ON THE SYSTEM OF CONGRUENCES $\Pi_{j \neq i} \boldsymbol{n}_{\boldsymbol{j}} \equiv \mathbf{1} \bmod \boldsymbol{n}_{\boldsymbol{i}}$

Lawrence Brenton and Mi-Kyung Joo
Department of Mathematics, Wayne State University, Detroit, MI 48202
(Submitted November 1993)

We seek integers n_{1}, \ldots, n_{k}, all ≥ 2, for which

$$
\begin{equation*}
\prod_{j \neq i} n_{j} \equiv 1 \bmod n_{i} \tag{1}
\end{equation*}
$$

for all i. Problems of this sort arise, for instance, in connection with the Chinese remainder theorem and structure theory for finite Abelian groups. Curiously, this system has received little attention compared to the system

$$
\begin{equation*}
\prod_{j \neq i} n_{j} \equiv-1 \bmod n_{i} \tag{2}
\end{equation*}
$$

(see [3], [5], [6], [7], [11]). System (2) has attracted interest because it is equivalent to the unit fraction equation

$$
\begin{equation*}
\sum_{i=1}^{k} 1 / n_{i}+1 / \prod_{i=1}^{k} n_{i}=m, \text { an integer. } \tag{3}
\end{equation*}
$$

Especially for $m=1$ this problem is not only interesting in its own right in the field of Egyptian fractions, but also has proved to have application to the topology of singular points of algebraic surfaces [4]. In this paper we will apply what is known about system (2) to derive a large number of solutions to system (1). All solutions to (1) with 7 or fewer terms are given in the appendices, together with techniques for producing some 398 solutions with 8 terms and 1411 with 9 terms.

Lemma 1: Let n_{1}, \ldots, n_{k} be positive integers, relatively prime in pairs. Put

$$
X=\prod_{i=1}^{k} n_{i}, \quad Y=\sum_{i=1}^{k} \Pi_{j \neq i} n_{j},
$$

and let D be the smallest positive residue of $-Y \bmod X$.
(a) If $X \equiv 1($ resp. -1$) \bmod D$, then $n_{1}, \ldots, n_{k}, n_{k+1}$ satisfy (1) [resp. (2)] for $n_{k+1}=(X-1) / D$ [resp. $(X+1) / D]$.
(b) If $X^{2}-D$ admits a factor $P \equiv-X \bmod D$, then $n_{1}, \ldots, n_{k}, n_{k+1}, n_{k+2}$ satisfy (1) for $n_{k+1}=$ $(X+P) / D$ and $n_{k+2}=(X+Q) / D$, where $Q=\left(X^{2}-D\right) / P$.

Proof: For example, see [4], Proposition 12. (a) is immediate. For (b) we have
(i) $\left(\prod_{i=1}^{k} n_{i}\right) n_{k+1}=P n_{k+2}+1$,
(ii) $\left(\prod_{i=1}^{k} n_{i}\right) n_{k+2}=Q n_{k+1}+1$,
while for $i \leq k$, computing modulo n_{i} gives
(iii) $\left(\Pi_{j \neq i} n_{j}\right) n_{k+1} n_{k+2} \equiv Y P Q D^{-2} \equiv(-D)(-D) D^{-2} \equiv 1$,
where D^{-1} is well defined $\bmod n_{i}$ since D and X are relatively prime.
As a special case, if n_{1}, \ldots, n_{k} satisfy (2), then $D=1$. Thus,

Corollary 2: Let n_{1}, \ldots, n_{k} satisfy (2). Then
(a) $n_{1}, \ldots, n_{k}, n_{k+1}$ also satisfy (2) for $n_{k+1}=\prod_{i=1}^{k} n_{i}+1$,
(b) $n_{1}, \ldots, n_{k}, n_{k+1}$ satisfy (1) for $n_{k+1}=\prod_{i=1}^{k} n_{i}-1$, and
(c) if $P \mid \Pi_{i=1}^{k} n_{i}^{2}-1$, then $n_{1}, \ldots, n_{k}, n_{k+1}, n_{k+2}$ satisfy (1) for $n_{k+1}=\prod_{i=1}^{k} n_{i}+P, n_{k+2}=\Pi_{i=1}^{k} n_{i}+Q$, where $Q=\left(\Pi_{i=1}^{k} n_{i}^{2}-1\right) / P$.

Since all solutions to (1) are known for $k \leq 7$ (see [4]), as well as some 500 independent infinite sequences of solutions for increasingly large k (see [1]), part (b) gives a rich family of solutions to the congruences (1) obtained in this trivial way. To make use of part (c), we must be able to find factors of numbers of the form $\prod_{i=1}^{k} n_{i}^{2}-1$. Immediately we have the factors $\prod_{i=1}^{k} n_{i}-1$ and $\prod_{i=1}^{k} n_{i}+1$; hence, the following corollary.

Corollary 3: Let n_{1}, \ldots, n_{k} satisfy (2). Then $n_{1}, \ldots, n_{k}, n_{k+1}, n_{k+2}$ satisfy (1) for $n_{k+1}=2 \prod_{i=1}^{k} n_{i}-1$, $n_{k+2}=2 \prod_{i=1}^{k} n_{i}+1$ (as well as for $n_{k+1}=\prod_{i=1}^{k} n_{i}+1, n_{k+2}=\prod_{i=1}^{k} n_{i}^{2}+\prod_{i=1}^{k} n_{i}-1$).

By finding further factors of $\prod_{i=1}^{k} n_{i}-1$ and $\prod_{i=1}^{k} n_{i}+1$ for fixed n_{1}, \ldots, n_{k} satisfying (2), we can find further solutions to (1) (see Appendix 2 below). But a more fruitful approach has proven to be as follows (cf. [12]). Choose a prime P, then try to find a solution n_{1}, \ldots, n_{k} to (2) for which P divides $\prod_{i=1}^{k} n_{i}-1$ or $\prod_{i=1}^{k} n_{i}+1$.

For P a positive integer, consider the relation "succeeds mod P " defined on the set Z_{p} of integers $\bmod P$ by y succeeds $x \bmod P$ if $y=x^{2}+x$. We will write $x<y$ if there is a finite sequence $x_{0}=x, x_{1}, \ldots, x_{\ell}=y, \ell \geq 1$, such that x_{i} succeeds x_{i-1} for $i=1, \ldots, \ell(x<x$ is permissible), and we will write $x \leqslant y$ if $x<y$ or $x=y$. Some properties of this relation are worked out in [1] in connection with equation (3). To give a particular example, which will be referred to later, for $P=19$ the relation "succeeds" is represented by the following directed graph.

Proposition 4: Let n_{1}, \ldots, n_{k} satisfy (2), let P be a positive integer, and suppose that $\prod_{i=1}^{k} n_{i} \leqslant \pm 1$ $\bmod P$. Put $n_{k+1}=\prod_{i=1}^{k} n_{i}+1$, and for $\ell=2,3, \ldots$, put $n_{k+\ell}=n_{k+\ell-1}^{2}-n_{k+\ell-1}+1$. Then, for some $\ell \geq 1, n_{1}, \ldots, n_{k+\ell-1}, n_{k+\ell}+P-1, n_{k+\ell}+Q-1$ satisfy (1), for appropriate choice of Q.

Proof: First we note that $\forall \ell n_{k+\ell}=\prod_{i<k+\ell} n_{i}+1$. Thus $n_{1}, \ldots, n_{k+\ell}$ satisfy (2) $\forall \ell$. Furthermore, the products $\prod_{i \leq k+\ell} n_{i}=n_{k+\ell+1}-1$ satisfy the relation

$$
\prod_{i \leq k+\ell} n_{i}=\left(\prod_{i \leq k+\ell-1} n_{i}\right)\left(\prod_{i \leq k+\ell-1} n_{i}+1\right),
$$

that is, $\Pi_{i \leq k+\ell} n_{i}$ succeeds $\prod_{i \leq k+\ell-1} n_{i} \bmod P$. Since $\prod_{i=1}^{k} n_{i} \leqslant \pm 1$, it follows that P divides

ON THE SYSTEM OF CONGRUENCES $\Pi_{j \neq i} n_{j} \equiv 1 \bmod n_{i}$
$\prod_{i \leq k+\ell}^{k} n_{i} \mp 1$ for some ℓ. By Lemma 1(c), then, $n_{1}, \ldots, n_{k+\ell-1}, n_{k+\ell}+P-1, n_{k+\ell}+Q-1$ satisfy (1) for this choice of ℓ and for $Q=\left(\left(n_{k+\ell}-1\right)^{2}-1\right) / P$.

Remark: For a few small primes $P, x \preccurlyeq \pm 1 \bmod P$ for every integer $x \bmod P$ except $x=0$. $P=2,3,5,7$, and 19 (see graph above), for instance, have this property. Thus, we have

Corollary 5: Let $P=2,3,5,7$, or 19 . Let n_{1}, \ldots, n_{k} satisfy (2), where $P \nmid n_{i} \forall i$. Then $\prod_{i=1}^{k} n_{i} \leqslant$ ± 1 and we obtain a solution to (1) as in Proposition 4.

Note: In connection with the prime $P=2$, it should be mentioned that no solution to (1) or (2) is known with each n_{i} odd. For $P=3$, the shortest solution to (2) with each $n_{i} \not \equiv 0 \bmod 3$ is ($2,5,7,11,17,157,961,4398619$). This leads to the solution ($2,5,7,11,17,157,961$, $4398619,8687184244716671,75467170101653548887992820605569$) to (1), where no term is divisible by 3. Indeed, applying Corollary 2(c) to appropriate factors of

$$
(2 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 157 \cdot 961 \cdot 4398619)^{2}-1=3 \cdot 719 \cdot 2287 \cdot 466201 \cdot 2715929 \cdot 12082314665809
$$

gives sixteen distinct solutions to (1) with 10 terms, none $\equiv 0 \bmod 3$. However, there may be a shorter solution to (1) with this feature.

We also observe that for $P=5$ and $P=19,1<1$. Thus, $P \mid \prod_{i=1}^{k+\ell} n_{i}-1$ for infinitely many ℓ, and we have an infinite sequence of solutions to (1) based on these primes. In general,

Corollary 6: Let n_{1}, \ldots, n_{k} satisfy (2) and let P be an integer such that $\prod_{i=1}^{k} n_{i} \leqslant 1$ and $1<1$. Then the procedure of Proposition 4 gives infinitely many solutions to (1).

Proof: Let ℓ_{0} be the smallest of the indices for which $\prod_{i=1}^{k+\ell} n_{i} \equiv 1 \bmod P$, and let m_{0} be the smallest positive integer for which we have a chain of successors $1 \rightarrow x_{i} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{m_{0}-1} \rightarrow 1$ $\bmod P$. Then $\prod_{i=1}^{k+\ell_{0}+j m_{0}} n_{i} \equiv 1 \bmod P \forall j=1,2, \ldots$, each of which gives a solution to (1) by Lemma 2(c).

Primes $P<1000$ for which $1<1$ are $5,19,31,41,89,409,431,461,569$, and 661.

PRIMALITY TESTING AND FIBONACCI NUMBERS

The methods of the previous section show that when $\prod_{i=1}^{k} n_{i} \pm 1$ have many factors for various solutions n_{1}, \ldots, n_{k} to (2), then we obtain many solutions to (1). It is equally interesting to inquire whether these numbers are prime. For instance, $2 \cdot 3 \pm 1=\{5,7\}, 2 \cdot 3 \cdot 7 \pm 1=\{41,43\}$, $2 \cdot 3 \cdot 7 \cdot 43 \cdot 1807 \pm 1=\{3263441,3263443\}$, and $2 \cdot 3 \cdot 11 \cdot 23 \cdot 31 \pm 1=\{47057,47059\}$ are four pairs of twin primes, where the indicated factors are solutions to (2). In the case of $N=\Pi n_{i}+1$, primality tests of Fermat type are especially appropriate because we know many factors of $N-1$. Indeed, if there is an integer y for which $y^{N-1} \equiv 1 \bmod N$ but $y^{\Pi_{j \neq t_{j}}} \equiv 1 \bmod N \forall i$, then N is "very probably prime" and we need only find the factors of each n_{i} to complete the test. Some solutions to (2) for which $\prod_{i=1}^{k} n_{i}+1$ is prime are (2), (2, 3), (2, 3, 7), (2, 3, 11, 23, 31), (2, 3, 7, 43, 1807), (2, 3, 7, 47, 395), (2, 3, 7, 47, 403, 19403), (2, 3, 7, 47, 415, 8111), (2, 3, 7, 55, 179, 24323), ($2,3,7,43,3263,4051,2558951$), ($2,3,7,55,179,24323,10057317271$), ($2,3,11$, $23,31,47423,6114059)$, and ($2,3,11,25,29,1097,2753$). These are all such examples with $k \leq 7$.

For $\Pi n_{i}-1$ we will focus our attention on the sequence $2,3,7,43, \ldots, y_{k}, \ldots$, where $y_{k}=$ $\Pi_{i<k} y_{i}+1$. By Corollary 2(a), $\forall k$ the first k terms of this sequence satisfy (2). Put $x_{k}=\Pi_{i \leq k} y_{i}=$ $y_{k+1}-1$. Then $x_{k}=x_{k-1}^{2}+x_{k-1}$ and we have the succession relation $1 \rightarrow 2 \rightarrow 6 \rightarrow \cdots \rightarrow x_{k-1} \rightarrow 1$ $\bmod P$ for any divisor P of $x_{k}-1$.

Lemma 7:

(a) If $m \mid k$ then $\left(x_{m}-1\right) \mid\left(x_{k}-1\right)$.
(b) (i) $\left(x_{k-1}+2\right) \mid\left(x_{k}-2\right)$ and (ii) if $\ell \mid(k-1)$ then $\left(x_{\ell}-1\right) \mid\left(x_{k}-2\right)$.

Proof:
(a) If $m \mid k$, say $k=m d$. Then $\bmod \left(x_{m}-1\right)$ we have the sequence of successions $1 \rightarrow 2 \rightarrow$ $6 \Rightarrow \cdots \rightarrow x_{m-1} \rightarrow 1$, and after d repetitions of this loop we obtain $x_{k} \equiv 1 \bmod \left(x_{m}-1\right)$ and $\left(x_{m}-1\right) \mid\left(x_{k}-1\right)$.
(b) From $x_{k}=x_{k-1}^{2}+x_{k-1}$, we have $x_{k}-2=\left(x_{k-1}+2\right)\left(x_{k-1}-1\right)$, hence assertion (i). Now assertion (ii) follows from (a).

Corollary 8 [of (a)]: If k is composite, then so is $x_{k}-1$.
If k is prime, then $x_{k}-1$ may be prime and, again, since we know several factors of $x_{k}-2$ by (b) above, primality tests of Fermat type are available. A variation on this theme is to apply a Lucas-type test using the Fibonacci numbers. As a historical sidelight, in connection with the unit fraction equation (3), Fibonacci was the first to prove, in 1202, that if m, n_{1}, \ldots, n_{k} is any collection of positive integers with $\sum_{i=1}^{k} 1 / n_{i}<m$, then there exist $\ell, n_{k+1}, \ldots, n_{k+\ell}$ such that $\sum_{i=1}^{k+\ell} 1 / n_{i}=m$ (but not necessarily with $n_{k+\ell}=\prod_{i<k+\ell} n_{i}$).
Lemma 9: Let $\left\{x_{\ell}\right\}$ denote the sequence of positive integers defined by $x_{0}=1, x_{\ell}=x_{\ell-1}^{2}+x_{\ell-1}$ for $\ell \geq 1$, and let k be an odd prime. Put $y=x_{k-1}+1$. Then $\forall i=1,2, \ldots$,

$$
\begin{equation*}
y^{i} \equiv F_{i} y+F_{i-1} \bmod \left(x_{k}-1\right), \tag{4}
\end{equation*}
$$

where $\left\{F_{i}\right\}$ denotes the Fibonacci numbers, beginning with $F_{0}=0, F_{1}=1$. Furthermore, both y and $2 y-1$ are invertible in the ring $Z_{\left(x_{k}-1\right)}$ of integers $\bmod \left(x_{k}-1\right)$ and $\forall i$

$$
\begin{equation*}
F_{i} \equiv\left(y^{i}-(-y)^{-i}\right)(2 y-1)^{-1} \bmod \left(x_{k}-1\right) . \tag{5}
\end{equation*}
$$

Proof: For the first assertion we use induction on i. If $i=1$ the claim is just that

$$
y \equiv F_{1} y+F_{0}=1 y+0 .
$$

Now let $i>1$ and assume the claim to be true for all smaller indices-in particular, that $y^{i-1} \equiv$ $F_{i-1} y+F_{i-2} \bmod \left(x_{k}-1\right)$. From $y=x_{k-1}+1$ and $x_{k-1}^{2}+x_{k-1}=x_{k}$ we have

$$
\begin{equation*}
y^{2}=x_{k-1}^{2}+x_{k-1}+x_{k-1}+1=x_{k}+y \equiv y+1 \bmod \left(x_{k}-1\right) . \tag{6}
\end{equation*}
$$

Thus, modulo $\left(x_{k}-1\right)$,

$$
\begin{aligned}
y^{i}=y\left(y^{i-1}\right) & \equiv y\left(F_{i-1} y+F_{i-2}\right) \equiv F_{i-1} y^{2}+F_{i-2} y \\
& \equiv F_{i-1}(y+1)+F_{i-2} y \equiv\left(F_{i-1}+F_{i-2}\right) y+F_{i-1} \equiv F_{i} y+F_{i-1}
\end{aligned}
$$

as required.

As for invertibility of y, note that

$$
y x_{k-1}=\left(x_{i-1}+1\right) x_{k-1}=x_{k-1}^{2}+x_{k-1}=x_{k} \equiv 1 \bmod \left(x_{k}-1\right),
$$

so that y^{-i} exists in $Z_{\left(x_{k}-1\right)}$ and is equal to x_{k-1}. Furthermore, we have

$$
\left(-y^{-1}\right)^{2}=x_{k-1}^{2} \equiv-x_{k-1}+1=\left(-y^{-1}\right)+1 \bmod \left(x_{k}-1\right) .
$$

Since this is equation (6) above with $-y^{-1}$ in place of y, the same inductive proof as above shows that also

$$
\begin{equation*}
(-y)^{-i} \equiv F_{i}\left(-y^{-1}\right)+F_{i-1} \bmod \left(x_{k}-1\right) . \tag{7}
\end{equation*}
$$

Subtracting (7) from (6) now gives

$$
y^{i}-(-y)^{-i} \equiv F_{i}\left(y+y^{-1}\right) \equiv F_{i}(2 y-1) \bmod \left(x_{k}-1\right) .
$$

To complete the proof of (5), we must show that $2 y-1$ is invertible in $Z_{\left(x_{k}-1\right)}$-that is, that $2 y-1$ and $x_{k}-1$ have no common factors.

To see this, we compute

$$
\begin{aligned}
(2 y-1)^{2} & =\left(2 x_{k-1}+1\right)^{2}=4 x_{k-1}^{2}+4 x_{k-1}+1 \\
& =4 x_{k}+1=4\left(x_{k}-1\right)+5,
\end{aligned}
$$

so any common divisor of $2 y-1$ and $x_{k}-1$ must also divide 5. But in the sequence $\left\{x_{\ell}\right\}_{\ell=0}^{\infty}=$ $\{1,2,6,42,1806, \ldots\}, x_{\ell} \equiv 2 \bmod 5$ for all odd ℓ. In particular, $x_{k}-1 \equiv 1 \bmod 5$, so 5 does not divide $x_{k}-1$ and we conclude that $2 y-1$ and $x_{k}-1$ are mutually prime as claimed. Thus, $2 y-1$ is invertible $\bmod \left(x_{k}-1\right)$ and the proof of equation (5) is complete.

Remark: Another way to view this connection between the Fibonacci numbers and the powers of y is to note that y and $\left(-y^{-1}\right)$ are two solutions modulo $\left(x_{k}-1\right)$ to the quadratic equation $Y^{2}-Y-1=0$. That is, we may regard y as the "golden mean" $y=(1+\sqrt{5}) / 2$ in $Z_{\left(x_{k}-1\right)}$, where 2 is invertible since $\left(x_{k}-1\right)$ is odd and where $\sqrt{5}$ exists by quadratic reciprocity. Thus, equation (5) is the equivalent in $Z_{\left(x_{k}-1\right)}$ of the well-studied computational formula

$$
F_{i}=\left[\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right] / \sqrt{5} .
$$

Proposition 10: Let $\left\{x_{\ell}\right\}, k, Y$ be as in Lemma 9. Then the sequence of Fibonacci numbers modulo ($x_{k}-1$) repeats with some period λ, where λ divides the order of the multiplicative group $Z_{\left(x_{k}-1\right)}^{*}$ of invertible elements of $Z_{\left(x_{k}-1\right)}$. If $\lambda=x_{k}-2$, then $x_{k}-1$ is prime and $Z_{\left(x_{k}-1\right)}^{*}$ is the cyclic group generated by y.

Proof: In any case, since there are only $\left(x_{k}-1\right)^{2}$ pairs of integers $\bmod \left(x_{k}-1\right)$, the sequence $\left\{F_{i}\right\}$ in $Z_{\left(x_{k}-1\right)}$ must repeat after at most $\left(x_{k}-1\right)^{2}$ terms. Let λ be the smallest positive integer for which $F_{i+\lambda} \equiv F_{i}$ for all i. By equation (4) of Lemma 9, then, $y^{i+\lambda} \equiv y^{i} \forall i$.

Conversely, if μ is the order of y in the group $Z_{\left(x_{k}-1\right)}^{*}$, then equation (5) of Lemma 9 shows that

$$
F_{i+\mu} \equiv F_{i} \bmod \left(x_{k}-1\right) \text { for all } i .
$$

$$
\text { ON THE SYSTEM OF CONGRUENCES } \prod_{j \neq i} n_{j} \equiv 1 \bmod n_{i}
$$

We conclude that $\mu=\lambda$ and that the period of $\left\{F_{i}\right\}$ is the same as the multiplicative order of y in $Z_{\left(x_{k}-1\right)}^{*}$. Since this order must divide the order of $Z_{\left(x_{k}-1\right)}^{*}$ by Lagrange's theorem, we have proved the first assertion.

Finally, if $\lambda=x_{k}-2$, then $y, y^{2}, \ldots, y^{x_{k}-2}=1$ are all distinct in $Z_{\left(x_{k}-1\right)}^{*}$, so $\left|Z_{\left(x_{k}-1\right)}^{*}\right|=x_{i}-2$ and $x_{k}-1$ is coprime to each of $1,2, \ldots, x_{k}-2$. Thus, $x_{k}-1$ is prime as claimed, with $Z_{\left(x_{k}-1\right)}^{*}$ the cyclic group consisting of powers of y.

Remarks: As the proof shows, the condition $\lambda=x_{k}-2$ is equivalent to $F_{x_{k}-2} \equiv 0$ and $F_{x_{k}-1} \equiv 1 \bmod \left(x_{k}-1\right)$, but $\left(F_{i}, F_{i+1}\right) \not \equiv(0,1) \bmod \left(x_{k}-1\right) \forall$ proper divisors i of $x_{k}-2$. An example where these computations can be carried out by hand is $k=3, x_{k}-1=2 \cdot 3 \cdot 7-1=41, y=7$. The Fibonacci numbers $\left(F_{40}, F_{41}\right) \equiv(0,1)$ but $\left(F_{8}, F_{9}\right)$ and $\left(F_{20}, F_{21}\right) \not \equiv(0,1) \bmod 41$, so Z_{41}^{*} consists of powers of 7. Similarly, $y=1807$ generates the multiplicative group of integers modulo the prime $x_{5}-1=3263441$.

APPLICATION TO ALGEBRAIC SURFACES

Our interest was first attracted to number theoretic problems of this type because of the following considerations from the topology of complex surfaces. Let S be an algebraic surface over C with a normal isolated singular point P. Let $f: \widetilde{S} \rightarrow S$ be the minimal normal resolution of singularities with exceptional curve $C=f^{-1}(P)=\bigcup_{i=1}^{n} C_{i}$, where each C_{i} is nonsingular and meets C_{j}, if at all, transversally in a single point $\forall j \neq i . C$ is represented by its dual weighted intersection graph Γ, in which each vertex v_{i} corresponds to a component C_{i}, with edges $\left\{v_{i}, v_{j}\right\}$ whenever C_{i} meets C_{j}, and with positive integer weight $w_{i}=-C_{i}^{2}$ assigned to the vertex v_{i}, where C_{i}^{2} is the self-intersection number (the Chern class of the normal line bundle of the embedding of C_{i} in \widetilde{S}). If each C_{i} is rational, then Γ completely determines the topology of a neighborhood U of the singular point in S. In particular, if Γ has no cycles then U is the cone on a smooth real threemanifold M whose fundamental group π_{1} is generated by v_{1}, \ldots, v_{n} with relations $\prod_{j=1}^{n} v_{j}^{-\left(C_{i} \cdot C_{j}\right)}=$ $1 \forall i$ and $v_{i} v_{j}=v_{j} v_{i}$ if C_{i} meets C_{j} [9]. From this, it follows that the first homology group of M is the Abelian group with these generators and relations, with order the determinant of the weighted intersection matrix of Γ, written $|\Gamma|$.

This determinant, in turn, can be calculated very quickly using techniques of graph theory in linear algebra [8]. In particular, if Γ is any weighted tree, v_{0} a vertex of Γ of weight w_{0}, we have the following "expansion by a vertex" formula ([2], eq. 2.13). Let v_{1}, \ldots, v_{k} be the vertices of Γ that meet v_{0}, denote by Γ_{i} the component of $\Gamma-\left\{v_{0}\right\}$ which contains v_{i}, and put $\Gamma_{i}^{\prime}=\Gamma_{i}-\left\{v_{i}\right\}$. Then

$$
\begin{equation*}
|\Gamma|=w_{0} \prod_{i=1}^{k}\left|\Gamma_{i}\right|-\sum_{i=1}^{k}\left|\Gamma_{i}^{\prime}\right| \prod_{j \neq i}\left|\Gamma_{j}\right| . \tag{8}
\end{equation*}
$$

A recurring problem in two-dimensional singularity theory is to classify or to find examples of complex surface singularities whose local fundamental group π_{1} satisfies some standard group theoretic criterion, such as being solvable [13] or nilpotent [10]. By the preceding discussion, π_{1} is perfect (generated by commutators) if and only if Γ is acyclic, each exceptional component C_{i} is rational, and $|\Gamma|=1$. The results of this paper give a large family of such "perfect" singularities.

$$
\text { ON THE SYSTEM OF CONGRUENCES } \prod_{j \neq i} n_{j} \equiv 1 \bmod n_{i}
$$

A weighted graph Γ will be called standard star-shaped if it consists of linear arms $\Gamma_{1}, \ldots, \Gamma_{k}$, each vertex having weight 2 , joined at a terminal vertex $v_{i 1}$ to a common central vertex v_{0} of weight w_{0} (see Figure 1).

FIGURE 1
Theorem 11: Let $P \in S$ be an isolated complex surface singularity with minimal normal resolution $f: \widetilde{S} \rightarrow S$. Suppose that each component of the exceptional curve is rational and that the weighted dual intersection graph Γ of $f^{-1}(P)$ is standard star-shaped with k arms as pictured in Figure 1. For $i=1, \ldots, k$ put $n_{i}=\ell_{i}+1$, where ℓ_{i} is the length of the $i^{\text {th }}$ arm of Γ. Then the local fundamental group π_{1} of P in S is perfect if and only if n_{1}, \ldots, n_{k} satisfy the system of congruences (1) with $\left(\sum_{j=1}^{k} \Pi_{j \neq i} n_{j}-1\right) / \prod_{i=1}^{k} n_{i}=k-w_{0}$.

Proof: The linear graph A_{ℓ} on ℓ vertices with all weights 2 has determinant $\ell+1$. Hence, for the graph Γ of Figure 1, formula (8) above becomes

$$
|\Gamma|=w_{0} \prod_{i=1}^{k} n_{i}-\sum_{i=1}^{k}\left(n_{i}-1\right) \prod_{j \neq i} n_{j}=\left(w_{0}-k\right) \prod_{i=1}^{k} n_{i}+\sum_{i=1}^{k} \prod_{j \neq i} n_{j} .
$$

Thus, $|\Gamma|=1$ if and only if $\sum_{i=1}^{k} \Pi_{j \neq i} n_{j}=\left(k-w_{0}\right) \prod_{i=1}^{k} n_{i}+1$.
Remarks: The best-studied example is the rational double point E_{8}, corresponding to the solution ($2,3,5$), whose local fundamental group is the perfect extension of degree 2 of the alternating group on 5 letters. In general, in connection with the central weight w_{0} it should be noted that no solution to (1) is known for which the integer $m=\left(\sum_{i=1}^{k} \Pi_{j \neq i} n_{j}-1\right) / \Pi_{i=1}^{k} n_{i}$ is larger than 1.

To aid our understanding of these complex surfaces, we can model their real analogs as follows. Let (n_{1}, \ldots, n_{k}) be a solution to the congruence (1). Denote by M_{i} the "Moebius band with n_{i} twists," and attach the M_{i} to a central Moebius band with 1 twist by the technique of plumbing. The surface under study is then the cone on the boundary of this object. The cone is a smooth two-dimensional real manifold with a singular point at the tip of the cone. See Figure 2, where the construction is illustrated for the solution $(2,3,5)$.

ON THE SYSTEM OF CONGRUENCES $\prod_{j \neq i} n_{j} \equiv 1 \bmod n_{i}$

FIGURE 2
Appendix 1: The complete set of solutions to the congruence system $\prod_{j \neq i} n_{j} \equiv 1 \bmod \left(n_{i}\right)$ with 7 or fewer terms (equivalently, the complete set of solutions to the unit fraction equation $\left.\sum_{i=1}^{k} n_{i}^{-1}-\prod_{i=1}^{k} n_{i}^{-1}=1, k \leq 7\right)$:

```
k=3: 2,3,5
k=4: 2,3,7,41
    2,3,11,13
k=5: 2,3,7,43,1805
    2,3,7,83,85
    2,3,11,17,59
k=6: 2,3,7,43,1807,3263441
    2,3,7,43,1811,654133
    2,3,7,43,1819,252701
    2,3,7,43,1825,173471
    2,3,7,43,1871,51985
    2,3,7,43,1901,36139
    2,3,7,43,1945,25271
    2,3,7,43,2053,15011
    2,3,7,43,2167,10841
    2,3,7,43,2501,6499
    2,3,7,43,3041,4447
    2,3,7,43,3611,3613
    2,3,7,47,395,779729
    2,3,7,47,481,2203
    2,3,7,53,271,799
    2,3,7,71,103,61429
    2,3,11,23,31,47057
```

```
k=7: 2,3,7,43,1807,3263443,10650056950805
```

k=7: 2,3,7,43,1807,3263443,10650056950805
2,3,7,43,1807,6526883,6526885
2,3,7,43,1807,6526883,6526885
2,3,7,43,1823,193667,637617223445
2,3,7,43,1823,193667,637617223445
2,3,7,43,1907,34165,17766223
2,3,7,43,1907,34165,17766223
2,3,7,43,1907,43115,163073
2,3,7,43,1907,43115,163073
2,3,7,43,2159,11047,98567401
2,3,7,43,2159,11047,98567401
2,3,7,43,2533,7807,32435
2,3,7,43,2533,7807,32435
2,3,7,43,3307,3979,642279641
2,3,7,43,3307,3979,642279641
2,3,7,47,395,779731,607979652629
2,3,7,47,395,779731,607979652629
2,3,7,47,395,779819,6832003021
2,3,7,47,395,779819,6832003021
2,3,7,47,395,788491,701757789
2,3,7,47,395,788491,701757789
2,3,7,47,395,1559459,1559461
2,3,7,47,395,1559459,1559461
2,3,7,47,401,25535,1837531099
2,3,7,47,401,25535,1837531099
2,3,7,47,403,19403,15435513365
2,3,7,47,403,19403,15435513365
2,3,7,47,415,8111,6646612309
2,3,7,47,415,8111,6646612309
2,3,7,47,449,3299,379591
2,3,7,47,449,3299,379591
2,3,7,47,583,1223,140479765
2,3,7,47,583,1223,140479765
2,3,7,55,179,24323,10057317269
2,3,7,55,179,24323,10057317269
2,3,7,59,163,1381,775807
2,3,7,59,163,1381,775807
2,3,7,71,103,61441,319853515
2,3,7,71,103,61441,319853515
2,3,7,71,103,61477,79005919
2,3,7,71,103,61477,79005919
2,3,7,71,103,61559,29133437
2,3,7,71,103,61559,29133437
2,3,7,71,103,61955,7238201
2,3,7,71,103,61955,7238201
2,3,7,71,103,62857,2704339
2,3,7,71,103,62857,2704339
2,3,7,71,103,67213,713863
2,3,7,71,103,67213,713863
2,3,11,23,31,47059,2214502421
2,3,11,23,31,47059,2214502421
2,3,11,23,31,94115,94117

```
    2,3,11,23,31,94115,94117
```

Appendix 2: Prime factorization of $\prod_{i=1}^{k} n_{i} \pm 1$ for all solutions n_{1}, \ldots, n_{k} of the system of congruences (2) $\prod_{j \neq i} n_{j} \equiv-1 \bmod n_{i}$ for $k=6$ and 7 . These lists provide 380 solutions to (1) $\Pi_{j \neq i} n_{j}$ $\equiv 1 \bmod n_{i}$ with 8 terms and 1368 solutions with 9 terms, by applying Corollary 2(c). Together with solutions obtained by applying Corollary 2(b) to known solutions of 92), this gives a total of 398 solutions to (1) for $k=8$ and 1411 solutions for $k=9$.

$\left(n_{i}, \ldots, n_{k}\right)$
$2,3,7,43,1807,3263443$
$2,3,7,43,1823,193667$
$2,3,7,47,395,779731$
$2,3,7,47,403,19403$
$2,3,7,47,415,8111$
$2,3,7,47,583,1223$
$2,3,7,55,179,24323$
$2,3,11,23,31,47059$

$\quad 1 \quad k=6$
$\quad \prod_{i=1}^{k} n_{i}-1$
$5 \cdot 41 \cdot 89 \cdot 5119 \cdot 114031$
$5 \cdot 36931 \cdot 3453019$
$31 \cdot 71 \cdot 5939.46511$
$5 \cdot 101 \cdot 30565373$
$251 \cdot 269 \cdot 98411$
$5 \cdot 29 \cdot 241.40277$
$9181 \cdot 1095449$
$19 \cdot 116552759$

$$
\underline{\prod_{i=1}^{k} n_{i}+1}
$$

547.607.1033.31051
37.449.38380619
13.46767665587 15435513367 (prime) 6646612311 (prime) 1407479767 (prime) 67•103•1457371
19.116552759

$k=7$		
$\left(n_{1}, \ldots, n_{k}\right)$	$\prod_{i=1}^{k} n_{i}-1$	$\prod_{i=1}^{k} n_{i}+1$
2,3,7,43,1807,3263443,10650056950807	15541.38780342479.188197244219	29881.67003.9119521.6212157481
2,3,7,43,1807,3263447,213001400915	17.240131.5556966386354188067	362464859.62584820727317729
2,3,7,43,1807,3263591,71480133827	7477-2907138253.35023852553	5•1890875263•80523769616513
2,3,7,43,1807,3264187,14298637519	5.519.19.19267.875960006253011	596059.255538497028486753
2,3,7,43,1823,193667,637617223447	5849.26926271-2581441251359	10243-32491-1221602263409851
2,3,7,43,3262,4051,2558951	37.59.27983710363519	61088439723561979 (prime)
2,3,7,43,3559,3667,33816127	5-17-353-26563596744757	577.36857.37478716883
2,3,7,47,395,779731,607979652631	36963925801270344569529 (prime)	14479.117594511.217096324699
2,3,7,47,395,779831,6020372531	191.4241.7621.592999740779	$1 \cdot 332793947873448506321$
2,3,7,47,403,19403,15435513367	239.419.2379196062425981	1021.233354625746719063
2,3,7,47,415,8111,6646612311	31-31.71.829.15629.49942679	19.409.5557-1022402698813
2,3,7,47,583,1223,1407479767	1831-11161.96937735031	127.38977.400195490437
2,3,7,55,179,24323,10057317271	29.2311.5881.256634582371	101149630679497570171 (prime)
2,3,7,67,187,283,334651	733.67989255821	5.139.419.479.357281
2,3,11,17,101,149,3109	61819.849179	13.4038107431
2,3,11,23,31,47059,2214502423	5.4789.1970279.103946471	6961.1513457.4590859291
2,3,11,23,31,47063,442938131	37.127-208761638439227	5.5.7.5605548223005301
2,3,11,23,31,47095,59897203	19.928771.7522333121	7.7.109.566857.43844863
2,3,11,23,31,47131,30382063	43.1193.2311.8429.67433	5.5.3083.874266518009
2,3,11,23,31,47243,12017087	46062647.579990991	17321-23293.66217343
2,3,11,23,31,47423,6114059	5.59.178681.258852119	13644326865136507 (prime)
2,3,11,23,31,49759,866923	5.405990274405861	331.6132783601297
2,3,11,23,31,60563,211031	2017-298181849369	5.5.7.109.31529897257
2,3,11,25,29,1097,2753	7.9601.2150207	144508961851 (prime)
2,3,11,31,35,67,369067	17.23833.4370449	1553.1140203147
2,3,13,25,29,67,2981	2113.5345273	4783.2361397

$$
\text { ON THE SYSTEM OF CONGRUENCES } \prod_{j \neq i} n_{j} \equiv 1 \bmod n_{i}
$$

REFERENCES

1. L. Brenton \& R. Bruner. "On Recursive Solutions to a Unit Fraction Equation." J. Australian Math. Soc. 57 (1994):341-56.
2. L. Brenton \& D. Drucker. "Perfect Graphs and Complex Surface Singularities with Perfect Local Fundamental Group." Tôhoku Math. J. 41.4 (1989):507-25.
3. L. Brenton \& D. Drucker. "On the Number of Solutions of $\sum_{j=1}^{s}\left(1 / x_{j}\right)+1 /\left(x_{1} \cdots x_{s}\right)=1$." J. Number Theory 44.1 (1993):25-29.
4. L. Brenton \& R. Hill. "On the Diophantine Equation $1=\Sigma 1 / n_{i}+1 / \Pi n_{i}$ and a Class of Homologically Trivial Complex Surface Singularities." Pac. J. Math. 133.1 (1988):41-67.
5. Z. Cao, R. Liu, \& L. Zhang. "On the Equation $\sum_{j=1}^{s}\left(1 / x_{j}\right)+1 /\left(x_{1} \cdots x_{s}\right)=$ and Znám's Problem." J. Number Theory 27.2 (1987):206-11.
6. D. Curtiss. "On Kellogg's Diophantine Problem." Amer. Math. Monthly 29 (1922):380-87.
7. J. Janák \& L. Skula. "On the Integers x_{i} for which $x_{i} \mid x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n}+1$ Holds." Math. Slovaca 28.3 (1978):305-10.
8. D. Drucker \& D. Goldschmidt. "Graphical Evaluation of Sparse Determinants." Proc. AMS 77 (1979):35-39.
9. D. Mumford. "The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity." Publ. Math. IHES 9 (1961):5-22.
10. P. Orlik. "Weighted Homogeneous Polynomials and Fundamental Groups." Topology 9 (1970):67-73.
11. Q. Sun. "On a Problem of Znám." Sichuan Daxue Zuebao 4 (1983):9-11.
12. J. Sylvester. "On a Point in the Theory of Vulgar Fractions." Amer. J. Math. 3 (1880):33235, 388-89.
13. P. Wagreich. "Singularities of Complex Surfaces with Solvable Local Fundamental Group." Topology 11 (1972):51-72.
AMS Classification Numbers: 11D79, 11B39, 14J17
