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1. MAIN RESULT 
In [1] H. T. Freitag has raised a conjecture that for the sequence {An}, defined by An+2 = 

VA+i + V ^ ^or a^ n - *' ^mw->oo An=4 regardless of the choice of Av A2 > 0. In this note we 
will give a positive answer to this conjecture by proving the following more general theorem. 

Theorem 1: I f -1 < a . < 1, 1 <i <k and An+k = Zf=1 #A*+/-i> n ^ t h e n 

lim An = Z, 
«->oo 

the unique root of the equation £/=1a/xa,~ - 1 = 0 in the interval (0, oo)? regardless of the choice 
of At > 0, 1 </ < k, where a. >0, 1 <i <k, and Zf=1a7- >0. 

In particular, if k = 2, a. = a2 = 1, and a, = a2 = X> w e ha v e 

lim 4 , =4. 
«->O0 

This coincides with Freitag's conjecture. 

Proof: Let An = Zxw. Then 
A: 

7 = 1 

where /?, = â Z**' , and therefore 

ZA=i- (i) 
7 = 1 

Obviously, we only need to prove that 
lim xn = 1. (2) 

To this end, set M = max{x/.,x~1; l < / < £ } and a = mzx.{\al\,...,\ak\}. It is obvious that 
M>1, 0 < a < l , and 

M>xt>M~\ \<i<k. (3) 

We will use induction to prove that 

Man>Xkn+i>M-a", \<i<k, (4) 
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holds for all n > 0. In fact, from (3), (4) holds when n = 0. We assume that (4) holds if n < I -1. 
For n = £, from the induction assumption and the definition ofM, it follows that 

Mai >M^a'~\ \<i<K (5) 
and 

^ V - D * + ' - M , 1<*<*. (6) 

Therefore, from (5) and (6), we have 

i=l /=! 

and, furthermore, we have 

1 = 1 7 = 1 

In the last step we have used the fact that M k < Ma . Similarly, the left-hand inequality of 
(4) holds for n = I and other indices i, 3<i<k. The right-hand inequality of (4) can be justified 
in a similar way. Noting that 0 < a < 1, we obtain 

limM-a" = l imM a "= l . 
/7-»co tt-»oo 

By (4), this implies that (2) holds. • 

Corollary 1: If -1 < ax = • • • ak - a < 1 and al = --ak = 1, then 
i 

lim An = kl~a, 
«-»O0 

independent of the choice of Al9 A2,..., Ak > 0, where {An}™ is as defined in Theorem 1. 

Corollary 2: If -1< ai < 1, a. > 0, and T*=iai = 1, then 
lim 4 = 1, 
«->oo 

independent of the choice of Av A2,..., ^ >0, where {̂ „}̂ ° is also as defined in Theorem 1. 
Corollary 2 follows from the fact that L = 1 is the only root of the equation Z7=1 atxar -1 = 0 in 
the interval (0, oo). 

2. FURTHER RESULTS 

In this section we consider a linear recursive sequence, that is, when we choose at = 1, 
1 < i < k, in the recursive sequence considered above. 

Theorem 2: Let the complex sequence {An}™ satisfy 
k 

/=1 
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Then, if at > 0, 1 < i < k, and Zf=1 tf, = 1, the sequence {4,}J° converges to a limit which depends 
on the values of Af, 1 < / < k. 

Proof: We will prove that x = 1 is a single root of the eigenpolynomial, 

p(x):=x -^cijX = 0, (7) 

of the recursive sequence 

and the moduli of all other roots of (7) are less than 1. 
In fact, since Z/=1 at = 1, we have/?(l) = 0. This means that x = 1 is a root ofp(x). From 

p'(l) = k-fi(i-l)ai>l, 
7 = 1 

it follows that x = 1 is a single root ofp(x). On the other hand, for x = re10, r > 1, and 0 < 6 < 2n, 
we have 

p(rew) >rk- > (
 k ^ 

.̂ 1=1 J 
rk~l>0. 

It is easy to see that the above inequalities become equalities if and only if r = 1 and 0 = 0. 
Therefore, if x = x0 is a zero of p(x), then |x0 |< 1 and x0 = 1 when \x01= 1. Set 

p(x) = (x-i)(x-Xly^..(x-Xmy^ (8) 

where l+rl + ---rm = k9\xJ\<l, \<j<m, and x, ̂ x ; when/* jf. It is well known that {̂ 4„}J° has 
the general solution 

r,-l 

From (9), we deduce that 
;=1 y=0 

lim A, = c. 

(9) 

The value of c depends on the choice of A., \<j<k. This completes the proof of Theorem 2. D 

Note: Theorem 1 and Theorem 2 can be generalized easily to discuss sequences of functions. To 
state this precisely, we have 

Theorem 3: Let a. = at(x) and at = a7(x), 1 <i < k, be functions defined on a point set I czRm, 
a Euclidean space, and let the function sequence {An(x)}™ be defined as 

/=! 
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Then we have: 

(1) If a.(x)>0and ~\<ai(x)<\ hold for an xel, {An(x)}™ converges at the point x to 
L = L(x), the unique root of Z ^ ^ . j ^ ' " =1 if af(x\ \<i<k, are not all zeros and the 
sequence converges pointwise to zero if af(x) = 0 for all z, 1 <i < k, regardless of the choice 
of Ai(x)>0, \<i<k\ 

(2) If at(x)>0,Ef=1 <*.(x) -1, and af(x) = 1, \<i<k, hold for an x el, {An(x)}™ converges at 
the point x. In particular, for case (1), {An(x)}™ converges uniformly if there are constants 
a, 0 < a < l , a > 0 , and M such that \at{x)\<a, \<i<k, 0<J^=lat{x)<a, xel, and 
supxeI{Ai(x), A~l(x)\l< i<k}<M hold, respectively. 
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