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1. INTRODUCTION 

There are various ways in which the standard Fibonacci sequence can be generalized. Exam-
ples are: 
1. Choose arbitrary starting values. 
2. Introduce extra terms, for example, the "Tribonacci" sequence, Tn = Tn_x + Tn_2 + Tn_3. 
3. Introduce multipliers, for example, xn = axn_x + bxn_2y where a and b are positive integers or, 

more generally, positive (real) numbers. 
A natural question to ask is: What is the rate of growth of the sequence? This could be 

tackled by investigating whether xn ~ K<j)n for some constants K and </>, or the weaker condition, 
the convergence of ^-In^) asw-»oo. If ^\n{xn) converges to y/, then y/ is the rate of expo-
nential growth in the sense that, for every 8 > 0, 

»0 and , " >oo. 
e(y/+S)n ' e(v-8)n 

In this paper a further generalization of the Fibonacci sequence is considered. Instead of 
using fixed multipliers, choose pairs (an,bn) at random, according to some specified probability 
distribution, and let 

x0=0, xl = l,xn=a„xn_l+b„x„_2, n>2. 

{xn} is now a sequence of random variables. 
A simple example is to choose an to be either 1 or 2 with probability y (and independently of 

the previous a's) and to take all bn 's equal to 1. 
We will show that, subject to certain conditions on the probability distribution of the multi-

pliers, -^ln(xw) converges to a constant y/ for every sequence except for those in a set which 
together have zero probability of occurring. 

2. MAIN RESULT 

Let {an ,£„}„>! be a sequence of pairs of random variables that satisfy the following condi-
tions: 
1. an and bn are strictly positive. 
2. (an,bn) are independent pairs, that is, for every n and k > 1, and for all 0 < cn+j <dn+j < oo 

and0<e„+7 </w+y <QO, 
P(c„ <an<dn, en <b„<fn7...,cn+k <an+k<dn+k, en+k <bn+k<fn+k) 
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This means that the probability distribution of (an7bn) is not affected by knowing the values 
of the previous a!s and 5's. 
3. P(c <an<d,e<bn< / ) = P(c <al<d,e<bl< f) for all n and for all 0 < c < d < QO and 

0 < e < f < oo. 
4. -co < EQnfa)) <oo and ~oo <JE(ln(61)) <QO. 

felnC^)) = [\n(x)F(dx), where F(x) = P (^ < x). Similarly for £(ln(^))-

Let 
wn =a1+bl 

a2 + h2 
a3+b3 

an-\+K± 
an ' 

wn is a finite continued fraction (see Hardy and Wright [4] for basic properties). 

Definition 1: To say that a condition holds on a sequence of random variables {zn} almost surely 
(a.s.) means that the sequences for which it does not hold form a set which has probability 
(measure) 0. 

We will show that the sequence {wn} converges almost surely. Let w denote the limiting 
random variable. 

Theorem 1: Mn(xn) —2^—» y/, where y/ - E(ln(w)). 

Note: Since ax < w < ax + -j- , condition 4 implies that E(\n(w)) is finite. 

We note that the same method is used by Billingsley ([1], Ch. 1, §4) to prove a result of a 
similar nature involving the rate of growth of the "convergents" to a number by Diophantine 
approximation. 

Forw>2, 

Let 

*n=anXn-\+hnXn-2 0 F ~ ~ = Qn + K " 

y„=^-9 n>2, 

= an+K 
an-l+K-l 

h 
a2+b2 
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Let yx - xx, then 

n nk=i 

Proposition 1: {wn} converges almost surely. 

Proof: 

Let 

*v 
w3-

w4-

-wx 

~W2 

" ^ 3 

a2 

-bp2 

a2(a2a3+b2) 
bfi2b3 

(a2a3 + 62)(«2«3«4 + atb2 + a2b,) 

C2 = 1, d2 — a2, 

Cn+l = "n> 

dn+l=an+ldn+b
n

Cn-

(-ifbA-A-i 
w —w ,=-—-—— XL-L 

" "-1 cd 

Then 

A well-known property of continued fractions is that {w2n} is monotone decreasing and 
{w2n+i} is monotone increasing. 

Ignoring all terms with two or more a's, 

dn > b2b4b6 - - • bn_x if n is odd, n > 3, while 
d„ > anbn_2bn_A • • • b2 + On^K-A-A "b2 

+ an_4bn_lb„_3b„_6--b2 + -'-
+ a2bn_ A-3 °"b3 If/? is even, n > 4. 

Hence, for n even, \wn - wn_x | and \wn+1 - wn | are bounded by 

1 
a2 , ^4 b2 , ^6 &A , , **„ hK'A-2 
bl b3 bl b5 bA K-\ bA'"bn-3 

If every bn = 1, this becomes a +a +a
1

+...+fl , which tends to 0 almost surely. 

Otherwise, Inf^ *'''̂ ~2 j is a symmetric random walk and, with probability one, will take 

values > k, for every k, for some value n. Thus, since the sequence <•£*- ^4"'^~2| is unbounded 
almost surely, the denominator diverges almost surely 

0 r
? \Wn-Wn-l\ " ' > Q -
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Together with the fact that {w2r}} and {w2n+l} are monotone, this implies that {wn} converges 
almost surely. 

The ergodic theorem appears in many forms. In a probabilistic context it usually involves 
"stationary0 sequences of random variables (see Billingsley [1], orBreiman [2], Ch. 6). 

Definition 2: A sequence {zn}n>l of random variables is called stationary if (z1?z2,..., zk) and 
(zn+1, zn+2, •-., zn+k) have the same probability distribution for every k>\ and n>\. 

The sequence {zn} determines a probability measure P on (Rz ,2?), where 9 is the a -field 
of events generated by {zn} (Breiman [2], Ch. 2). 

Definition 3: A tail event A is one that does not depend on the values of z1? z2,..., z„ for any n. 
[For example, A = ({zn} : zn converges) is a tail event.] 

If every tail event has probability 0 or 1, then {zn} is ergodic (Breiman [2], Prop. 6.3.2 and 
Def. 6.30). 

Consider now the doubly infinite sequence {aw, bn}neI. For n > 1, let 

•lnfan+hn 

an-i+K-\ 

V -J 
Proposition 2: {zn} is ergodic. 

Proof: Stationarity is an immediate consequence of conditions 2 and 3. 

A tail event for {zn} corresponds to an event that does not involve ... (a0, b0),..., (a„, b„) for 
every n>\. 

Since {an,bn) are independent pairs, it can be deduced from Kolmogorov's 0-1 law (Breiman 
[2], Th. 3.12) that all tail events for {zn} have probability 0 or 1. 

Theorem 2 (Ergodic Theorem): 

" / = ! 

Proof of Theorem 1: 

i=\ 

1 n 

since — V z, —^-> E(z}) 
n J 

and ItaO/J-zJ-H^O. 

39 EXAMPLE 

Let an = 1, with probability 1/2 ; an = 2, with probability 1/2 (a„'s are chosen independently); 
6n = 1. Examples of possible sequences are: 
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(i) 0 ,1 ,1 , 3,4,7,18,25,68,..., 
(ii) 0,1,3,7,10,17,44,105,149,.. . . 

w represents a "randomly" chosen number whose continued fraction expansion contains only 
l's and 2's (every possible sequence in the first n places is equally likely, for every n). 

£(ln(w)) is easily approximated by 

A a=l or 2 

ax+\ 
a2 + l 

a3 + l 

a„_x + l 
*nj 

and is, to three decimal places, .673. 
Hence, almost surely, such sequences grow at the rate e"673 = 1.960. 
This compares with a result of Davison [3] which was recently brought to the author's 

attention. 
Let x be an irrational number in (0, 2). 
Define bn = 1 + ([nx] mod 2) ([x] = integer part of x) 
({hn} is a sequence of l's and 2's). 
l*txn=bnxn_l+xn_2. 
Then lim^^^ xlJ" always lies between 1.93 and 1.976. 

4, CONCLUDING REMARKS 

The conditions on (an,bn) are not meant to be optimal. Any improvement, however, would 
result in greater complexity both of the results and proofs. 

An interesting feature of the above results is that while individual sequences grow at a rate 
e¥, the average value of xn. [E(xn), the expectation value], in general, grows at a different rate, 
since the sequence {is(x„)} satisfies E(xn) = E(an)E(xn_l) + E(bn)E(xn_2); hence, Mn(E(xn)) 
—»ln^, where ^ is the positive root of x2 - E(al)x - E^) = 0 [assuming E(a1) and E fa) are 
finite]. 

(For the example in Section 3, ^ = 2.) 
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