CONCERNING THE RECURSIVE SEQUENCE

$$
A_{n+k}=\sum_{i=1}^{k} a_{i} A_{n+i-1}^{\alpha_{i}}
$$

Xiquan Shi*

Mathematics Department, Dalian University of Technology, Dalian 116024, China
(Submitted October 1993)

1. MAIN RESULT

In [1] H. T. Freitag has raised a conjecture that for the sequence $\left\{A_{n}\right\}$, defined by $A_{n+2}=$ $\sqrt{A_{n+1}}+\sqrt{A_{n}}$ for all $n \geq 1, \lim _{n \rightarrow \infty} A_{n}=4$ regardless of the choice of $A_{1}, A_{2}>0$. In this note we will give a positive answer to this conjecture by proving the following more general theorem.

Theorem 1: If $-1<\alpha_{i}<1,1 \leq i \leq k$ and $A_{n+k}=\sum_{i=1}^{k} a_{i} A_{n+i-1}^{\alpha_{i}}, n \geq 1$, then

$$
\lim _{n \rightarrow \infty} A_{n}=L,
$$

the unique root of the equation $\sum_{i=1}^{k} a_{i} x^{\alpha_{i}-1}-1=0$ in the interval $(0, \infty)$, regardless of the choice of $A_{i}>0,1 \leq i \leq k$, where $a_{i} \geq 0,1 \leq i \leq k$, and $\sum_{i=1}^{k} a_{i}>0$.

In particular, if $k=2, a_{i}=a_{2}=1$, and $\alpha_{i}=\alpha_{2}=1 / 2$, we have

$$
\lim _{n \rightarrow \infty} A_{n}=4 .
$$

This coincides with Freitag's conjecture.
Proof: Let $A_{n}=L x_{n}$. Then

$$
x_{n+k}=\sum_{i=1}^{k} \beta_{i} x_{n+i-1}^{\alpha_{i}},
$$

where $\beta_{i}=a_{i} L^{\alpha_{i}-1}$, and therefore

$$
\begin{equation*}
\sum_{i=1}^{k} \beta_{i}=1 . \tag{1}
\end{equation*}
$$

Obviously, we only need to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=1 . \tag{2}
\end{equation*}
$$

To this end, set $M=\max \left\{x_{i}, x_{i}^{-1} ; 1 \leq i \leq k\right\}$ and $\alpha=\max \left\{\left|\alpha_{1}\right|, \ldots,\left|\alpha_{k}\right|\right\}$. It is obvious that $M \geq 1,0 \leq \alpha<1$, and

$$
\begin{equation*}
M \geq x_{i} \geq M^{-1}, 1 \leq i \leq k . \tag{3}
\end{equation*}
$$

We will use induction to prove that

$$
\begin{equation*}
M^{\alpha^{n}} \geq x_{k n+i} \geq M^{-\alpha^{n}}, 1 \leq i \leq k, \tag{4}
\end{equation*}
$$

[^0]$$
\text { CONCERNING THE RECURSIVE SEQUENCE } A_{n+k}=\sum_{i=1}^{k} a_{1} A_{n+i-1}^{\alpha_{i}}
$$
holds for all $n \geq 0$. In fact, from (3), (4) holds when $n=0$. We assume that (4) holds if $n \leq \ell-1$. For $n=\ell$, from the induction assumption and the definition of M, it follows that
\[

$$
\begin{equation*}
M^{\alpha^{\ell}} \geq M^{\left|\alpha_{i}\right| \alpha^{\ell-1}}, 1 \leq i \leq k \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
M^{-\left|\alpha_{i}\right| \alpha^{\ell-1}} \leq x_{(\ell-1) k+i}^{\alpha_{i}} \leq M^{\left|\alpha_{i}\right| \alpha^{\ell-1}}, 1 \leq i \leq k \tag{6}
\end{equation*}
$$

Therefore, from (5) and (6), we have

$$
x_{k \ell+1}=\sum_{i=1}^{k} \beta_{i} x_{(\ell-1) k+i}^{\alpha_{i}} \leq \sum_{i=1}^{k} \beta_{i} M^{\left|\alpha_{i}\right| \alpha^{\ell-1}} \leq M^{\alpha^{\ell}}
$$

and, furthermore, we have

$$
x_{k \ell+2}=\sum_{i=1}^{k} \beta_{i} x_{(\ell-1) k+i+1}^{\alpha_{i}} \leq \sum_{i=1}^{k-1} \beta_{i} M^{\left|\alpha_{i}\right| \alpha^{\ell-1}}+\beta_{k} M^{\left|\alpha_{k}\right| \alpha^{\ell}} \leq M^{\alpha^{\ell}}
$$

In the last step we have used the fact that $M^{\left|\alpha_{k}\right| \alpha^{\ell}} \leq M^{\alpha^{\ell}}$. Similarly, the left-hand inequality of (4) holds for $n=\ell$ and other indices $i, 3 \leq i \leq k$. The right-hand inequality of (4) can be justified in a similar way. Noting that $0 \leq \alpha<1$, we obtain

$$
\lim _{n \rightarrow \infty} M^{-\alpha^{n}}=\lim _{n \rightarrow \infty} M^{\alpha^{n}}=1 .
$$

By (4), this implies that (2) holds.
Corollary 1: If $-1<\alpha_{1}=\cdots \alpha_{k}=\alpha<1$ and $a_{1}=\cdots a_{k}=1$, then

$$
\lim _{n \rightarrow \infty} A_{n}=k^{\frac{1}{1-\alpha}},
$$

independent of the choice of $A_{1}, A_{2}, \ldots, A_{k}>0$, where $\left\{A_{n}\right\}_{1}^{\infty}$ is as defined in Theorem 1.
Corollary 2: If $-1<\alpha_{i}<1, a_{i} \geq 0$, and $\sum_{i=1}^{k} a_{i}=1$, then

$$
\lim _{n \rightarrow \infty} A_{n}=1,
$$

independent of the choice of $A_{1}, A_{2}, \ldots, A_{k}>0$, where $\left\{A_{n}\right\}_{1}^{\infty}$ is also as defined in Theorem 1. Corollary 2 follows from the fact that $L=1$ is the only root of the equation $\sum_{i=1}^{k} a_{i} x^{\alpha_{i}-1}-1=0$ in the interval $(0, \infty)$.

2. FURTHER RESULTS

In this section we consider a linear recursive sequence, that is, when we choose $\alpha_{i}=1$, $1 \leq i \leq k$, in the recursive sequence considered above.

Theorem 2: Let the complex sequence $\left\{A_{n}\right\}_{1}^{\infty}$ satisfy

$$
A_{n+k}=\sum_{i=1}^{k} a_{i} A_{n+i-1} .
$$

$$
\text { CONCERNING THE RECURSIVE SEQUENCE } A_{n+k}=\sum_{i=1}^{k} a_{1} A_{n+i-1}^{\alpha_{i}}
$$

Then, if $a_{i}>0,1 \leq i \leq k$, and $\sum_{i=1}^{k} a_{i}=1$, the sequence $\left\{A_{n}\right\}_{1}^{\infty}$ converges to a limit which depends on the values of $A_{i}, 1 \leq i \leq k$.

Proof: We will prove that $x=1$ is a single root of the eigenpolynomial,

$$
\begin{equation*}
p(x):=x^{k}-\sum_{i=1}^{k} a_{i} x^{i-1}=0 \tag{7}
\end{equation*}
$$

of the recursive sequence

$$
A_{n+k}=\sum_{i=1}^{k} a_{i} A_{n+i-1}
$$

and the moduli of all other roots of (7) are less than 1.
In fact, since $\sum_{i=1}^{k} a_{i}=1$, we have $p(1)=0$. This means that $x=1$ is a root of $p(x)$. From

$$
p^{\prime}(1)=k-\sum_{i=1}^{k}(i-1) a_{i} \geq 1
$$

it follows that $x=1$ is a single root of $p(x)$. On the other hand, for $x=r e^{i \theta}, r \geq 1$, and $0 \leq \theta<2 \pi$, we have

$$
\left|p\left(r e^{i \theta}\right)\right| \geq r^{k}-\left|\sum_{j=1}^{k} a_{j} r^{j-1} e^{(j-1) \theta i}\right| \geq\left(r-\sum_{i=1}^{k} a_{i}\right) r^{k-1} \geq 0
$$

It is easy to see that the above inequalities become equalities if and only if $r=1$ and $\theta=0$. Therefore, if $x=x_{0}$ is a zero of $p(x)$, then $\left|x_{0}\right| \leq 1$ and $x_{0}=1$ when $\left|x_{0}\right|=1$. Set

$$
\begin{equation*}
p(x)=(x-1)\left(x-x_{1}\right)^{r_{i}} \cdots\left(x-x_{m}\right)^{r_{m}} \tag{8}
\end{equation*}
$$

where $1+r_{1}+\cdots r_{m}=k,\left|x_{j}\right|<1,1 \leq j \leq m$, and $x_{i} \neq x_{j}$ when $i \neq j$. It is well known that $\left\{A_{n}\right\}_{1}^{\infty}$ has the general solution

$$
\begin{equation*}
A_{n}=c+\sum_{i=1}^{m} \sum_{j=0}^{r_{i}-1} c_{i, j} n^{j} x_{i}^{n} \tag{9}
\end{equation*}
$$

From (9), we deduce that

$$
\lim _{n \rightarrow \infty} A_{n}=c
$$

The value of c depends on the choice of $A_{j}, 1 \leq j \leq k$. This completes the proof of Theorem 2 .
Note: Theorem 1 and Theorem 2 can be generalized easily to discuss sequences of functions. To state this precisely, we have

Theorem 3: Let $a_{i}=a_{i}(x)$ and $\alpha_{i}=\alpha_{i}(x), 1 \leq i \leq k$, be functions defined on a point set $I \subset R^{m}$, a Euclidean space, and let the function sequence $\left\{A_{n}(x)\right\}_{1}^{\infty}$ be defined as

$$
A_{n+k}(x)=\sum_{i=1}^{k} a_{i} A_{n+i-1}^{\alpha_{i}}(x), n \geq 1
$$

$$
\text { CONCERNING THE RECURSIVE SEQUENCE } A_{n+k}=\sum_{i=1}^{k} a_{1} A_{n+i-1}^{\alpha_{i}}
$$

Then we have:
(1) If $a_{i}(x) \geq 0$ and $-1<\alpha_{i}(x)<1$ hold for an $x \in I,\left\{A_{n}(x)\right\}_{1}^{\infty}$ converges at the point x to $L=L(x)$, the unique root of $\sum_{i=1}^{k} a_{i} y^{\alpha_{i}-1}=1$ if $a_{i}(x), 1 \leq i \leq k$, are not all zeros and the sequence converges pointwise to zero if $a_{i}(x)=0$ for all $i, 1 \leq i \leq k$, regardless of the choice of $A_{i}(x)>0,1 \leq i \leq k$;
(2) If $a_{i}(x) \geq 0, \Sigma_{i=1}^{k} a_{i}(x)=1$, and $\alpha_{i}(x)=1,1 \leq i \leq k$, hold for an $x \in I,\left\{A_{n}(x)\right\}_{1}^{\infty}$ converges at the point x. In particular, for case (1), $\left\{A_{n}(x)\right\}_{1}^{\infty}$ converges uniformly if there are constants $\alpha, 0 \leq \alpha<1, a>0$, and M such that $\left|\alpha_{i}(x)\right| \leq \alpha, 1 \leq i \leq k, 0<\sum_{i=1}^{k} a_{i}(x) \leq a, x \in I$, and $\sup _{x \in I}\left\{A_{i}(x), A_{i}^{-1}(x) \mid 1 \leq i \leq k\right\} \leq M$ hold, respectively.

ACKNOWLEDGMENT

The author would like to give his hearty thanks to the referee for valuable suggestions which improved the presentation of this note.

REFERENCE

1. H. T. Freitag. "Some Stray Footnotes in the Spirit of Recreational Mathematics." Abstracts Amer. Math. Soc. 12.4 (1991):8.
AMS Classification Numbers: 11B37, 11B39
$\% \%$

[^0]: * The work of this author is supported by the Alexander von Humboldt Foundation and the Natural Science Foundation of China.

