A CONGRUENCE FOR FIBONOMIAL COEFFICIENTS MODULO \boldsymbol{p}^{3}

William A. Kimball and William A. Webb

Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164-3113
(Submitted June 1993)
An interesting property of binomial coefficients is that, for primes $p>3$,

$$
\begin{equation*}
\binom{a p}{b p} \equiv\binom{a}{b} \quad\left(\bmod p^{k}\right) \tag{1}
\end{equation*}
$$

for $k=1,2,3$.
The Fibonomial coefficients, defined as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{F_{n} F_{n-1} \ldots F_{1}}{\left(F_{k} F_{k-1} \ldots F_{1}\right)\left(F_{n-k} \ldots F_{1}\right)},
$$

or, more generally,

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{j}=\frac{F_{n j} F_{(n-1) j} \ldots F_{j}}{\left(F_{k j} F_{(k-1) j} \ldots F_{j}\right)\left(F_{(n-k) j} \ldots F_{j}\right)},
$$

where F_{i} is the $i^{\text {th }}$ Fibonacci number. Such expressions have been shown to possess many properties similar to binomial coefficients. In a previous paper [5] the authors investigated properties of Fibonomial coefficients similar to the property (1) of binomial coefficients for $k=2$. The main results of that paper are:

$$
\left[\begin{array}{c}
r a \tag{2}\\
r b
\end{array}\right] \equiv \varepsilon^{(a-b) b r}\binom{a}{b} \quad\left(\bmod p^{2}\right)
$$

and

$$
\left[\begin{array}{c}
\tau a \tag{3}\\
\tau b
\end{array}\right] \equiv\binom{t a}{t b} \quad\left(\bmod p^{2}\right),
$$

where τ is the period of the Fibonacci sequence modulo an odd prime p, r is the rank of apparition of p (that is, F_{r} is the first nonzero F_{i} divisible by p), and $t=\tau / r$ is an integer. In [7] it is shown that t must assume the value 1,2 , or 4 . The number ε is defined by $\varepsilon=1$ if $\tau=r$, $\varepsilon=-1$ if $\tau=2 r$, and $\varepsilon^{2} \equiv-1\left(\bmod p^{2}\right)$ if $\tau=4 r$.

Unlike the ordinary binomial coefficients, these results are not true in general for higher powers of p. However, in some cases they can be extended to congruences modulo p^{3}.

In order to prove these results, we will first examine some congruences involving certain products of consecutive Fibonacci numbers. Throughout the paper, L_{i} represents the $i^{\text {th }}$ Lucas number, and $p>3$ is prime.

We first consider $\prod_{k=1}^{r-1} F_{m r+k}$ modulo p^{3}. From the identity $2 F_{a+b}=L_{a} F_{b}+L_{b} F_{a}$, we obtain $2 F_{m r+k}=L_{m r} F_{k}+L_{k} F_{m r}$ so that, upon expanding the product and using the facts $p \mid F_{r}$ and $F_{r} \mid F_{m r}$, we have $p \mid F_{m r}$ and

$$
\begin{equation*}
2^{r-1} \prod_{k=1}^{r-1} F_{m r+k} \equiv\left(L_{m r}^{r-1}+L_{m r}^{r-2} F_{m r} \Sigma_{1}+L_{m r}^{r-3} F_{m r}^{2} \Sigma_{2}\right)\left(\prod_{k=1}^{r-1} F_{k}\right)\left(\bmod p^{3}\right), \tag{4}
\end{equation*}
$$

where

$$
\Sigma_{1}=\sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}} \quad \text { and } \quad \Sigma_{2}=\sum_{\substack{n, k=1 \\ k<n}}^{r-1} \frac{L_{k}}{F_{k}} \frac{L_{n}}{F_{n}} .
$$

Then, upon dividing both sides of (4) by $\left(2^{r-1}\right) \prod_{k=1}^{r-1} F_{k}$,

$$
\begin{align*}
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} & \equiv\left(\frac{L_{m r}}{2}\right)^{r-1}+\frac{1}{2}\left(\frac{L_{m r}}{2}\right)^{r-2} F_{m r} \Sigma_{1}+\frac{1}{4}\left(\frac{L_{m r}}{2}\right)^{r-3} F_{m r}^{2} \Sigma_{2} \tag{5}\\
& \equiv \frac{1}{4}\left(\frac{L_{m r}}{2}\right)^{r-3}\left[L_{m r}^{2}+L_{m r} F_{m r} \Sigma_{1}+F_{m r}^{2} \Sigma_{2}\right] \quad\left(\bmod p^{3}\right) .
\end{align*}
$$

We will next work toward simplifying the right-hand side of (5), specifically we will eliminate Σ_{2} by writing it in terms of Σ_{1}.

Now, because $\Sigma_{1}=\sum_{k=1}^{r-1}\left(L_{k} / F_{k}\right)$, we see that

$$
\Sigma_{1}^{2}=\left(\sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}}\right)^{2}=\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}+2 \sum_{\substack{n, k=1 \\ k<n}}^{r-1} \frac{L_{k}}{F_{k}} \frac{L_{n}}{F_{n}}=\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}+2 \Sigma_{2},
$$

thus

$$
\begin{equation*}
\Sigma_{2}=\frac{1}{2}\left[\Sigma_{1}^{2}-\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}\right] \tag{6}
\end{equation*}
$$

Now $\Sigma_{1} \equiv 0(\bmod p)[5]$ so that, from (6), we obtain

$$
\begin{equation*}
F_{m r}^{2} \Sigma_{2} \equiv-\frac{1}{2} F_{m r}^{2} \sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}\left(\bmod p^{4}\right) . \tag{7}
\end{equation*}
$$

We look at $\sum_{k=1}^{r-1}\left(L_{k} / F_{k}\right)^{2}$ modulo p^{2}. Clearly,

$$
2 \sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}=\sum_{k=1}^{r-1}\left[\left(\frac{L_{k}}{F_{k}}\right)^{2}+\left(\frac{L_{r-k}}{F_{r-k}}\right)^{2}\right]=\sum_{k=1}^{r-1}\left[\frac{\left(L_{k} F_{r-k}\right)^{2}+\left(L_{r-k} F_{k}\right)^{2}}{\left(F_{k} F_{r-k}\right)^{2}}\right],
$$

and, from an identity already mentioned,

$$
\left(2 F_{r}\right)^{2}=\left(L_{k} F_{r-k}+L_{r-k} F_{k}\right)^{2}=\left(L_{k} F_{r-k}\right)^{2}+\left(L_{r-k} F_{k}\right)^{2}+2\left(L_{k} F_{r-k} L_{r-k} F_{k}\right),
$$

which implies

$$
\left(L_{k} F_{r-k}\right)^{2}+\left(L_{r-k} F_{r}\right)^{2} \equiv-2\left(L_{k} F_{r-k} L_{r-k} F_{k}\right) \quad\left(\bmod p^{2}\right)
$$

Then, substituting in the equality just above,

$$
2 \sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}=\sum_{k=1}^{r-1}\left[\frac{\left(L_{k} F_{r-k}\right)^{2}+\left(L_{r-k} F_{k}\right)^{2}}{\left(F_{k} F_{r-k}\right)^{2}}\right] \equiv \sum_{k=1}^{r-1} \frac{-2\left(L_{k} F_{r-k} L_{r-k} F_{k}\right)}{\left(F_{k} F_{r-k}\right)^{2}} \equiv-2 \sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}} \frac{L_{r-k}}{F_{r-k}}\left(\bmod p^{2}\right)
$$

or

$$
\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv-\sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}} \frac{L_{r-k}}{F_{r-k}}\left(\bmod p^{2}\right)
$$

We now use the identity $2 L_{a+b}=L_{a} L_{b}+5 F_{a} F_{b}$ to note that $2 L_{r}=L_{k} L_{r-k}+5 F_{k} F_{r-k}$; hence,

$$
5+\frac{L_{k} L_{r-k}}{F_{k} F_{r-k}}=\frac{2 L_{r}}{F_{k} F_{r-k}} .
$$

Thus,

$$
-\sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}} \frac{L_{r-k}}{F_{r-k}}=\sum_{k=1}^{r-1}\left(5-\frac{2 L_{r}}{F_{k} F_{r-k}}\right)=5(r-1)-\sum_{k=1}^{r-1} \frac{2 L_{r}}{F_{k} F_{r-k}}
$$

or

$$
\begin{equation*}
\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv 5(r-1)-\sum_{k=1}^{r-1} \frac{2 L_{r}}{F_{k} F_{r-k}}\left(\bmod p^{2}\right) \tag{8}
\end{equation*}
$$

Then, from (7) and (8), we have

$$
F_{m r}^{2} \Sigma_{2} \equiv \frac{-5}{2} F_{m r}^{2}(r-1)+F_{m r}^{2} \sum_{k=1}^{r-1} \frac{L_{r}}{F_{k} F_{r-k}}\left(\bmod p^{4}\right)
$$

or

$$
F_{m r}^{2} \Sigma_{2} \equiv \frac{-5}{2} F_{m r}^{2}(r-1)+L_{r} \frac{F_{m r}^{2}}{F_{r}} \sum_{k=1}^{r-1} \frac{F_{r}}{F_{k} F_{r-k}}\left(\bmod p^{4}\right)
$$

However,

$$
2 \Sigma_{1}=\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}+\frac{L_{r-k}}{F_{r-k}}\right)=\sum_{k=1}^{r-1} \frac{L_{k} F_{r-k}+L_{r-k} F_{k}}{F_{k} F_{r-k}}=\sum_{k=1}^{r-1} \frac{2 F_{r}}{F_{k} F_{r-k}}
$$

so that

$$
\begin{equation*}
\Sigma_{1}=\sum_{k=1}^{r-1} \frac{F_{r}}{F_{k} F_{r-k}} . \tag{9}
\end{equation*}
$$

Hence, from the last congruence,

$$
F_{m r}^{2} \Sigma_{2} \equiv \frac{-5}{2} F_{m r}^{2}(r-1)+L_{r} \frac{F_{m r}^{2}}{F_{r}} \Sigma_{1}\left(\bmod p^{4}\right),
$$

and so, substituting into (5),

$$
\begin{equation*}
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} \equiv\left(\frac{L_{m r}}{2}\right)^{r-1}-\frac{5}{8} F_{m r}^{2}\left(\frac{L_{m r}}{2}\right)^{r-3}(r-1)+\left(\frac{L_{m r}}{2}\right)^{r-2} \frac{1}{2}\left(F_{m r}+\frac{L_{r}}{L_{m r}} \frac{F_{m r}^{2}}{F_{r}}\right) \Sigma_{1}\left(\bmod p^{3}\right) \tag{10}
\end{equation*}
$$

It is known that, for $p \neq 5, r$ divides either $p-1$ or $p+1$, so we will look at the two special cases where $r=p \pm 1$ and prove a proposition that is interesting in its own right.

Proposition 1: For $r=p \pm 1$,

$$
\sum_{k=1}^{r-1} \frac{L_{k}}{F_{k}}=\Sigma_{1} \equiv 0\left(\bmod p^{2}\right)
$$

for any odd prime p.
Proof: In order to show that $\Sigma_{1} \equiv 0\left(\bmod p^{2}\right)$, we need only show that $\sum_{k=1}^{r-1}\left(1 / F_{k} F_{r-k}\right) \equiv 0$ $(\bmod p)$ since, from (9), $\Sigma_{1}=\sum_{k=1}^{r-1}\left(F_{r} / F_{k} F_{r-k}\right)$ and $p \mid F_{r}$. In [5], it was proved that $L_{k r} \equiv 2 \varepsilon^{k}$ $\left(\bmod p^{2}\right)$, where ε was as previously defined.

Thus, $L_{r} \equiv 2 \varepsilon \not \equiv 0(\bmod p)$, and therefore, $\sum_{k=1}^{r-1}\left(1 / F_{k} F_{r-k}\right) \equiv 0(\bmod p)$ if and only if $\sum_{k=1}^{r-1}\left(-2 L_{r} / F_{k} F_{r-k}\right) \equiv 0(\bmod p)$. We have, from (8), that

$$
\sum_{k=1}^{r-1} \frac{-2 L_{r}}{F_{k} F_{r-k}} \equiv-5(r-1)+\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}(\bmod p) .
$$

We will show that, for $r=p \pm 1$, the right-hand side of the above congruence is congruent to 0 modulo p. We first prove a few simple lemmas.

Lemma 1: The numbers L_{k} / F_{k} are all incongruent modulo p for $k=1, \ldots, r-1$.
Proof: Assume that $L_{k} / F_{k} \equiv L_{j} / F_{j}(\bmod p)$ for some $1 \leq j<k \leq r-1$. Then $L_{k} F_{j} \equiv L_{j} F_{k}$ $(\bmod p)$, and from the identity $2 F_{k-j}=F_{k} L_{-j}+F_{-j} L_{k}$ together with the facts $F_{-j}=(-1)^{j+1} F_{j}$ and $L_{-j}=(-1)^{j} L_{j}$, we obtain $2 F_{k-j}=(-1)^{j}\left[F_{k} L_{j}-F_{j} L_{k}\right] \equiv 0(\bmod p)$. However, this is impossible because $1 \leq k-j \leq(r-2)$.

Lemma 2: $\left(L_{k} / F_{k}\right)^{2} \equiv 5(\bmod p)$ for all k and all odd primes p.
Proof: Assume that $\left(L_{k} / F_{k}\right)^{2} \equiv 5(\bmod p)$, then $L_{k}^{2} \equiv 5 F_{k}^{2}(\bmod p)$ so that $2 L_{k}^{2} \equiv L_{k}^{2}+5 F_{k}^{2}$ $(\bmod p)$. But, from $2 L_{a+b}=L_{a} L_{b}+5 F_{a} F_{b}$, we have $2 L_{2 k}=L_{k}^{2}+5 F_{k}^{2}$ so that $L_{k}^{2} \equiv L_{2 k}(\bmod p)$. However, from the identity $L_{a+b}=L_{a} L_{b}-(-1)^{b} L_{a-b}$, we obtain $L_{2 k}=L_{k}^{2} \pm 2$, and combining this with $L_{k}^{2} \equiv L_{2 k}(\bmod p)$ we conclude that $0 \equiv \pm 2(\bmod p)$ for the odd prime p.

We are now in a position to complete the proof of Proposition 1. We have seen that we need to show that $-5(r-1)+\sum_{k=1}^{r-1}\left(L_{k} / F_{k}\right)^{2} \equiv 0(\bmod p)$ for $r=p \pm 1$. We consider the two cases separately.
Case 1. $r=p+1$

$$
-5(r-1)+\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv-5 p+\sum_{k=1}^{p}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv \sum_{k=1}^{p}\left(\frac{L_{k}}{F_{k}}\right)^{2}(\bmod p) .
$$

But from Lemma 1 we have that, for $k=1, \ldots, p=r-1$, the numbers L_{k} / F_{k} are all incongruent modulo p; thus, the set of p numbers $\left\{L_{k} / F_{k}: k=1, \ldots, p\right\}$ forms a complete residue system modulo p. Then

$$
\sum_{k=1}^{p}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv \sum_{k=1}^{p} k^{2} \equiv 0(\bmod p) .
$$

Case 2. $r=p-1$

$$
-5(r-1)+\sum_{k=1}^{r-1}\left(\frac{L_{k}}{F_{k}}\right)^{2}=-5(p-2)+\sum_{k=1}^{p-2}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv 10+\sum_{k=1}^{p-2}\left(\frac{L_{k}}{F_{k}}\right)^{2}(\bmod p) .
$$

Now all of the L_{k} / F_{k} for $k=1, \ldots, p-2$ are incongruent modulo p by Lemma 1 and, from Lemma 2, $\left(L_{k} / F_{k}\right)^{2} \not \equiv 5(\bmod p)$ for each k. However, 5 is a quadratic residue modulo p [8], and we have

$$
10+\sum_{k=1}^{p-2}\left(\frac{L_{k}}{F_{k}}\right)^{2} \equiv \sum_{k=1}^{p} k^{2} \equiv 0(\bmod p) .
$$

Thus, Proposition 1 is proved.
Since $p \nmid L_{m r}$, but $p \mid F_{r}$ and $F_{r} \mid F_{m r}$, an immediate consequence of Proposition 1 is the following corollary concerning the last term in equation 10 .

Corollary 1:

$$
\left(\frac{L_{m r}}{2}\right)^{r-2} \frac{1}{2}\left(F_{m r}+\frac{L_{r}}{L_{m r}} \frac{F_{m r}^{2}}{F_{r}}\right) \Sigma_{1} \equiv 0\left(\bmod p^{3}\right) .
$$

Before proving our main theorem, we need the following result about the specific Fibonomial coefficient

$$
\left[\begin{array}{c}
(m+1) r-1 \\
r-1
\end{array}\right]=\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}}
$$

modulo p^{3}.

Proof: We again deal with the two cases separately.
Case 1. $r=p-1$
If $r=p-1$, then r is even and $\tau=p-1$. From (10) and Corollary 1,

$$
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} \equiv\left(\frac{L_{m r}}{2}\right)^{p-2}-\frac{5}{8} F_{m r}^{2}\left(\frac{L_{m r}}{2}\right)^{p-4}(p-2) \equiv \frac{1}{4}\left(\frac{L_{m r}}{2}\right)^{p-4}\left[L_{m r}^{2}+5 F_{m r}^{2}\right]\left(\bmod p^{3}\right)
$$

But $L_{m r}^{2}+5 F_{m r}^{2}=2 L_{2 m r}$. Furthermore, $L_{2 m r}=L_{m r} L_{m r}-(-1)^{m r} L_{m r-m r}=L_{m r}^{2}-2$, so $L_{m r}^{2}+5 F_{m r}^{2}=$ $2\left(L_{m r}^{2}-2\right)$. Therefore,

$$
\frac{1}{4}\left(\frac{L_{m r}}{2}\right)^{p-4}\left[L_{m r}^{2}+5 F_{m r}^{2}\right]=2\left(\frac{L_{m r}}{2}\right)^{p-2}-\left(\frac{L_{m r}}{2}\right)^{p-4}
$$

However, from $L_{k r} \equiv 2 \varepsilon^{k}\left(\bmod p^{2}\right)$, we obtain $L_{m r} / 2 \equiv 1\left(\bmod p^{2}\right)$, so $L_{m r} / 2=1+p^{2} q$ for some q. Then

$$
\left(\frac{L_{m r}}{2}\right)^{p-k}=\left(1+p^{2} q\right)^{p-k} \equiv 1+(p-k) p^{2} q \equiv 1-k p^{2} q\left(\bmod p^{3}\right)
$$

and so

$$
2\left(\frac{L_{m r}}{2}\right)^{p-2}-\left(\frac{L_{m r}}{2}\right)^{p-4} \equiv 2\left(1-2 p^{2} q\right)-\left(1-4 p^{2} q\right) \equiv 1\left(\bmod p^{3}\right)
$$

or

$$
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} \equiv 1 \equiv(1)^{m}\left(\bmod p^{3}\right)
$$

Case 2. $r=p+1$
If $r=p+1$, then $\tau=2 r$ and r is even. From (10) and Corollary 1,

$$
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} \equiv\left(\frac{L_{m r}}{2}\right)^{p}-\frac{5}{8} F_{m r}^{2}\left(\frac{L_{m r}}{2}\right)^{p-2}(p) \equiv\left(\frac{L_{m r}}{2}\right)^{p}\left(\bmod p^{3}\right) .
$$

Now, $L_{k r} \equiv 2 \varepsilon^{k}\left(\bmod p^{2}\right)$ yields $L_{m r} / 2 \equiv(-1)^{m}\left(\bmod p^{2}\right)$ or $L_{m r} / 2=(-1)^{m}+p^{2} q$ for some q. Then,

$$
2\left(\frac{L_{m r}}{2}\right)^{p} \equiv(-1)^{m p}+(-1)^{m(p-1)}(p)\left(p^{2} q\right) \quad\left(\bmod p^{3}\right)
$$

or

$$
\frac{\prod_{k=1}^{r-1} F_{m r+k}}{\prod_{k=1}^{r-1} F_{k}} \equiv(-1)^{m}\left(\bmod p^{3}\right)
$$

Thus, Lemma 3 is proved.
Proposition 2: For any $n \geq 0$ and $m \geq 0$, if $r=p \pm 1$, then

$$
\prod_{k=n r+1}^{n r+r-1} F_{m r+k} \equiv(\mp 1)^{m} \prod_{k=n r+1}^{n r+r-1} F_{k}\left(\bmod p^{3}\right) \text {, respectively. }
$$

Proof: From Lemma 3,

$$
\prod_{k=n r+1}^{n r+r-1} F_{m r+k}=\prod_{k=1}^{r-1} F_{(m+n) r+k} \equiv(\mp 1)^{m+n} \prod_{k=1}^{r-1} F_{k} \quad\left(\bmod p^{3}\right)
$$

and

$$
\prod_{k=n r+1}^{n r+r-1} F_{k}=\prod_{k=1}^{r-1} F_{n r+k} \equiv(\mp 1)^{n} \prod_{k=1}^{r-1} F_{k} \quad\left(\bmod p^{3}\right)
$$

so that

$$
\frac{\prod_{k=n r+1}^{n r+r-1} F_{m r+k}}{\prod_{k=n r+1}^{n r+r-1} F_{k}} \equiv \frac{(\mp 1)^{m+n} \prod_{k=1}^{r-1} F_{k}}{(\mp 1)^{n} \prod_{k=1}^{r-1} F_{k}} \equiv(\mp 1)^{m} \quad\left(\bmod p^{3}\right)
$$

Recalling that

$$
\left[\begin{array}{c}
a \\
b
\end{array}\right]_{r}=\frac{F_{a r} F_{(a-1) r} \cdots F_{r}}{\left(F_{b r} F_{(b-1) r} \cdots F_{r}\right)\left(F_{(a-b) r} \cdots F_{r}\right)},
$$

we can now prove our main theorem.
Theorem: For any prime $p>3$ and any $a \geq b \geq 0$, if $r=p \pm 1$, then

$$
\left[\begin{array}{c}
r a \\
r b
\end{array}\right] \equiv(\mp 1)^{(a-b) b}\left[\begin{array}{l}
a \\
b
\end{array}\right]_{r}\left(\bmod p^{3}\right), \text { respectively. }
$$

Proof: Separating the factors divisible by p from those relatively prime to p, we obtain

$$
\left[\begin{array}{c}
a r \\
b r
\end{array}\right]=\frac{F_{a r} F_{a r-1} \cdots F_{(a-b) r+1}}{F_{b r} F_{b r-1} \cdots F_{1}}=\left(\frac{F_{a r} F_{(a-1) r}}{F_{b r} F_{(b-1) r}} \cdots \frac{F_{(a-b+1) r}}{F_{r}}\right)\left(\frac{\prod_{k=(a-1) r+1}^{(a-1) r+r-1} F_{k} \cdots \prod_{k=(a-b) r+1}^{(a-b) r+r-1} F_{k}}{\prod_{k=(b-1) r+1}^{(b-1 r+r-1} F_{k} \cdots \prod_{k=1}^{r-1} F_{k}}\right) .
$$

By Proposition 2, the right factor above is congruent to $(\mp 1)^{a-b} \cdots(\mp 1)^{a-b} \equiv(\mp 1)^{(a-b) b}\left(\bmod p^{3}\right)$ and the left factor is $\left[\begin{array}{c}a \\ b\end{array}\right]$. Hence,

$$
\left[\begin{array}{l}
a r \\
b r
\end{array}\right] \equiv(\mp 1)^{(a-b) b}\left[\begin{array}{l}
a \\
b
\end{array}\right]_{r}\left(\bmod p^{3}\right) .
$$

Corollary: For $a \geq b \geq 0$,

$$
\left[\begin{array}{l}
a \tau \\
b \tau
\end{array}\right] \equiv\left\{\begin{array}{lll}
{\left[\begin{array}{l}
a \\
b
\end{array}\right]_{r}} & \text { if } r=p-1 \\
{\left[\begin{array}{lll}
2 a \\
2 b
\end{array}\right]_{r}} & \text { if } r=p+1
\end{array}\left(\bmod p^{3}\right) .\right.
$$

Proof: These follow immediately from the Theorem and the facts: $\tau=p-1$ if $r=p-1$ and $\tau=2(p+1)$ if $r=p+1$. If $\tau=t r$, then

$$
\left[\begin{array}{l}
a \tau \\
b \tau
\end{array}\right]=\left[\begin{array}{l}
a t r \\
b t r
\end{array}\right] \equiv(\mp 1)^{(a-b) b t}\left[\begin{array}{l}
a t \\
b t
\end{array}\right]_{r} \equiv\left[\begin{array}{l}
t a \\
t b
\end{array}\right]_{r}\left(\bmod p^{3}\right) .
$$

As was shown in [5], if the modulus is only p^{2} instead of p^{3}, the expression $\left[\begin{array}{l}{[t a]_{r}}\end{array}\right.$ can also be $^{[}$ written in terms of ordinary binomial coefficients. Can this be done mod p^{3} as well? It might also be noted that in [5] this reduction was possible because

$$
\frac{F_{k r}}{F_{p^{s} r}}=\frac{k}{p^{s}}\left(\frac{L_{r}}{2}\right)^{k-p^{s}}\left(\bmod p^{2}\right)
$$

[AUG.
if $p^{s} \mid k$. (Proposition 2 was the case $s=0$, but the general case is essentially the same and somewhat more useful.) The same congruence is, in general, false $\bmod p^{3}$.

REFERENCES

1. H. W. Gould. "The Bracket Function and Fontené-Ward Generalized Binomial Coefficients with Application to Fibonacci Coefficients." The Fibonacci Quarterly 7.1 (1969):23-40.
2. H. W. Gould. "Equal Products of Generalized Binomial Coefficients." The Fibonacci Quarterly 9.4 (1971):337-46.
3. V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coefficients." The Fibonacci Quarterly 5.4 (1967):383-400.
4. S. K. Jerbic. "Fibonomial Coefficients-A Few Summation Properties." Master's Thesis, San Jose State College, San Jose, California, 1968.
5. W. A. Kimball \& W. A. Webb. "Congruence Properties of Fibonacci Numbers and Fibonacci Coefficients." In Applications of Fibonacci Numbers, Vol. 5. Dordrecht: Kluwer, 1993.
6. D. A. Lind. "A Determinant Involving Generalized Binomial Coefficients." The Fibonacci Quarterly 9.2 (1971):113-19, 162.
7. R. F. Torretoo \& J. A. Fuchs. "Generalized Binomial Coefficients." The Fibonacci Quarterly 2.3 (1964):296-302.
8. J. Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence." The Fibonacci Quarterly 1.1 (1963):37-45.
AMS Classification Numbers: 11B39, 11B65, 11B50
