
FASTER MULTIPLICATION OF MEDIUM LARGE NUMBERS 
VIA THE ZECKENDORF REPRESENTATION 

Vassil S. Dimitrov 
Center for CAD, Technical University of Plovdiv, Bulgaria 

Borislav D. Donevsky 
IAMI, Technical University of Sofia, P.O. Box 384, Bulgaria 

(Submitted June 1993) 

INTRODUCTION 

Multiplication of two integers is a fundamental computational problem. Various authors have 
found nearly linear-time algorithms for integer multiplication; the best such result is that of Schon-
hage and Strassen (in [1]), who showed that the product of two n-bit numbers may be computed 
in 0(n log/i log log n) steps. Their algorithm involves a recursive application of the Fast Fourier 
Transform (FFT) and is quite intricate. However, even the simpler multiplication algorithms based 
on the FFT are not used in practice, unless enormous numbers are involved. 

Another multiplication method, published by Karatsuba and Ofman (in [1]) uses 0(«1585) 
operations and outperforms classical multiplication when n exceeds 1200 (i.e., about 360 decimal 
digits). 

In 1972 Zeckendorf [8] introduced a representation of the integers as a sum of generalized 
Fibonacci numbers defined by the relation 

F^ = 0, F « = 1, FP = 2>-\ j = 2,3,...,r-l, 

F<r>=F%+F% + -+F<2, i>r. 

The Fibonacci, Tribonacci [5], [7], and Quadranacci [6] numbers arise as a special case of (1) 
by letting r = 2, r = 3, and r = 4, respectively. Capocelli [3] gives an efficient algorithm for 
deriving the Zeckendorf representation of integers. 

This paper compares the classical multiplication, Karatsuba-Ofman, and Schonhage-Strassen 
algorithms and multiplication with the Zeckendorf representation, and shows that medium sized 
numbers can be multiplied (on average) more quickly using the Zeckendorf Quadranacci represen-
tation. 

ZECKENDORF REPRESENTATION OF THE INTEGERS 

Recently, the Zeckendorf representation of the integers has been shown to be a useful alter-
native to the binary representation. Each nonnegative integer N has the following unique Zecken-
dorf representation in terms of Fibonacci numbers of degree r (see [7], [8]): 

N = a2F2
(r) + a3F3

(r) + • • • + ayFy
(r), (2) 

where at e{0,1} and aiai_lai_2ai_?) ...at_r+l = 0 (no r consecutive a's are 1). 
Like the binary representation of integers, the Zeckendorf representation can be written as a 

string of 0's and l's, i.e., ajaj_laJ_2 ...a3a2. 
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As was proved by Borel [2], almost all numbers have an equal number of zeros and ones in 
their standard binary representation. More generally we have that, if g is an integer greater than 
one, then 

w, (t) w9 (t) 

g g 
where every digit wt(t) is in {0,1,..., g-1}. Borel's theorem states: For almost all t (0 < t < 1), 

«->«> n g 

where F^k) denotes the number of those w from the first n, which are equal to k, 0<k<g~l. 
Such a property is true for the binary representation of integers, that is, the proportions of 0's 

in strings of length n and the proportion of l's in strings of length n are both equal to 1/2. In the 
Zeckendorf representation, this rule does not hold. From [4], we have the following result on the 
asymptotic proportion of ones. 

Theorem 1: The proportion of l's in the Zeckendorf representation of integers is 

1 r A^ m^-l 
6)(r) (coir)y+l [(r + l)o){r)~2r] 

which tends to 1/2 as r increases, a)^ is a real root of the equation 

+ 0(l/w), (3) 

xr-xr~l 1 = 0. 

This root lies between 1 and 2. 
In Table 1 some values for A^ are presented (see [4]). 

TABLE 1. Asymptotic Values of Ag> 

r 

LiL 
2 

0.2764 

3 

0.3816 

4 

0.4337 

5 

0.4621 

6 

0.4782 

7 

0.4875 

8 1 
0.4929 

The roots #/ r ) form a strictly increasing sequence. That is, 

1.618...<tf/2)<£y(3)<---<2. 

Zeckendorf representation of integers requires more space than the binary representation, see 
Table 2. 

TABLE 2. Zeckendorf Space/Binary Space 

r 

j'og^)2 
2 

1.44 

3 

1.13 

4 

1.05 

5 

1.02 

6 

1.01 

7 | 

1.005 
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Let us fix the dynamic range of the input data to be w-bits in the binary number system (BNS). 
The number of one's for n-bit BNS numbers in the Zeckendorf representation will have an average 
at 

The initial values of the Sanction Z(r) = N^es ln are printed in Table 3. 

TABLE 3, Average Proportion of One's for n-bit BNS Numbers 
in the Proposed Number System 

[ r 
1 Z(r) 

2 

0.398 

3 

0.434 

4 

0.458 

5 

0.474 

6 

0.484 

7 

0.494 

8 

0.497 

9 1 
0.499 | 

It is clear that the representation using classical Fibonacci numbers requires 20% fewer l's in 
comparison with BNS, which can be employed in many practical situations. 

MULTIPLICATION OF THE NUMBERS IN ZECKENDORF REPRESENTATION 

Let us consider the multiplication of two integers having a Zeckendorf representation. The 
multiplier may have only A^ of its digits equal to 1, but it has log (r) 2 more digits. Hence, 
multiplication using Zeckendorf representation involves A^ • log (r) 2 more additions than in the 
BNS case. Therefore, there are A^ • (log (r) 2)2 times as many digit operations. Because the final 
result may have more than r consecutive ones, it must be transformed into normal form. That is, 
every string ...01.10... must be replaced by 10...0. This transformation can be accomplished in 
2-log (r)2'n steps. Hence, using the Zeckendorf representation will require, on average, 

# > = log2
(r) 2 - 4 r ) n2 4-2-log^ 2.n*H(r)-n2 

bit operations to perform multiplication, if the classical algorithm is used. In Table 4 the initial 
values for the function H(r) = log2

 (r) 2 • A^ are tabulated. 

TABLE 4. Initial Values of the Function H(r) 

r 

\H{r) 

2 

0.574 

3 

0.494 

4 

0.484 

5 

0.486 

6 

0.490 

7 

0.493 

8 

0.497 

~~9 | 

0.499 1 

H{r) attains its minimum when r = 4. Thus, the Quadranacci number system seems to be faster 
than other generalized Fibonacci number systems and faster than the BNS from a multiplicative 
complexity point of view. 

If the time for transformation to normal form was included, it was computed that Quadra-
nacci multiplication outperformed binary multiplication when the number of bits exceeded 130 
(about 43 decimal digits). The last conclusion follows from the solution of the inequality 
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S^ < 0-5n2. In Table 5 we printed the values for the dynamic range and the corresponding 
fastest algorithm for multiplication. 

TABLE 5. Comparison among Different Algorithms for Multiplication 

Range (bits) 

Algorithm 

0-130 

Standard 

131-1200 

Zeckendorf 

1201-4096 

Karatsuba-Ofman 

4 0 9 7 - O O j 

Schonhage-Strassen 

CONCLUSIONS 

A comparison between well-known algorithms for standard binary multiplication and multi-
plication using the Zeckendorf representation has been considered. It was shown that some of the 
proposed number systems (Fibonacci, Tribonacci, Quadranacci) possess advantages for perform-
ing multiplication. The hybrid between the classical multiplication algorithm and the above non-
standard number systems can be used for fast multiplication of medium large integers. 
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