A NOTE ON SIERPINSKI NUMBERS

Anatoly S. Izotov
Mining Institute, Novosibirsk, Russia
7 Dostoevsky Str., Apt. 12, Novosibirsk, 630104, Russia
(Submitted September 1993)

In [5], W. Sierpinski proved that there are infinitely many odd integers k (Sierpinski numbers) such that $k \cdot 2^{n}+1$ is composite for all $n \geq 0$. In his proof, Sierpinski used as a covering set the set of primes $\{3,5,17,257,641,65537,6700417\}$. A "covering set" for any k means here a finite set of primes such that every integer $k \cdot 2^{n}+1, n \geq 0$, is divisible by at least one of them. There are other covering sets (see [4], [6]). In 1962, J. L. Selfridge (unpublished manuscript) discovered that $\{3,5,7,13,19,37,73\}$ is a covering set for 78557 .

In this note, we prove that there are infinitely many Sierpinski numbers of the new kind. We find those k such that $k \cdot 2^{n}+1$, for n of the form $n=4 m+2$, has an easy algebraic decomposition while, for other n, we have the covering set $\{3,17,257,641,65537,6700417\}$ from Sierpinski's set.

Theorem 1: Let the positive integer t be any solution of the system of congruences

$$
\left\{\begin{array}{l}
t \equiv 1(\bmod 2), \\
t \equiv 1 \operatorname{or} 2(\bmod 3), \\
t \equiv 0(\bmod 5), \\
t \equiv 1,4,13, \text { or } 16(\bmod 17), \tag{1}\\
t \equiv 1,16,241, \text { or } 256(\bmod 257), \\
t \equiv 1,256,65281, \text { or } 65536(\bmod 65537), \\
t \equiv 1,65536,6634881, \text { or } 6700416(\bmod 6700417), \\
t \equiv 256,318,323, \text { or } 385(\bmod 641) .
\end{array}\right.
$$

Then $k=t^{4}$ is a Sierpinski number.
Proof: By (1),

$$
\left\{\begin{array}{l}
k \equiv 1(\bmod 2), \\
k \equiv 1(\bmod 3), \\
k \equiv 0(\bmod 5), \\
k \equiv 1(\bmod 17), \\
k \equiv 1(\bmod 257), \tag{2}\\
k \equiv 1(\bmod 65537), \\
k \equiv 1(\bmod 6700417), \\
k \equiv-1(\bmod 641) .
\end{array}\right.
$$

So we have

$$
\begin{aligned}
k \cdot 2^{2 m+1}+1 & \equiv 0(\bmod 3) \\
k \cdot 2^{8 m+4}+1 & \equiv 0(\bmod 17) \\
k \cdot 2^{16 m+8}+1 & \equiv 0(\bmod 257)
\end{aligned}
$$

$$
\begin{aligned}
k \cdot 2^{32 m+16}+1 & \equiv 0(\bmod 65537) \\
k \cdot 2^{64 m+32}+1 & \equiv 0(\bmod 6700417) \\
k \cdot 2^{64 m}+1 & \equiv 0(\bmod 641)
\end{aligned}
$$

for $m \geq 0$. For $n=4 m+2$, we have

$$
\begin{aligned}
k \cdot 2^{n}+1 & =t^{4} \cdot 2^{4 m+2}+1 \\
& =4\left(t \cdot 2^{m}\right)^{4}+1 \\
& =\left(t^{2} \cdot 2^{2 m+1}+t \cdot 2^{m+1}+1\right)\left(t^{2} \cdot 2^{2 m+1}-t \cdot 2^{m+1}+1\right)
\end{aligned}
$$

Since $t>1, t^{2} \cdot 2^{2 m+1}-t \cdot 2^{m+1}+1>1$ for $m \geq 0$. Therefore, $k \cdot 2^{4 m+2}+1$ is composite for all $m \geq 0$. Note that $k \cdot 2^{4 m+2}+1 \equiv 1(\bmod 5)$, so $\{3,5,17,257,641,65537,6700417\}$ is not a covering set for k.

Are there other Sierpinski numbers analogous to Theorem 1?
The problem of determining the least value k_{0} of k such that $k \cdot 2^{n}+1$ is always composite was posed by Sierpinski [5], again by Guy [2], and was considered in [1] and [3]. The least known k is Selfridge's $k=78557$ with covering set $\{3,5,7,13,19,37,73\}$. Perhaps k_{0} has no covering set.

REFERENCES

1. R. Baillie, G. Cormack, \& H. C. Williams. "The Problem of Sierpinski Concerning $k \cdot 2^{n}+1$." Math. Comput. 37 (1981):229-31; Corrig. Math. Comp. 39 (1982):308.
2. R. K. Guy. "Some Unsolved Problems." In Computers in Number Theory, pp. 415-22. Ed. A. O. L. Atkin and B. J. Brich. New York: Academic Press, 1971.
3. G. Jeaschke. "On the Smallest k Such That All $k \cdot 2^{N}+1$ Are Composite." Math. Comput. 40.101 (1983):361-64.
4. J. L. Selfridge. "Solution to Problem 4995." Amer. Math. Monthly 70 (1963):101.
5. W. Sierpinski. "Sur un probleme concernant les nombres $k \cdot 2^{n}+1$." Elem. Math. 15 (1960): 73-74; Corrig. 17 (1962):85.
6. R. G. Stanton. "Future Results on Covering Integers of the Form $1+k \cdot 2^{N}$ by Primes." Lecture Notes in Math. 884 (1980):107-14.

AMS Classification Numbers: 11B25, 11B83

