402348213090018234298368}$.
By Definition 1, for a_{1} not an integer, the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ are defined by:

$$
x_{1}=2 a_{1}+2, \quad y_{1}=a_{1}+2, \quad \text { and } z_{1}=a_{1}^{2}
$$

and, for $n \geq 1$,

$$
x_{n+1}=2 x_{n} y_{n}, \quad y_{n+1}=2 y_{n}^{2}-z_{n}, \quad \text { and } z_{n+1}=z_{n}^{2}
$$

The main results, namely, Lemmas 3-6 and Corollary 7, do not require a_{1} to be an integer. In fact, the only results for the square root function that do not hold when a_{1} is not an integer are, not surprisingly, the ones relating to x_{n}, y_{n}, and z_{n} being relatively prime (Lemmas 8-10).

In Theorem 2 we shall state our results concerning the square root function. These results relate the six sequences $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$.

Theorem 2: Let a_{1} and n be integers such that $n \geq 1$ and $a_{1}>-1$. We have that

$$
a_{n+1}=\frac{z_{n}}{y_{n}^{2}-z_{n}}, \quad b_{n+1}=\frac{x_{n+1} y_{n}}{x_{n} y_{n+1}}, \text { and } c_{n}=\frac{x_{n}}{y_{n}}
$$

In addition, depending on whether $4 \mid a_{1}$ or not,

$$
b_{n+1}=\frac{y_{n}^{2}}{y_{n+1}} \text { or } b_{n+1}=\frac{2 y_{n}^{2}}{y_{n+1}} .
$$

For a_{1} an integer, we also have that

$$
\left(z_{n}, y_{n}^{2}-z_{n}\right)=1, \quad\left(x_{n}, y_{n}\right)=1, \quad \text { and }\left(2 y_{n}^{2}, y_{n+1}\right)=1
$$

With Definition 1 as made, the proof of Theorem 2 is fairly straightforward and follows from Lemmas 3-6 and 8-10.

Lemma 3: For $n \geq 1, x_{n}^{2}-\left(a_{1}+1\right) y_{n}^{2}=-\left(a_{1}+1\right) z_{n}$.
Proof: This result is easily shown to be true for $n=1$. Thus, assume this result is true for $n=k$, where $k \geq 1$. We shall prove this result is true for $n=k+1$ in the case where 4 does not divide a_{1}. The proof is similar for $4 \mid a_{1}$.

We have that

$$
\begin{aligned}
x_{k+1}^{2}-\left(a_{1}+1\right) y_{k+1}^{2} & =\left(2 x_{k} y_{k}\right)^{2}-\left(a_{1}+1\right)\left(2 y_{k}^{2}-z_{k}\right)^{2} \\
& =4 x_{k}^{2} y_{k}^{2}-4\left(a_{1}+1\right) y_{k}^{4}+4\left(a_{1}+1\right) y_{k}^{2} z_{k}-\left(a_{1}+1\right) z_{k}^{2} \\
& =4 y_{k}^{2}\left[x_{k}^{2}-\left(a_{1}+1\right) y_{k}^{2}\right]+4\left(a_{1}+1\right) y_{k}^{2} z_{k}-\left(a_{1}+1\right) z_{k}^{2} \\
& =-4 y_{k}^{2}\left(a_{1}+1\right) z_{k}+4\left(a_{1}+1\right) y_{k}^{2} z_{k}-\left(a_{1}+1\right) z_{k}^{2}=-\left(a_{1}+1\right) z_{k+1} .
\end{aligned}
$$

Comment: Let a_{1} be an integer such that $a_{1}+1$ is a perfect square. Since, by Definition $1, z_{n}$ is also a perfect square, we can let

$$
k_{n}^{2}=\left(a_{1}+1\right) \frac{x_{n}^{2}}{\left(a_{1}+1\right)^{2}}=\frac{x_{n}^{2}}{a_{1}+1} \text { and } p_{n}^{2}=z_{n} .
$$

Thus, by Lemma 3, $y_{n}^{2}=p_{n}^{2}+k_{n}^{2}$.
For $a_{1}=8$ and $n=1,2,3$, and 4, the identity $y_{n}^{2}=p_{n}^{2}+k_{n}^{2}$ gives us

$$
\begin{aligned}
5^{2} & =4^{2}+3^{2} \\
17^{2} & =8^{2}+15^{2} \\
257^{2} & =32^{2}+255^{2} \\
65537^{2} & =512^{2}+65535^{2} .
\end{aligned}
$$

In this example, y_{n} is the $n^{\text {th }}$ Fermat number.
Lemma 4: For $n \geq 1$ and $a_{1}>-1$, we have that $a_{n+1}=z_{n} /\left(y_{n}^{2}-z_{n}\right)$.
Proof: This result is easily shown to be true for $n=1$. Assume $a_{k+1}=z_{k} /\left(y_{k}^{2}-z_{k}\right)$, where $k \geq 1$. We shall prove this result is true for $n=k+1$ in the case where 4 does not divide a_{1}. The proof is similar for $4 \mid a_{1}$.

Since

$$
\left(y_{k}^{2}-z_{k}\right)^{2} a_{k+1}^{2}=z_{k}^{2}=z_{k+1}
$$

and

$$
\begin{aligned}
\left(y_{k}^{2}-z_{k}\right)^{2}\left(4 a_{k+1}+4\right) & =4\left(y_{k}^{2}-z_{k}\right)\left(y_{k}^{2}-z_{k}\right)\left(a_{k+1}+1\right) \\
& =4\left(y_{k}^{2}-z_{k}\right)\left[z_{k}+\left(y_{k}^{2}-z_{k}\right)\right] \\
& =4\left(y_{k}^{2}-z_{k}\right) y_{k}^{2} \\
& =4 y_{k}^{4}-4 y_{k}^{2} z_{k}+z_{k}^{2}-z_{k}^{2} \\
& =\left(2 y_{k}^{2}-z_{k}\right)^{2}-z_{k}^{2} \\
& =y_{k+1}^{2}-z_{k+1}
\end{aligned}
$$

we see that

$$
a_{k+2}=\frac{a_{k+1}^{2}}{4 a_{k+1}+4}=\frac{\left(y_{k}^{2}-z_{k}\right)^{2} a_{k+1}^{2}}{\left(y_{k}^{2}-z_{k}\right)^{2}\left(4 a_{k+1}+4\right)}=\frac{z_{k+1}}{y_{k+1}^{2}-z_{k+1}} .
$$

Lemma 5: For $n \geq 1$ and $a_{1}>-1$, we have that $b_{n+1}=x_{n+1} y_{n} / x_{n} y_{n+1}$. Also, for $4 \mid a_{1}$, we have $b_{n+1}=y_{n}^{2} / y_{n+1}$; otherwise, $b_{n+1}=2 y_{n}^{2} / y_{n+1}$.

Proof: By Lemma 4

$$
b_{n+1}=\frac{2 a_{n+1}+2}{a_{n+1}+2}=\frac{2 y_{n}^{2}}{2 y_{n}^{2}-z_{n}} .
$$

Thus, for $4 \mid a_{1}$,

$$
b_{n+1}=\frac{2 y_{n}^{2}}{2 y_{n}^{2}-z_{n}}=\frac{y_{n}^{2}}{y_{n+1}}=\frac{x_{n} y_{n}^{2}}{x_{n} y_{n+1}}=\frac{x_{n+1} y_{n}}{x_{n} y_{n+1}} ;
$$

otherwise,

$$
b_{n+1}=\frac{2 y_{n}^{2}}{2 y_{n}^{2}-z_{n}}=\frac{2 y_{n}^{2}}{y_{n+1}}=\frac{2 x_{n} y_{n}^{2}}{x_{n} y_{n+1}}=\frac{x_{n+1} y_{n}}{x_{n} y_{n+1}} .
$$

Lemma 6: For $n \geq 1$ and $a_{1}>-1$, we have that $c_{n}=x_{n} / y_{n}$.
Proof: We easily see that

$$
c_{1}=b_{1}=\frac{2 a_{1}+2}{a_{1}+2}=\frac{x_{1}}{y_{1}} .
$$

Now assume, for $k \geq 1$, that $c_{k}=x_{k} / y_{k}$. Thus, by Lemma 5,

$$
c_{k+1}=c_{k} b_{k+1}=\frac{x_{k}}{y_{k}} \cdot \frac{x_{k+1} y_{k}}{x_{k} y_{k+1}}=\frac{x_{k+1}}{y_{k+1}} .
$$

As a corollary to Lemmas 4, 3, and 6, we have
Corollary 7: For $n \geq 1$ and $a_{1}>-1$, we have that $a_{n+1}=\frac{a_{1}+1}{c_{n}^{2}}-1$.
Proof: We have that

$$
\begin{aligned}
a_{n+1} & =\frac{z_{n}}{y_{n}^{2}-z_{n}}=\frac{\left(a_{1}+1\right) z_{n}}{\left(a_{1}+1\right)\left(y_{n}^{2}-z_{n}\right)}=\frac{\left(a_{1}+1\right) y_{n}^{2}-x_{n}^{2}}{x_{n}^{2}} \\
& =\left(a_{1}+1\right)\left(\frac{y_{n}}{x_{n}}\right)^{2}-1=\frac{a_{1}+1}{c_{n}^{2}}-1 .
\end{aligned}
$$

The next lemma follows directly from Definition 1 .
Lemma 8: For a_{1} and n integers such that $n \geq 1$, exactly one of x_{n}, y_{n}, and z_{n} is even. More explicitly, we have that
when $a_{1} \equiv 0(\bmod 4), z_{n}$ is even,
when $a_{1} \equiv 2(\bmod 4), y_{1}$ is even and, for $n \geq 2, x_{n}$ is even,
when $a_{1} \equiv 1(\bmod 2), x_{n}$ is even.
Lemma 9: For a_{1} and n integers with $n \geq 1$, each of $\left(y_{n}, z_{n}\right),\left(y_{n}, y_{n+1}\right)$, and $\left(x_{n}, y_{n}\right)$ is a power of 2 .

Proof: By Definition 1, $\left(y_{1}, z_{1}\right)=1=2^{0}$. We shall complete the proof by mathematical induction; thus, we shall also assume $\left(y_{k}, z_{k}\right)$ is a power of 2 , where $k \geq 1$. Also assume there is
an odd prime p that divides $\left(y_{k+1}, z_{k+1}\right)$. Since p divides z_{k+1} and $z_{k+1} \mid z_{k}^{2}$, we must have $p \mid z_{k}$. Now either

$$
2 y_{k+1}=2 y_{k}^{2}-z_{k} \text { or } y_{k+1}=2 y_{k}^{2}-z_{k} .
$$

Hence, since p is an odd prime such that $p \mid y_{k+1}$, and $p \mid z_{k}$, we see that $p \mid y_{k}$. Thus, p divides $\left(y_{k}, z_{k}\right)$. This contradicts $\left(y_{k}, z_{k}\right)$ being a power of 2 .

Using the fact that, for $n \geq 1,\left(y_{n}, z_{n}\right)$ is a power of 2 , we shall now give indirect proofs that $\left(y_{n}, y_{n+1}\right)$ and $\left(x_{n}, y_{n}\right)$ are also powers of 2 .

Thus, assume p is an odd prime that divides $\left(y_{n}, y_{n+1}\right)$. Now

$$
2 y_{n+1}-2 y_{n}^{2}=-z_{n} \text { or } y_{n+1}-2 y_{n}^{2}=-z_{n} \text {. }
$$

In either case, $p \mid z_{n}$. Thus, p is an odd prime dividing $\left(y_{n}, z_{n}\right)$; this is a contradiction.
Finally, assume p is an odd prime dividing $\left(x_{n}, y_{n}\right)$. Thus, by Lemma 3, p divides

$$
x_{n}\left(\frac{x_{n}}{a_{1}+1}\right)-y_{n}^{2}=-z_{n} .
$$

Thus, p is an odd prime dividing $\left(y_{n}, z_{n}\right)$; this is a contradiction.
Lemma 10: For a_{1} and n integers such that $n \geq 1$, we have that

$$
\left(z_{n}, y_{n}^{2}-z_{n}\right)=1,\left(2 y_{n}^{2}, y_{n+1}\right)=1, \text { and }\left(x_{n}, y_{n}\right)=1 .
$$

Proof: First notice that, by the preceding two lemmas,

$$
\left(y_{n}, z_{n}\right)=1,\left(y_{n}, y_{n+1}\right)=1, \text { and }\left(x_{n}, y_{n}\right)=1 .
$$

Thus,

$$
\left(z_{n}, y_{n}^{2}-z_{n}\right)=\left(z_{n}, y_{n}^{2}\right)=1
$$

and, since y_{n+1} is an odd integer,

$$
\left(2 y_{n}^{2}, y_{n+1}\right)=\left(y_{n}^{2}, y_{n+1}\right)=1 .
$$

2. THE CUBE ROOT FUNCTION

In [1], Eric Wingler also showed that repeated use of the identity

$$
\sqrt[3]{1+s}=\frac{2 s+3}{s+3} \sqrt[3]{1+\frac{2 s^{3}+s^{4}}{(2 s+3)^{3}}}
$$

leads to an infinite product expansion of $\sqrt[3]{1+s}$ in the following manner: For $a_{1}>0$ and n a positive integer, defining

$$
d_{1}=a_{1}, \quad d_{n+1}=\frac{2 d_{n}^{3}+d_{n}^{4}}{\left(2 d_{n}+3\right)^{3}}, \text { and } e_{n}=\frac{2 d_{n}+3}{d_{n}+3},
$$

implies $\sqrt[3]{1+d_{1}}=\prod_{i=1}^{\infty} e_{i}$.
A propos the preceding product, for $n \geq 1$, let $f_{n}=e_{1} e_{2} e_{3} \ldots e_{n}$.

In Definition 11, we shall define three sequences, $\left\{u_{n}\right\},\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$, which will depend on a_{1} and which are related to $\left\{d_{n}\right\},\left\{e_{n}\right\}$, and $\left\{f_{n}\right\}$. These definitions are motivated by our desire to have, when a_{1} is a positive integer, u_{n}, v_{n}, and w_{n} be integers such that $f_{n}=u_{n} / v_{n}$ and w_{n} can be a numerator of d_{n+1} when it is written as a fraction; we do not require the fractions to be written in lowest terms. As can be seen in Theorem 12, which does not require a_{1} to be an integer, the definitions in Definition 11 will give us even more than we desire.

Definition 11: Define the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$ as follows:

$$
u_{1}=2 a_{1}+3, \quad v_{1}=a_{1}+3, \text { and } w_{1}=a_{1}^{4}+2 a_{1}^{3}
$$

and, for $n \geq 1$, define

$$
u_{n+1}=u_{n}\left(3 u_{n}^{3}+2 w_{n}\right), v_{n+1}=v_{n}\left(3 u_{n}^{3}+w_{n}\right), \text { and } w_{n+1}=w_{n}^{3}\left(2 u_{n}^{3}+w_{n}\right)
$$

For a_{1} an integer, the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$ are integer sequences.
In Theorem 12, we shall state our results concerning the cube root function. These results relate the six sequences $\left\{d_{n}\right\},\left\{e_{n}\right\},\left\{f_{n}\right\},\left\{u_{n}\right\},\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$.

Theorem 12: For $n \geq 1$,

$$
d_{n+1}=\frac{w_{n}}{u_{n}^{3}}, \quad e_{n+1}=\frac{u_{n+1} v_{n}}{u_{n} v_{n+1}}, \text { and } f_{n}=\frac{u_{n}}{v_{n}}
$$

We also have that

$$
e_{n+1}=\frac{3 u_{n}^{3}+2 w_{n}}{3 u_{n}^{3}+w_{n}}
$$

We shall now prove four lemmas and a corollary. These five results are analogous (also see the comment at the beginning of Section 3) to Lemmas 3-6 and Corollary 7. The four lemmas will provide a proof of Theorem 12.

Lemma 13: For $n \geq 1, u_{n}^{3}-\left(a_{1}+1\right) v_{n}^{3}=-w_{n}$.
Proof: This lemma is true for $n=1$. Assuming this lemma is true for $n=k$, we see that

$$
\begin{aligned}
u_{k+1}^{3}-\left(a_{1}+1\right) v_{k+1}^{3}= & u_{k}^{3}\left(3 u_{k}^{3}+2 w_{k}\right)^{3}-\left(a_{1}+1\right) v_{k}^{3}\left(3 u_{k}^{3}+w_{k}\right)^{3} \\
= & u_{k}^{3}\left(3 u_{k}^{3}+2 w_{k}\right)^{3}-\left(u_{k}^{3}+w_{k}\right)\left(3 u_{k}^{3}+w_{k}\right)^{3} \\
= & u_{k}^{3}\left(27 u_{k}^{9}+54 u_{k}^{6} w_{k}+36 u_{k}^{3} w_{k}^{2}+8 w_{k}^{3}\right) \\
& -\left(u_{k}^{3}+w_{k}\right)\left(27 u_{k}^{9}+27 u_{k}^{6} w_{k}+9 u_{k}^{3} w_{k}^{2}+w_{k}^{3}\right) \\
= & u_{k}^{3}\left(27 u_{k}^{6} w_{k}+27 u_{k}^{3} w_{k}^{2}+7 w_{k}^{3}\right)-w_{k}\left(27 u_{k}^{9}+27 u_{k}^{6} w_{k}+9 u_{k}^{3} w_{k}^{2}+w_{k}^{3}\right) \\
= & -2 u_{k}^{3} w_{k}^{3}-w_{k}^{4}=-w_{k+1} .
\end{aligned}
$$

Lemma 14: For $n \geq 1$ and $a_{1}>-3 / 2, d_{n+1}=w_{n} / u_{n}^{3}$.
Proof: This result is easily seen to be true for $n=1$. Thus, assume that, for $k \geq 1, d_{k+1}=$ w_{k} / u_{k}^{3}. Since

$$
2 d_{k+1}^{3}+d_{k+1}^{4}=d_{k+1}^{3}\left(d_{k+1}+2\right)=\frac{w_{k}^{3}}{u_{k}^{9}} \cdot \frac{2 u_{k}^{3}+w_{k}}{u_{k}^{3}}=\frac{w_{k+1}}{u_{k}^{12}}
$$

and

$$
2 d_{k+1}+3=\frac{3 u_{k}^{3}+2 w_{k}}{u_{k}^{3}}=\frac{u_{k}\left(3 u_{k}^{3}+2 w_{k}\right)}{u_{k}^{4}}=\frac{u_{k+1}}{u_{k}^{4}}
$$

we have that

$$
d_{k+2}=\frac{2 d_{k+1}^{3}+d_{k+1}^{4}}{\left(2 d_{k+1}+3\right)^{3}}=\frac{w_{k+1}}{u_{k}^{12}} \cdot \frac{u_{k}^{12}}{u_{k+1}^{3}}=\frac{w_{k+1}}{u_{k+1}^{3}}
$$

Lemma 15: For $n \geq 1$ and $a_{1}>-3 / 2$,

$$
\frac{3 u_{n}^{3}+2 w_{n}}{3 u_{n}^{3}+w_{n}}=e_{n+1}=\frac{u_{n+1} v_{n}}{u_{n} v_{n+1}} .
$$

Proof: Let $n \geq 1$. By Lemma 14,

$$
e_{n+1}=\frac{2 d_{n+1}+3}{d_{n+1}+3}=\frac{3 u_{n}^{3}+2 w_{n}}{u_{n}^{3}} \cdot \frac{u_{n}^{3}}{3 u_{n}^{3}+w_{n}}=\frac{3 u_{n}^{3}+2 w_{n}}{3 u_{n}^{3}+w_{n}}
$$

By Definition 11, this implies that

$$
e_{n+1}=\frac{u_{n} v_{n}\left(3 u_{n}^{3}+2 w_{n}\right)}{u_{n} v_{n}\left(3 u_{n}^{3}+w_{n}\right)}=\frac{u_{n+1} v_{n}}{u_{n} v_{n+1}}
$$

Lemma 16: For $n \geq 1$ and $a_{1}>-3 / 2, f_{n}=u_{n} / v_{n}$.
Proof: Since $u_{1}=2 d_{1}+3$ and $v_{1}=d_{1}+3$,

$$
f_{1}=e_{1}=\frac{2 d_{1}+3}{d_{1}+3}=\frac{2 a_{1}+3}{a_{1}+3}=\frac{u_{1}}{v_{1}}
$$

Now assume that, for $k \geq 1, f_{k}=u_{k} / v_{k}$. Thus,

$$
f_{k+1}=f_{k} e_{k+1}=\frac{u_{k}}{v_{k}} \cdot \frac{u_{k+1} v_{k}}{u_{k} v_{k+1}}=\frac{u_{k+1}}{v_{k+1}}
$$

Corollary 17: For $n \geq 1$ and $a_{1}>-3 / 2$, we have that

$$
d_{n+1}=\frac{a_{1}+1}{f_{n}^{3}}-1
$$

Proof: We have, by Lemmas 14, 13, and 16,

$$
d_{n+1}=\frac{w_{n}}{u_{n}^{3}}=\frac{\left(a_{1}+1\right) v_{n}^{3}-u_{n}^{3}}{u_{n}^{3}}=\left(a_{1}+1\right)\left(\frac{v_{n}}{u_{n}}\right)^{3}-1=\frac{a_{1}+1}{f_{n}^{3}}-1 .
$$

SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION

3. COMPARING THE SEQUENCES ASSOCIATED WITH THE SQUARE ROOT AND CUBE ROOT FUNCTIONS

Comparing Definition 1 with a_{1} not being an even integer and Definition 11, we have, for $n \geq 1$,

$$
x_{n+1}=2 x_{n} y_{n}, y_{n+1}=2 y_{n}^{2}-z_{n}, \text { and } z_{n+1}=z_{n}^{2},
$$

but

$$
u_{n+1}=u_{n}\left(3 u_{n}^{3}+2 w_{n}\right), v_{n+1}=v_{n}\left(3 u_{n}^{3}+w_{n}\right), \text { and } w_{n+1}=w_{n}^{3}\left(2 u_{n}^{3}+w_{n}\right) .
$$

This does not lead to any obvious generalization.
Recall that one of the reasons for our choice of the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ was to have $\left(x_{n}, y_{n}\right)=1$. When choosing the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$, to make our task less difficult, we did not require that $\left(u_{n}, v_{n}\right)=1$. If, for the square root function, we relax the relatively prime requirement, we can define three sequences that are associated with the square root function (compare Lemmas 3-6 with Lemmas 19-22) and which show more similarities with the three sequences we defined for the cube root function. We shall now define these three different sequences for the square root case.

Definition 18: Define the sequences $\left\{g_{n}\right\},\left\{h_{n}\right\}$, and $\left\{j_{n}\right\}$ as follows:

$$
g_{1}=2 a_{1}+2, h_{1}=a_{1}+2, \text { and } j_{1}=a_{1}^{2}\left(a_{1}+1\right),
$$

and define, for $n \geq 1$,

$$
g_{n+1}=g_{n}\left(2 g_{n}^{2}+2 j_{n}\right)=2 g_{n}\left(g_{n}^{2}+j_{n}\right), h_{n+1}=h_{n}\left(2 g_{n}^{2}+j_{n}\right), j_{n+1}=j_{n}^{2}\left(g_{n}^{2}+j_{n}\right)
$$

We shall now verify four lemmas similar to Lemmas 3-6.
Lemma 19: For $n \geq 1, g_{n}^{2}-\left(a_{1}+1\right) h_{n}^{2}=-j_{n}$.
Proof: This result is easily shown to be true for $n=1$. Thus, assume this result is true for $n=k$, where $k \geq 1$. We shall prove this result is true for $n=k+1$. We have that

$$
\begin{aligned}
g_{k+1}^{2}-\left(a_{1}+1\right) h_{k+1}^{2}= & 4 g_{k}^{2}\left(g_{k}^{2}+j_{k}\right)^{2}-\left(a_{1}+1\right) h_{k}^{2}\left(2 g_{k}^{2}-j_{k}\right)^{2} \\
= & 4 g_{k}^{4}\left[g_{k}^{2}-\left(a_{1}+1\right) h_{k}^{2}\right]+4 g_{k}^{4} j_{k}+4 g_{k}^{2} j_{k}\left[g_{k}^{2}-\left(a_{1}+1\right) h_{k}^{2}\right] \\
& +4 g_{k}^{2} j_{k}^{2}-\left(a_{1}+1\right) h_{k}^{2} j_{k}^{2} \\
= & -4 g_{k}^{4} j_{k}+4 g_{k}^{4} j_{k}-4 g_{k}^{2} j_{k}^{2}+4 g_{k}^{2} j_{k}^{2}-j_{k}^{2}\left(a_{1}+1\right) h_{k}^{2} \\
= & -j_{k}^{2}\left(g_{k}^{2}+j_{k}\right)=-j_{k+1} .
\end{aligned}
$$

Lemma 20: For $n \geq 1$ and $a_{1}>-1$, we have that $a_{n+1}=j_{n} / g_{n}^{2}$.
Proof: This result is easily shown to be true for $n=1$. Assume $a_{k+1}=j_{k} / g_{k}^{2}$, where $k \geq 1$. Now

$$
a_{k+2}=\frac{a_{k+1}^{2}}{4 a_{k+1}+4}=\frac{j_{k}^{2}}{g_{k}^{4}} \cdot \frac{g_{k}^{2}}{4\left(g_{k}^{2}+j_{k}\right)}=\frac{j_{k}^{2}}{4 g_{k}^{2}\left(g_{k}^{2}+j_{k}\right)}=\frac{j_{k}^{2}\left(g_{k}^{2}+j_{k}\right)}{4 g_{k}^{2}\left(g_{k}^{2}+j_{k}\right)^{2}}=\frac{j_{k+1}}{g_{k+1}^{2}} .
$$

Lemma 21: For $n \geq 1$ and $a_{1}>-1$, we have that

$$
\frac{2 g_{n}^{2}+2 j_{n}}{2 g_{n}^{2}+j_{n}}=b_{n+1}=\frac{g_{n+1} h_{n}}{g_{n} h_{n+1}} .
$$

Proof: By Lemma 20,

$$
b_{n+1}=\frac{2 a_{n+1}+2}{a_{n+1}+2}=\frac{2\left(g_{n}^{2}+j_{n}\right)}{g_{n}^{2}} \cdot \frac{g_{n}^{2}}{2 g_{n}^{2}+j_{n}}=\frac{2\left(g_{n}^{2}+j_{n}\right)}{2 g_{n}^{2}+j_{n}}=\frac{2 g_{n}\left(g_{n}^{2}+j_{n}\right) h_{n}}{g_{n} h_{n}\left(2 g_{n}^{2}+j_{n}\right)}=\frac{g_{n+1} h_{n}}{g_{n} h_{n+1}}
$$

Lemma 22: For $n \geq 1$ and $a_{1}>-1$, we have that $c_{n}=g_{n} / h_{n}$.
Proof: This result is easily shown to be true for $n=1$. Assume $c_{k}=g_{k} / h_{k}$. Thus, by Lemma 21,

$$
c_{k+1}=c_{k} b_{k+1}=\frac{g_{k}}{h_{k}} \cdot \frac{g_{k+1} h_{k}}{g_{k} h_{k+1}}=\frac{g_{k+1}}{h_{k+1}} .
$$

Comparing Definitions 18 and 11 and Lemmas 19-22 with Lemmas 13-16, we see a very close connection between the square root function and the cube root function:

$$
\begin{aligned}
\text { - } \begin{aligned}
& g_{1}=2 a_{1}+2, \\
u_{1} & =a_{1}+2, \\
u_{1} & =2 a_{1}+3, \\
v_{1} & =a_{1}^{2}\left(a_{1}+3,\right.
\end{aligned}, \quad w_{1}=a_{1}^{3}\left(a_{1}+2\right)
\end{aligned}
$$

and, for $n \geq 1$ and $a_{1}>-1$,

- $g_{n+1}=g_{n}\left(2 g_{n}^{2}+2 j_{n}\right), \quad h_{n+1}=h_{n}\left(2 g_{n}^{2}+j_{n}\right), \quad j_{n+1}=j_{n}^{2}\left(g_{n}^{2}+j_{n}\right)$, and $u_{n+1}=u_{n}\left(3 u_{n}^{3}+2 w_{n}\right), \quad v_{n+1}=v_{n}\left(3 u_{n}^{3}+w_{n}\right), \quad w_{n+1}=w_{n}^{3}\left(2 u_{n}^{3}+w_{n}\right)$,
- $g_{n}^{2}-\left(a_{1}+1\right) h_{n}^{2}=-j_{n}$ and $u_{n}^{3}-\left(a_{1}+1\right) v_{n}^{3}=-w_{n}$,
- $a_{n+1}=\frac{j_{n}}{g_{n}^{2}}$ and $d_{n+1}=\frac{w_{n}}{u_{n}^{3}}$,
- $\frac{2 g_{n}^{2}+2 j_{n}}{2 g_{n}^{2}+j_{n}}=b_{n+1}=\frac{g_{n+1} h_{n}}{g_{n} h_{n+1}}$ and $\frac{3 u_{n}^{3}+2 w_{n}}{3 u_{n}^{3}+w_{n}}=e_{n+1}=\frac{u_{n+1} v_{n}}{u_{n} v_{n+1}}$,
- $c_{n}=\frac{g_{n}}{h_{n}}$ and $f_{n}=\frac{u_{n}}{v_{n}}$.

Sometimes the correct generalization, if any, and the obvious generalization, if any, are not quite exactly the same.

REFERENCE

1. Eric Wingler. "An Infinite Product Expansion for the Square Root Function." Amer. Math. Monthly 97 (1990):836-39.
AMS Classification Number: 11B37
