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1. INTRODUCTION

The Catalan identity
E_F

n-rt ntr

Fn2 — (_l)n—r+1E2 (1'1)
has several generalizations. Here we obtain a new generalization and use it to generalize the
Gelin-Cesaro identity

Fn4 —F o F FFn =1, (12)
which was stated by Gelin and proved by Cesaro (see [1], p. 401). Furthermore, we establish that
a certain expression arising from three-term recurrence relations is a perfect square, and this
generalizes previous work.

Using the notation of Horadam [2], let

W,=W,(a,b;p,q) (1.3)
so that
W,=pW,_,—qW,_,, Wo=a, Wy=b, n=2. 1.4)
If @, B, assumed distinct, are the roots of
2 —-pil+q=0, (1.5)
we have the Binet form [2]
w = A = BE" (1.6)
a-p
in which
A=b-apf
{B =b-aa. (1.7)
Write
e= pab—qa* —b* =-AB. (1.8)

Asusual, U, =W, (0, 1; p, q) is the fundamental sequence of Lucas [4].
2. THE MAIN RESULT
We now generalize the Catalan identity and obtain some consequences.
Theorem: For W, =W, (a,b; p,q) and Y, =W, (a,,b; p,q),

I/VnYn+r+.s' - VVWH‘Y;H-s = \P(S)anr’ (2 1)

where

¥Y(s) = (payb —qaa, - bb))U, +(ab, —ab)U ,,.
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Proof: Using the Binet forms for W, and ¥, we obtain, after some algebra,
_ (4B S’ - A Ba’)q"U,

WY, ris =W, L,

ntr+s ntrints = a—,B >
where, in the Binet form for ¥,
4, =b~ap,
Bl = bl - ala .

AB,p°—ABa®

Now, using (1.7) and (2.2) we see, after simplifying, that —=—7— reduces to ‘¥(s).

In (2.1), replacing n by n—r and s by r gives
W, Y, ~W,Y,=¥()q""U,.
Replacing by r +1 in (2.3), we have
Wy iFirs =W, = BG4 DG, .

Adding (2.3) and (2.4) gives
w_Y. +W,

n—ron+r n—-r-1 n+r+1 2WY +lP(r)qn—rU +T(r+l)qn—r IU
Subtracting (2.4) from (2.3) gives
W Y VVn—r—IYn+r+l = ‘Ij(r)qn_rUr - \P(r + 1)qn_r——ll]rﬂ

n-r-ntr

Squaring (2.5) and subtracting the square of (2.6), we obtain
Wy W Yo Vi = W+ W LG @YU, + P + DU, )
+¥Y()Y(r + DU,
Putting » = 1in (2.7) yields
W, Wy iloa =WITE WL g 2 (¥ (D) + pP(2) + PP (D F ()™,
In (2.1), substituting # = —1, s = m—n+1 and noting that U_, =—¢ ', we obtain

wy,-w,_Jr,

F = —P(m-n+1)g"".
Furthermore, if # =m—1, then (2.9) yields
W, Y —W, Y. =-¥?2)q" >
Finally, from (2.1), it follows that
(W n+r+s n+r n+s)2 = lPZ (s)qangl
so that
4WW Y +\PZ (S)qanz - (W n+r+s rl+r n+s)

n+r-n+s n+r+s

thus establishing that

1995]

g

2.2)

(23)

(2.4)

@2.5)

(2.6)

2.7

(2.8)
(2.9)

(2.10)
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aww,, Y. Y. . +¥(s)q*"U} (2.11)

n+rin+sTntr+s

is a perfect square for nonnegative integers n, r, s and integers a,b,a,,b,, p,q.

3. RELATION TO OTHER GENERALIZATIONS

The results of the previous section generalize results of Horadam and Shannon [3] who, in
turn, generalized work of Morgado [5] on the Fibonacci numbers. It suffices then to indicate how
our work generalizes that of Horadam and Shannon.

In (2.1), when (a,,5,) = (a, b), we have {W,} = {¥,} and ¥(s) = eU,, so that (2.1) becomes

Wl ires = WariWors = eq"U U,

which Horadam and Shannon gave as a generalization of the Catalan identity. Under the same
circumstances, noting that ¥'(1) = e and W(2) = ep, (2.8) reduces to

W oW WiiWoiz = Wn4 + aneqn_Z (P2 +q)+ ezq 2n_3p2 >

which Horadam and Shannon gave as a generalization of the Gelin-Cesaro identity.
Similarly, (2.9) and (2.10) reduce, respectively, to
W =W Wy = —€q "y,

m—n+1
and

WWy =Wy Wiy = ~epq"?,
which are generalizations of results for Fibonacci numbers due to D'Ocagne (see [1], p. 402).
Finally, the expression (2.11) reduces to
AW W Wrris + € URUL,

n+r’ nts" ntrts

which was proved by Horadam and Shannon to be a perfect square.
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