
ON CERTAIN ARITHMETIC PROPERTIES OF 
FIBONACCI AND LUCAS NUMBERS 

Peter Hilton 
Department of Mathematical Sciences, SUNY Binghamton, Binghamton, NY 13902-6000 and 

Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium 

Jean Pedersen 
Department of Mathematics, Santa Clara University, Santa Clara, CA 95053 and 

Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium 

Luc Vrancken* 
Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium 

(Submitted September 1993) 

0. INTRODUCTION 

In [1] the authors discussed, inter alia, certain striking resemblances between the arithmetic 
behavior of Fibonacci and Lucas numbers on the one hand, and certain numbers arising from 
(generalized) paper-folding on the other. To describe the latter, let t, u be mutually prime positive 
integers (we may assume t > u) and set 

Mn = *-^-9 Pn = tn+u\ n>\. (0.1) 

Then the sequence {Mn} shares arithmetical properties with the Fibonacci sequence {Fn}, while 
the sequence {Pn} is similarly related to the Lucas sequence {Ln}. In particular, we have 

gcd(Ma, Mb) = Md, where d = gcd(a, b), (0.2) 

mirroring a well-known feature of Fibonacci numbers (see Theorem 2.5). 
It wras pointed out in [1] that (0.2) could itself be used to disprove the corresponding asser-

tion for the 1cm; precisely, if lcm(a, b) = £, then lcm(Ma, Mb) - Mt only in the trivial cases a\b or 
b\a. The argument rested on a uniqueness theorem for the expression of rational numbers as a 
ratio of two members of the {Mn} sequence. However, the authors did not establish the corre-
sponding negative results for lcm(i^, Fb), lcm (Z,a, Lb). 

In this paper the gap is filled, precisely by establishing the relevant uniqueness statements for 
ratios of Fibonacci numbers and Lucas numbers. It turns out that much of the work can be done 
for arbitrary sequences {un} of positive integers satisfying the recurrence relation un+2 = un+l + un, 
n>\. 

Such sequences are, in a sense, classified by their initial values uh u2. However, to discuss 
the classification, it is better to take the sequences backward with respect to n, that is, to allow n 
to take any integer value, although the principal results are all to be concerned with positive 
values of n. Then the Fibonacci sequence {Fn} belongs to the special class given by u0 = 0. 
Another interesting class, from our point of view, is given by 0 < u0 < ux. The Lucas sequence 
{Ln} seems, to us, to belong to a singleton class. 

* The third author is a Senior Research Assistant with the National Fund for Scientific Research (Belgium). 
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It is interesting to note that the Fibonacci sequence piays a special role in the study of the 
whole class of sequences {un} (see Theorem 1.1). 

This note closes with a related result concerning the 1cm in the mixed case, i.e., lcm(i^, 1^). 
The corresponding result for gcd(Fa,Lb) (see Theorem 2.9) is to be found in [1] and [2]. It 
would be interesting to seek the analogous result concerning gcd(Mfl, Pb). 

We use (r, s) for the open interval r < x < s and (r, $} for the half-open interval r < x < s. 
We do not claim originality for the statements of Corollary 2.3 and Theorem 2.4—though we 

have not ourselves succeeded in finding them in the literature. However, we do believe that our 
results on the 1cm are entirely new. 

1. GENERAL PROPERTIES 

We assume here that we have a sequence {un, n>0} of integers such that uQ > 0, ux > 0, and 

^ + 2 = l W l + ^ n^°' ( U ) 
Of course, both the Fibonacci numbers {Fn} and the Lucas numbers {Ln} meet these conditions. 
We prove the following: 

Theorem LI: Let^>l. Then 

^e(FM,FM), k>3; 02±Le(FM9FMl 

Proof: We argue by induction on I. If £ = 1, then 

^±L>1 if k>2- ^ > 1 . 

On the other hand, uk+l/uk = l + uk_x/uk <2 ifk>3;u3/u2 - l + ul/u2<2. Hence 

**e{\,2) = (F2,F3),k*3;%-
"k «2 

Now let 1 = 2. Then 

^e(l,2) = (F2,F3), k>3; & s(l,2] = (F2,F3]. 

^ ± 2 - = ^ ± L + 1 G ( 2 , 3 ) = (F 3 ,F 4 ) , k>3; and ^ - = ̂ - + 1 e(2,3] = (F3,F4]. 
uk uk "2 U2 

We now carry out the inductive step. We assume the theorem is true for I - 1 , t - 2,1 > 3. Then 

and 

«* «k "k 

= (Ft +Fi_l,FM+Ft) = (FM,Ft+2), if * > 3; 

^ = ^+^£(Fe,FM] + (Fe_1,Fe] 

= (F£+F£_h FM +F£] = (FM, Fi+2]9 

proving the theorem. 
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Remarks: 
(a) Notice that, for the Fibonacci numbers, F31F2 = 2 = F3. Indeed u3/u2=F3 precisely 

when u0 = 0. 

(b) There is no need in this theorem for un to be an integer. 

Theorem 1.2: uM = Feuk+l +Ft_juk, for all k, t. 

Proof: We hold k fixed and prove this for two successive values of t; plainly, this suffices. 
Now F_x = 1, F0 = 0, Fx = 1, so it is plain that the formula holds* for I - 0,1. 

Theorem 13: Let -^±L = ~m±L for some positive k, m. Thmk = m. 
uk u„ 

Proof: Plainly, 
"k+l _. um+l ^ uk-\ _ um-\ ^ uk _ um 

uk um uk um uk_x um_x 

Thus, if k & m, we have h>3 such that 
-^t-=t^, (1.2) 

We now proceed backwards, that is, we allow negative values of n in un. We look at the 
sequence {un, 2>n> -oo}. There are three possibilities: 

(i) As n decreases, this sequence remains positive. This, however, is impossible, since, if all 
terms are positive, it follows from (1.1) that the sequence is decreasing; but there is no 
strictly decreasing infinite sequence of positive integers. 

(ii) As n decreases, this sequence remains positive until it takes the value 0. 
(Hi) As n decreases, this sequence remains positive until it takes a negative value. 

Thus there must be a first value n for which un is nonpositive (as n decreases). It follows 
from (1.2) that 

ur un 

with r > n. Thus ur+lun = urun+l, with ur+l7 ur, un+l positive and un nonpositive. This contradic-
tion implies k = m. 

From Theorems 1.2 and 1.3, we infer 

Theorem 1.4: Let —— = mU for some positive k, m, and l>\. Then k = m. 

Proof: By Theorem 1.2, we infer that 

* We may, of course, continue the sequence {un} backwards, using (1.1). In particular, we may define Fn9 Ln for n 
negative. 
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Since £ > 1, F£ * 0, so uk+l luk- um+l lum. We apply Theorem 1.3. 

We now put together Theorems 1.4 and 1.1 to infer 

Theoreml.5: If ^ = ?^withk, m>2, md £,n>l,thm k = m,£ = n. 

Proof: By Theorem 1.1, 

^ *(FM, Fi+2l ^ G(F„+h F„+2]. 
uk um 

Now if £9 n > 1, then (Fi+h Fi+2] and (Fn+h Fn+2] are disjoint unless £ = n. Thus, £ - n and 

'-, £>l, so that, by Theorem 1.4, & = m. 

Remark: In fact, it is only in the proof of Theorem 1.3 that we use the fact that {un} is a se-
quence of integers. However, this, of course, implies that Theorems 1.4 and 1.5 are only proved 
under this assumption. Note that the conclusion of Theorem 1.3 is false if un - ^w, where ^ is the 
golden section (so that (/>2 = <f> +1). 

2. SPECIAL PROPERTIES OF FIBONACCI AND LUCAS NUMBERS 

It is noteworthy that, in Theorem 1.5, we must exclude the possibility that k = 1 or m = 1. Of 
course, if we require l9n>\, then the conclusion of Theorem 1.5 trivially follows if k - m - 1, for 
then uM - un+l with £ + l,n + l>2, and the sequence {un,n>2) is strictly increasing. However, 
we also have to consider the possibilities k - 1, m > 2 and m = l,k>2. 

In considering these possibilities, we are content largely to confine our attention to the se-
quences {Fn} and {Ln} of Fibonacci and Lucas numbers, since it is to arithmetic properties of 
these sequences that we will be applying our enhanced form of Theorem 1.5. However, notice 
that we get the enhanced form for certain sequences {un} immediately, by the following obser-
vation. 

Suppose that, in fact, 0 < u0 < ux. Set vn = un_x, n>0, noticing that u_Y = ul-u0>0. Thus 
we may apply Theorem 1.5 to the sequence {vn}, obtaining 

Xk±L = ^!m^L9 Withk,m>2, £,n>l=>k = m, £ = n. (2.1) 
vk vm 

Rewrite (2.1) in terms of the original sequence {un}, writing k +1 for k, m +1 for m; we obtain 

Theorem 2.1: If, in addition, 0 < u0 < ux, then 

^±L = ^±^-, with k,m>\, £,n>l=>k = m, £ = n. (2.2) 
Uk Um 

We must proceed differently in seeking the enhanced form of Theorem 1.5 in the case of the 
Fibonacci sequence {Fn} and the Lucas sequence {Ln}. For, of course, neither sequence satisfies 
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0 < u0 < ux. Indeed, F0 = 0 and L^>LV Thus we first attach the supplementary condition u0 = 0; 
this means that un = uxFn. We prove 
Theorem 2.2: If, in addition, uQ = 0, then 

tfk±L = Hin±iLy withA:,m>l, £,n>l=>k=m, £ = n; 

or k = 1, m = 2, £ = n +1; 
or & = 2, w = 1, n = £ +1. 

Proof: We may assume k - 1, w > 2 in light of Theorem 1.5 and the opening remark of this 
section. Then 

But #f > 2 so that, by Theorem 1.1, 

This forces £ = n +1, so that 

FM = ^e(Fn+l,F„+2lln>L 

F 
-Jn±n-£(Fr,+hFn+2)> F 

forcing m = 2. Of course, the case m = 1, k > 2 is treated similarly. 

Applying Theorem 2.2 to the sequence {Fn}, we have 

Corollary 2.3: If 
_JH^ = Em+rL w i t h l m > l / w > l then k = m, £ = h; 
Fk Fm' 

or * = 1, m = 2, £ = n + l; 

or A = 2, m = \ n = £ + l 

We now turn to the Lucas sequence {Ln} and prove 

Theorem 2.4: If ^ - = ^±B-9 with Jfc, /w > 1, ^ w > 1, then k = rn, £ = n 
Afc Aw 

Proof: As in the proof of Theorem 2.2, we observe that, effectively, we have only to show 
that the assumption k = l, m>2 leads to a contradiction. Thus we are given that 

LM = ̂ B±!L9 m>2. 

By Theorem 1.1, 

A 

But 

I^M-^(Fn+l,Fn+2], 

LM ~Fe + F£+2 G (Fe+2> FM1 • 
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Thus we must have n = £ + l, so that LmLn = Lm+n. Now it is easy to see that, for all m, n, 
LmLn = Lm+n + (-T)nLm_n. Since no Lucas number is zero, we have arrived at the hoped for con-
tradiction. 

We use Corollary 2.3 and Theorem 2.4 to obtain interesting results on lems of Fibonacci and 
Lucas numbers. We have the well-known classical result 

Theorem IS: Let gcd(a,b) = d. Then gcd(Fa, Fb) = Fd. 

We prove 

Theorem 2.6: Let lcm(a, b) = £. Then lcm(i^, Fb) = F£ oa\b or b\a. 

Proof: Certainly, if a\b9 then Fa\Fb, so lcm(i^,Fb)-Fb and b -£. A similar argument 
applies if b\a. Now suppose that lcm(i^, Fb) = Ft. It then follows from Theorem 2.5 that 

FaFb = F£Fd or § - = A 

Of course, a > d, £>b. Moreover, a-d o£ = b, and this is the case a\b. If we are not in 
this case, then we may apply Corollary 2.3 to infer that 

a = £, d-b 
or d=l,b = 2,a = £ 
or d = 2,b = l,a = £. 

However, the conjunction d = 1, b - 2, a - £ is absurd and the conjunction d = 2, b = 1, a = £ is 
even more absurd. Hence, we conclude that a = £, d = b, or b\a. 

Now there is a result for Lucas numbers corresponding to Theorem 2.5 (see [1] and [2]); 
thus, 

Theorem 2.7: Let gcd(a, b) = d. Then 

K i f \a\l=\b\l> 
gcd(La, Lb) = \2 if l^b^l^b a n^ 3|*/, 

1 if |a|2 *|#|2 and 3|d. 

Here |/z|2 is the 2-valuation of w, i.e., the largest k such that 2k\n. Let us say a divides b oddly if 
a|A and \a\2 = \b\2, that is, if a\b with odd quotient. Then we prove 

Theorem 2.8: Let lcm(a, 2>) = £. Then 
lcm(Z3, Z6) = L£<=> a\b oddly or £|a oddly or a = 1 or b = 1. 

Proof: If a|Z> oddly, then Za |Z6, so lcm(Za, Z6) = Lb - Lt. A similar argument applies if b\a 
oddly. Clearly if a = 1 or b = 1, then lcm(Za, Z )̂ = Z .̂ Now suppose conversely that lcm(Zfl, Lj) = 
L£. Obviously we can have a = 1 or b = 1, so suppose a,b>2. Then La \Lt, Lb\L£, so, as an easy 
consequence of Theorem 2.7, 

W2=l4=l*l2-
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Thus, by Theorem 2.7, gcd(Lfl, L^ = Ld, whence LaLb = LdL£ oxLa I Ld = L£l Lb. As in the proof 
of Theorem 2.6, we have a > d, £>b; and a = do£ = b, this being the case a\b oddly. If we 
are not in this case, then a >d, l>b so that, by Theorem 2.4, a = £, d = h, yielding b\a oddly. 

Remark: It is intriguing to see that, above, it is the fact that the gcd (of Fibonacci or Lucas num-
bers) has a certain desirable property which ensures that the 1cm cannot have the corresponding 
property. 

We close by proving a result similar to Theorems 2.6 and 2.8 in the mixed case. Here our 
argument is somewhat ad hoc (and could have been used in suitably adapted form to provide an 
alternative proof of Theorems 2.6 and 2.8). We first quote from [1] and [2]. 

Theorem 2.9: Let gcd (a, b) = d. Then 

[4 if kl2>H2> 
gcd(Fa,Lb) = \2 if \a\2<\b\2 and 3\d, 

1 if M 2 < H 2 and 3\d. 
Now if \a\2 > \b\2 and £ = lcm(a, b), then Fa\Fi9 Lb\F£ (since 2h\£). Thus we may raise the 

question as to whether lcm(i^, Lb) = F£. We prove 

Theorem2.10: Let \a\2 >\b\2. Then lcm(Fa, Lb) = F£ ob\a. 

Proof: If b\a, then 2b\a, so Lb \F2b \Fa and lcm(Fa, Lb) = Fa = F£. Suppose conversely that 
lcm(i^„ Lb) - Ft and b\a, that is, b * d, a * I. Then, by Theorem 2.9, FaLb - F£Ld, so 

l+ILd=FtIFa. 

Suppose d > 2. Then, by Theorem 1.1, 

^-^(Fb.d+hFb_d+2] and - f e(F€_a+l9F£_a+2\. 

Thus we conclude that b-d-i-a. This, however, is impossible, since it implies a-d or 
b - d; and a - d is excluded because a\b. 

Suppose, finally, that d = 1. Then 
F 

l^~ G(F£_a+l, F£_a+2\. 

But 1^ e(i^+1, Fb+2], which implies i-a-b. This, in turn, implies ah = a + h with a, b mutually 
prime, which is plainly absurd. This final contradiction establishes the theorem. 
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