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1. INTRODUCTION 

A positive integer n is a triangular number if there is another positive integer k such that 
n - Y2k(k +1). n is a square number if there is a positive integer I such that n = t2, and n is a 
nearly square number if there is a positive integer I such that n = 1(1+ X) (see [1], [4]). More 
generally, let a be any nonnegative integer; a positive integer n will be called a a-rectangular 
number if there is a positive integer I such that n = 1(1 + a). Using this definition, a square num-
ber is a 0-rectangular number, and a nearly square number is a 1-rectangular number. It is not dif-
ficult to show that any positive integer n is an (n-1) -rectangular number, and an integer can be a 
cr-rectangular number for two different values of a. We consider here the following problem: for 
a given nonnegative integer a, generate all the triangular cr-rectangular numbers. 

2. A PELLIAN EQUATION 

Let n be a triangular cr-rectangular number, then 

n = -k(k + l) = £(£ + a). (1) 

Since 8w + l = (2k + l)2 and An + a2 = (21 + of, it follows that r2-2s1 = l-2a2 for r = 2k + l 
and s = 21 + a. Hence, we have the following result. 

Theorem 1 Let a > 0, r > 1, and s > 0 be three integers such that 

and let 

r2-2sl = \-2a 

~k r-\ 
s-u 

(2) 

(3) 

Then Y2k(k +1) = £(£ + &). Furthermore, any triangular cr-rectangular number can be obtained in 
this way. • 

By direct substitution, if (r, s) is any solution of (2), and we let 

(4) 
V 

= 
'3 4] 
2 3J \_s ( -

= "3 -4] 
- 2 3 J 
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then (r\ sf) is also a solution of (2). It follows directly that if (k, £) are such that )/2 k(k +1) = 
l(l + o), and if we let 

then y2kf(kf + 1) = £f(t + a). 

3 4 
2 3 

1 2 
1 1 (5) 

3, THE CASE a= 0: TRIANGULAR SQUARE NUMBERS 

It is known that the "smallest" solution (or the fundamental solution) of (2) for a - 0 is r0 = 1 
and $Q = 0 (see [2], [3], [5]). Furthermore, all the solutions of (2) are generated by the following 
recursive scheme: r0 = 1, sQ = 03 and 

ri+l 
3+i_ 

= 
3 4] 
2 3J 0 = 0,1,2,...). (6) 

Hence, any triangular square number can be obtained from the recursive scheme: k0 = 0, ^0 = 0, 
and 

*1+1 
_*/+!_ 

= 
"3 4] 
2 3J rv + Y 1 0 = 0,1,2,...). (7) 

TABLE 1. Triangular Square Numbers 

/' 

0 
1 
2 
3 
4 
5 

/* = J£*,(*, + 1) = *? 

*,. 

0 
1 
8 
49 
288 
1681 

*, 
0 
1 
6 
35 
204 
1189 

^ 

1 
36 

1225 
41616 

1413721 

4. THE CASE a > 0 

Let us observe that r = 1 and s = cr is always a solution of (2). With this initial value we can 
generate infinitely many solutions of (2) using (6). But it happens that this sequence of solutions 
does not contain all the solutions of (2) for some values of a. We are led to the problem of find-
ing all the "smallest" (or fundamental) solutions of (2). This problem is addressed elsewhere for 
more general pellian equations ([2], [3], [5]). We present here a simple proof for equation (2) 
using Fermat's descent method ([3], [5]). The method is based on the next two lemmas. 

Lemma 2: Let a > 0. If (r, s) is any solution of (2), then r is odd, \s\ > a, and \s\ > (=, <, resp.) 
V2cr2 - 1 if any only if \r \ > (=, <, resp.) \s\. 

Proof: Equation (2) is equivalent to 2 (^ - a2) = r2 -1 and r2 - s2 = s2 - (2a2 - 1 ) . D 
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Lemma 3: Let a > 0. Assume that (r, s) and (r, I) are two solutions of (2) such that 

3 
-2 

(a) lfr>0 and5>V2oJ - 1 , then 0 < ? < 5, - J < F < r, and it follows that if 

? > V2<T2 r > 5, 1 then 

? = v 2<r2 - 1 then r - ?, 

5 < \/2cr2 - 1 then r < 5 . 

(6) If | r |<s and 0<s< v2<r2-l , then S^s, | F |>? , and it follows that ? > v2cr 2 - l . 

Proof: Y«/FromLemma2, r>s>y/2a2 -I. Then 5 = 5 - 2 ( r - 5 ) <5 and ? = r - 3 ( r - s ) = 
(5,(r-5') + 2(2o-2-l))/(r + 5,)>0 because (r.-s)(r + 5-) = s2 - (2a 2 -1). Also, if r + 5 = r - . s > 0 , 
then F > - ? and F < r. We complete the proof using Lemma 2. 

(6) Since s; = s + 2(s-r) and F = - ? + ( r - s ) , we have ? > s > 0 and F < - ? . Then |F |>? 
and hence s 

Definition 4: Let a > 0. A fundamental solution for (2) is a solution (r, 5) of (2) such that 

a < s < V2cr2 - 1 and -s < r < s. • 

Finally, using Fermat's descent method, we have the following result. 

Theorem 5: Let a > 0. For any positive solution (r, s) of (2), there exists a unique fundamental 
solution (r0,sQ) of (2) and a nonnegative integer i such that 

• 

To find all the fundamental solutions of (2) for a given cr, we can consider a systematic 
method based on the following facts: 

(i) (1, a) is always a fundamental solution, 
(ii) r is always odd, 
(iii) s and a have the same parity. 

Hence, for a given a we can consider s with the parity of a in the interval [a, v2or2 -1] for 
which r - yll-2a2 +2S? is an integer. Table 2 presents the fundamental solutions of (2) for a = 
1, ..., 30. Let us remark that if 2cr2 - 1 is a prime number, (2) has no fundamental solution but 
(±1, a) (see [2], Theorem 110). 

Finally, to generate the triangular orectangular numbers, we consider the fundamental solu-
tions (r0, s0) of (2) and 

(i) ifr0>0, then 

(ii) ifr0<0, then 

r 
s 

- "3 4 
2 3 

/ V 

k0 

Jo. 
KQ 

Jo. 

_ 1 
~ 2 

-I 
~ 2 

3 - 0 -
"3 4l 
2 3J 

V 
3. 

1 
2 

V 
cr 
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and we use (5). We associate a class of triangular a-rectangular numbers to each fundamental 
solution of (2), and the classes are distinct. 

TABLE 2. Fundamental Solutions of (2) for a= 1,..., 30 

(T 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

2o-2-l 

1* 
7* 
17* 
31* 
49* 
71* 
97 • 
127* 
161 
199* 
241* 
287 
337* 
391 
449. 

(r,s) 

(1,1) 
(±1,2) 
(±1,3) 
(±1,4) 

(±1,5), (7,7) 
(±1,6) 
(±1,7) 
(±1,8) 

(±1,9), (±9,11) 
(±1,10) 

(±1,11) 
(±1,12), (±15,16) 

(±1,13) 
(±1,14), (±11,16) 

(±1,15) 

<T 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2<T2-1 

511 
577* 
647* 
721 
799 
881' 
967' 
1057 
1151* 
1249* 
1351 
1457 
1567* 
1681* 
1799 

(^) 

(±1,16), (±17,20) 
(±1,17) 
(±1,18) 

(±1,19), (±23,25) 
(±1,20), (±13,22) 

(±1,21) 
(±1,22) 

(±1,23), (±25,29) 
(±1,24) 
(±1,25) 

(±1,26), (±31,34) 
(±1,27), (±15,29) 

(±1.28) 
(±1,29), (±41,41) 
(±1,30), (±33, 38) 

* a square number; • a prime number 

Example 6: Consider a = 12. Using (5), we have 

"3 4] 
_2 3 J + 

"25" 
_13_ 

where the (k0, £Q) are as given in Table 3. In this case, there exist four different classes of trian-
gular 12-rectangular numbers. • 

TABLE 3. Initial Values (^09 4 ) 

I a = 12 

1 (r0,so) 
(1,12) 
(-1,12) 
(15,16) 
(-15,16) 

v^o> ̂ 0) 

(0,0) 
(22,11) 
(7,2) 
(9,3) _ l 

o- = 29 I 

(rt»*o) 
(1,29) 
(-1,29) 
(41,41) 

(*o,4>) 
(0,0) 

(56,28) 
(20,6) 
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Example 7: Consider a = 29. Using (5), we have 

*";+l 
- '+1-

"3 4] 
2 3j 

IV 
U. 

+ "59" 
30_ 

where the (kQ, lQ) are as given in Table 3 above. In this case, there exist three different classes of 
triangular 29-rectangular numbers. • 
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