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1. EXPERIMENTAL SETTING 

Consider a die with m faces marked {0,1,2,..., m -1}. Assume that the turn-up side proba-
bilities are in geometric progression as follows: 

Face(i) 0 1 2 ... m - 1 

Probability (#) qm~l pqm~2 p2qm~3 ... pm~l (1) 

The necessary and sufficient restrictions onp and q are 

qm-l+pqm-2 +p2qm~3 + ••• + pm~l = 1, 0 < p < 1, 0 < q < 1. (2) 

Note that the first restriction is equivalent to qm - pm = q - p. 
The die just described becomes an ordinary coin when m-2. In this case p + q = 1. Select-

ing p = q = m~1/(w_1) will result in a fair die, i.e., each face will have probability m~l of turning-up 
when the die is rolled. Also, from (2), when 0 < p < m~l/{m~l) one must have m'l/{m~l) <q<l, and 
vice versa. 

For a givenp9 the function f(q) = qm -q-pm + p has derivative f'(q) = mqm~l -1. Thus, 
f(q) is strictly decreasing for 0 < q < m~l/{m~l) and strictly increasing for m~1/(m_1) < q < 1. This 
fact in conjunction with the remarks in the previous paragraph assure that, for a given p 
(0<p< 1), there is a unique q satisfying (2). The value of q, which is the root of a polynomial of 
degree m-l, cannot be given explicitly in general. However, q-\-p for m = 2, and q = 
(-p + 's]4-3p2)/2form = 3. 

Alternative parametrizations to (1) that may yield other useful interpretations are also 
possible. For instance, if p < q, then defining 0- piq one can easily see that (1) is equivalent to 
pt = (1 - 6)ff I (1 - 6m), 0 < / < m - 1 . In this case, rolling the die is equivalent to generating a value 
of a geometric random variable constrained to the range {0,1,2,..., m -1} with 1 - 6 and 0 being 
the success and failure probabilities, respectively. 
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2. THE EXTENDED BINOMIAL DISTRIBUTION 
AND PROPERTIES 

The focus of this article is the random variable 

X^ - total score in n rolls of the w-sided die with , , 
(3) face probabilities as described in (l)-(2). v J 

It is clear that X^m) has the familiar binomial distribution with index n and success probability p 
when m-2. For this reason, the distribution of X^ will be called the extended binomial distri-
bution of order m, index n and parameter/?, and will be denoted by EB(#?, n, p). 

Note that X^ is simply the convolution of n i.i.d. random variables corresponding to the 
scores of n rolls of the die. Therefore, the probability generating function (PGF) of X^ can be 
written as 

G(t) = E(t^) = qm-pmt" 
q-pt 

(4) 

Expanding G(t) in powers of t yields an expression for the probability mass function (PMF) of 
X(„m) as 

Pr(X(
n

m) =r;p) = Cm(n, r)p>^l>'r9 0<r<(m-1)», (5) 

where Cm(n,r) is the coefficient of f in [(\-tm)l (l-t)f. Note the similarity between (5) and 
the ordinary binomial distribution. 

The coefficients Cm(n,r), which can be traced back to the classic work of Abraham De 
Moivre [6], were studied in detail by Freund [10], who discussed their role in occupancy theory. 
In particular, Cm(n, r) can be interpreted as "the number of ways of putting n indistinguishable 
objects into r numbered boxes with each box containing at most m-1 objects." Thus, 

Q ( ^ ) = ( " ) 0<r<n. 

In the spirit of Bollinger [3] and [4], we will refer to the numbers Cm(n, r),0<r<(m~ l)n, as the 
extended binomial coefficients of order m. 

From a mathematical point of view, many theoretical properties of Cm(n, r) have been estab-
lished. For details, see [4] and [5] and the references therein. From a probabilistic point of view, 
in addition to the applications to occupancy problems discussed in [10] and those presented in this 
article, Cm(n, r) plays an important role in describing the distribution of discrete waiting time 
random variables based on run criteria. For instance, see [3] and [2]. 

A convenient way of computing Cm(n, r) is by means of the recursion 

Cm(n,r) = XCm(n-l,r-£). (6) 
m-l 

For the case m = 2, this recursion reduces to the well-known identity 
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In a manner similar to the calculation of the familiar Pascal triangle, (6) can be used to compute a 
table the nth row of which will contain all the extended binomial coefficients of order m. These 
arrangements have been called extended Pascal triangles, see [4]. 

Alternatively, Cm(n, r) can be calculated by means of the explicit formula 

where ax = min{n, integer part in rim). For a proof of (6)-(7), see [5] and [2]. 
The classical hypergeometric identity also extends to arbitrary m. Namely, 

CjTh + ri2,r) = X Cm(nl9 d)Cm{nly r - a). (8) 
a 

Relationship (8) will be called the extended hypergeometric identity of order m in this article. 
It is a minor exercise to show that the property of symmetry for ordinary binomial coeffi-

cients also holds for m-binomial coefficients. That is, 
Cm(n,r) = Cm(n,(m-l)n-r), 0<r<(m-l)n. (9) 

As a result, 
Pr(X^} =r;p) = Pr(^"° = (m - \)n -r9q)9 0<r<(m- l)/i, (10) 

where p and q satisfy (2). Note that the distribution of X^m) is symmetric when p = m~xl{m~X) 

since q = p in this case. 
The PMF of X^ given in (5) can also be computed recursively as follows. Write the PGF 

(4) as 
(q-PtyG(t) = (q'»-p»>0". (11) 

Then expand each factor in (11) using the binomial theorem and (5), and equate the coefficients of 
f from both sides to get 

X (-iy^yjq"-JPr(Xy)=r-j-p) = q"ar, (12) 

for r = 0,1,2,..., where 
[0 i f* r *0 , 

ar={(-daia
ny<lim~i)n-r ifA = 0, 

and r = arm + br with 0 < br < m - 1 . From (12), one immediately obtains the recursion 

mm{r,n) / \ / V 

Fr(X^=r;p) = ar- X H ) ' H f P r W ° =r-j; p\ \<r<(m-\)n. (13) 

As an illustration of the variety of shapes exhibited by the distribution of X^m\ (5) was 
calculated numerically for /w = 4,w = 10, and several values of (p,q) using the foregoing 
methods. The corresponding bar plots are depicted in Figure 1. Note that the distribution of 
X^m) is positively skewed for p<m~ll{m~l) - 0.63 and negatively skewed for p>nfll{m~l). This 
result holds generally for arbitrary m. 
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FIGURE 1. Shapes of the 4-BinomiaI Distribution with Index n = 10 
and Several Values of (p, q) 

Because X^ arises as a convolution, it must have the reproductive property. Specifically, if 
Yl9Y2,...9Yk are independent with Yt ~EB(/w,nt,p), then Sf=1 Yi ~EB(m,Zf=1 w;,p). 

Defining 9 = piq, one can write the PMF of X^ given in (5) as 

HXim)=r;p)=Cm(n;£6r, 0<r<(m-l)n, 
gip) 

where 0 < 9 < oo and 

g(0) = 
fl-ff*V 

\~e 

(14) 

(15) 

In the form (14)-(15), one can readily see that X^n) has a power series distribution. Thus, any 
results on this general family of distributions will apply to the distribution of X^m) as well. Note 
from (15) that g(9) = (1 + Of for m = 2 and g{9) - (1 - 9)~n for m = oo when 0 < 9 < 1, character-
izing the binomial and negative binomial distributions, respectively. Using a standard argument, 
one can get the Poisson distribution by keeping m fixed, and letting n->oo and 9 -> 0 in such a 
way that n9l (1 + 9) -» A. By means of the central limit theorem, a normal approximation is also 
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guaranteed. Specifically, (X^m) - //) / <r « N(0,1) for n large, where ft and a2 are as given in (16) 
below. 

From (4) or otherwise, the mean and variance of X^m) are readily shown to be 

^ = £ ( ^ ) = V1=3P^, a2=Var(X^)^nPq
l-f^f~\ (16) 

q-p (q-p) 
In comparing ju and a2, one can readily see that ju<a2 when and only when 

mpm-2(mqm-q+l)<\. (17) 

For any 3 < m< oo, the left-hand side of (17) approaches 0 as p -» 0 and m as p->\. Hence, 
both jLKcj2 and ju>a2 are always possible. When m = 2, (16) gives jd-np and o2 = wpg with 
p + q = 1. This case corresponds to the binomial model for which ju>a2 for all 0 < p < 1. When 
/?<# one can easily show that ju^nd/(1-6), a2 = n93/(l-fff when m = oo where 0 = piq. 
Therefore, /J,<<J2 for all 0 < 0 < 1 in this case, a well-known property for the negative binomial 
distribution. 

Applying the results in [7, pp. 109-11, Th. 4.2], one can readily show that the turn-up face 
probability distribution (1) is strongly unimodal. Because the family of discrete strongly unimodal 
distributions is closed under convolution, it follows that the distribution of X^ is strongly 
unimodal (i.e., log-concave). In particular, the distribution of X^m) is unimodal in the usual sense, 
i.e., there exists a point M such that 

p r ( ^ m ) = r; p) \ Pr(X^} - r -1; p) according as r % M. 

A consequence of the log-concavity of the distribution of X^m) is the inequality 

[ C > , r)f > Cm(n, r - \)Cm{n, r + l), 1 < r < (m - \)n - 1 , 

which simply shows the log-concavity of the extended binomial coefficients Cm(n, r), 0 < r < 
(m-\)n. This shows, in particular, that the distribution of X^ is log-concave. 

3. HISTORY AND PREVIOUS APPLICATIONS 

The earliest reference to the extended binomial coefficients can be found in the work of 
Abraham De Moivre [6]. A detailed "theoretical" discussion appeared in the third edition of [6], 
pp. 39-43, with many illustrative examples throughout the book. His main result appeared in the 
form of a lemma which stated: "To find how many chances there are upon any number of dice, 
each of them of the same number of faces, to throw any given number of points" [6, p. 39]. 
Without giving the reference, De Moivre stated in [6] that the lemma was published by him for the 
first time in 1711. 

A look at [6] indicates that: (a) De Moivre dealt with a fair die with an arbitrary number of 
faces; (b) he calculated Cw(w, f) numerically by explicit expansion of (7); (c) he was aware of the 
generating function for Cm(n, r), 

( 1 _ fm Y {m^n 

\-t, 
= X Cm(n,ry> 

r=0 

which is given immediately after (5); (d) he was aware of the property of symmetry (9). 
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The distribution of X^m) +n for the case of a fair die appears as an exercise in [8, pp. 284-
85]. Generating functions and limits for the cumulative probabilities of X^m) +n under this case 
are also presented as exercises by Feller [8, p. 285] who relates them to the work of Lagrange. 

An important practical application of the extended binomial distribution was presented by 
Kalbfleisch and Sprott [14] in relation to the estimation of the "hit number," a parameter asso-
ciated with an interesting dilution series model arising in virology. This model was originally 
proposed by Ailing in [1]. The basics of the experiment, data, and assumptions are as follows: (a) 
a liquid medium containing a suspension of virus particles is successively diluted to form a 
geometric series of k + \ dilutions a°,a,a2,...,ak; (b) these dilutions are poured over replicate 
cell sheets; (c) after a period of growth, the number Nt of plaques occurring at dilution level a1 is 
observed (0 < / < k); (d) the Nt 's are independent with Nt having a Poisson distribution with 
mean rjy1 (0 < / < £ ) . Here rj is the expected number of plaques in the undiluted suspension 
(/' = 0), and y - a~h, where a is the known dilution factor and h the "hit number," is the minimum 
number of virus particles that must attach themselves to a cell in order to form a plaque. The 
primary objective of the experiment was to estimate h. 

In their statistical analysis, Kalbfleisch and Sprott [14] first show that the statistics (S, T) = 
(Sf=0 Niy Zf=0 iJ^t) are jointly sufficient for (77, h). Then they derive the conditional distribution of 
T given S - s, which turns out to be the extended binomial distribution in the form (14) with 
m-k + \n- s, and 0 = y. They use this distribution to make inferences about h - - In y I In a 
that are unaffected by lack of knowledge on the remaining parameter 77. 

4. INFERENTIAL ISSUES 

4.1 Sufficiency, Completeness, and Consequences 

Since for given m and n the distribution of X^ is a member of the family of power-series 
distributions, then {Fr(X^m) = •;/?): 0 < p < 1} is complete. Further, if Yly Y2,..., Yk are indepen-
dent and identically distributed as X%"\ then S = *Zf=lYj is sufficient for p or any one-to-one 
parametric function such as 0- piq. Due to the already noted reproductive property, it follows 
that {Pr(£ = •; p): 0 < p < 1} is also complete. 

These facts, in conjunction with the Rao-Blackwell theorem (e.g., see [12, pp. 349-52]), 
imply that the only parametric functions for which minimum variance unbiased estimators exist 
are the linear combinations of {prq{m~l)n~\ 0 <r <(m- l)n). In particular, the sample mean Y -
Sf=1 Yj I k is the unique minimum variance unbiased estimator of the average value ju of X^m) 

given in (16). 

4.2 Extended Fisher's Conditional Test and 
the Extended Hypergeonietric Distribution 

Consider two w-faced dice, labeled Die 1 and Die 2, with respective unknown parameter 
values px mdp2. On the basis of the scores Yn, Y12,..., Yx in nx rolls of Die 1 and Y2l, Y229..., Y2n 
in r^ rolls of Die 2, we would like to test 

Ho'Pi=P2 v s H\P\*Pi-
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In view of the sufficiency results of section 4.1, in developing a sensible test for H0 vsHx, 
one should focus on the total scores Yx = E"ii Yy and Y2 = Z"^ Y2i. Note that Yx and Y2 are inde-
pendent and have extended binomial distributions with parameters (mynl9p^ and (wi,^,/^), 
respectively. Letting p = pxq2 I (q^), one can show that 

Prtf = a,Y2= b; A , p2) = Cm(nu d)Cm{rh, wfa] $ T ^ " ^ , 

from which it is readily seen that T = Yl-^-Y2 is sufficient for p2 when p is specified. Therefore, 
the conditional distribution of Yl9 given the observed value of T, depends on the parameters only 
through p. In fact, 

Prft = a ; p | r = /)= CM,a)Cm(n2,t-a)p" > Q ^ ^ 

Since H0 and Hx are equivalent to H0: p-\ and Hy.p^l, respectively, then a test for H0 vs Hx 

can be developed using Y{ as a test statistic and its conditional null distribution 

Pr(K =a\T= t) = C»("i> W^"* * ~ <*> ,0<a<t. (18) 

P-values for testing HQ vs Hx can be calculated as tail probabilities from (18). 
Note that the extended hypergeometric identity (8) has been used in deriving (18). Naturally, 

the test statistic reduces to Fisher's exact conditional test for homogeneity in 2 x 2 tables (see [9, 
pp. 89-92]) when rn-2 and (18) becomes the classical hypergeometric distribution. For these 
reasons, (18) will be called the extended hypergeometric distribution of order m. 

Analogous to the well-known asymptotic relation between the classical hypergeometric and 
binomial distributions, it can be shown here that, for every m, (18) converges to (^)^"a(l-^r)f"a 

as nx --> oo, ^ -> oo in such a way that nxl (nl+n2)-^> n. 

5. NEGATIVE BINOMIAL EXTENSIONS 

5,1 Total Score up to a Negative-BInomlally-Stopped Roll 

Consider consecutive rolls of the m-faced die with side probabilities (l)-(2). For a given 
positive integer k, define the random variable Z£m) as 

Z£w) = total score until face marked 0 appears k times. (19) 

Clearly, Z^m) has the standard negative binomial distribution when m = 2. 
In order to derive the PGF of Z£w), one can view the above experiment as a two-stage 

proccess as follows. First, generate a value n of Tk = (number of rolls until face marked 0 appears 
k times) - k. Then roll n times a "reduced" die with faces marked {1,2,..., m -1} and correspond-
ing side probabilities pqm~21 (1 - qm~l\ p2qm~31 (1 - qm~l\..., pm~l I (1 - qm~l). Then compute the 
total score among the n rolls to obtain Z^ with the convention that Z^w) = 0 whenever n = 0. 

Note that Tk has the standard negative binomial distribution 

Pr(r,=ii;p) = ^ + * 7 i y - 1 > * ( l - ^ 1 ) w , OS/KOO. 
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Thus, Z^m) can be seen as the total score from a negative binomial random number of rolls of the 
reduced die. From the basic theory on compounding of distributions, see [13, pp. 344-45], the 
PGF of Z{

k
m) can be written 

H(t) = E(t^) = GT(GRm 

where GT (t) is the PGF of Tk and GR{t) is the PGF of the score in one roll of the "reduced" die. 
Since 

, m - l 

GT (0 = 2 

then 

H(t) = q{m-l)k 

• ^W-!_^-i q _ p t 

\-pt- -
q-pt 

(20) 

Using the familiar negative binomial expansion in conjunction with the methods used to 
derive (4)-(5) yield 

P r ( Z f W ; p ) = ̂ f | j X [ * + ; - 1 ] c f l _ 1 ( / , r - i V ' - I > , 0<r<™. (21) 

An alternative use of (20) is for moment calculations about Z^w). For instance, the average 
valueofZjm)is 

E{Zn = H'(l)=^1-^ -k J-11 \LJ~~^T~~~ ~~~• ( 2 2 ) 
qm q-p 

When m-2, (22) gives E(ZJC
2)) = kp I q, which is the expected value of a standard negative 

binomial random variate. 

5.2 An Extended Negative Binomial Distribution 

Consider again the die with m faces and turn-up side probabilities given by (l)-(2). Perhaps a 
more natural negative binomial counterpart is the waiting time random variable 

Y^m) = number of rolls until a total score of Nor more (23) 
is observed for the first time. 

Clearly Yj^ is a standard negative binomial variate when m - 2. For this reason the distribution 
ofY}^ will be called the extended negative binomial distribution of order m and will be denoted 
as ENB(w, N, p). 

It is readily seen that the fundamental identity 

Pr(7« </*;/?) = Pr (X« > N; p) (24) 

holds for every n. For the particular case m = 2, relationship (24) is well known from elementary 
probability courses. Using (24) in conjunction with (5) one can show that 

Pr(7W = n;p)= ]TCm(n-1,r)prq^^~r- %Cm(n9r)prq^1^, (25) 
r=0 r=0 

for n > the smallest integer not less than NI (m -1). 
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Although (25) is adequate for numerical evaluations, further simplifications are possible in 
particular cases. For instance, when \<N<m, with the help of (7) one can show that 

Pr(lT = n,p) = ̂ « - » £ \lL J {(» + r
r'2y <T ̂  +; -1]}, (26) 

for 1 <n<oo. Note that Y^ is a geometric random variable equivalent to the number of coin 
tosses until "heads" appears for the first time where the probability of "heads" is 1 - qm~l. 

6. DISCUSSION 

Richard C. Bollinger [4] concludes his article with the comment: 

In conclusion, we hope that the discussion has shown that the Tm arrays really are "extensions" of the 
Pascal triangle, with many similar properties that seem to be the natural generalizations of those of T2, 
but perhaps with a few surprises also. T2 has certainly been a rich source of interesting and useful 
mathematics. We suggest that its extended relatives potentially may serve as equally fruitful objects of 
study. 

Here, Tm denotes the extended Pascal triangle formed by the extended binomial coefficients of 
order m, while T2 is the familiar Pascal triangle of the classical binomial coefficients. Our article 
justifies to some extent the hopes of Bollinger; we too share his suggestions that these objects 
may serve as a source of many more discrete distributions. 

A referee has pointed out the possibility of relating the extended binomial coefficients to the 
Fibonacci sequence of order m, {/„(w)}^=0, for which an extensive literature is available. See, for 
example, the work of Philippou [15] and [16], Philippou and Muwafi [18], and Gabai [11]. 
Indeed, such a connection exists. Perhaps the simplest relationship is 

/£?= t Cn{l,n-l), (27) 
e=SIGE(%) 

where SIGE(x) denotes the smallest integer that is greater than or equal to x, also called the "ceil-
ing" of x. The validity of (27) can be established by expanding the generating function of 
{/iw)}SU> given, e.g., in [15], in conjunction with the generating function for {Cm(n, r ) } ^ 1 ^ 
given in section 2, and then matching coefficients of identical powers in the generating variable. 
One immediate application of (27) is for numerical computation of f^} by means of any of the 
methods for calculating Cm(n, r) discussed in section 2. Thisg approach is likely to be simpler than 
the formula for fjg} in terms of multinomial coefficients given by Theorem 1 in [15]. On the 
other hand, the interesting work on the Fibonacci sequence of order m done by Philippou and 
others has some bearing on the extended binomial coefficients in view of relationship (27). This 
avenue has not been explored in this article and merits further consideration. 

An important application of the Fibonacci sequence of order m discussed by Philippou [16], 
Philippou, Georghiou, and Philippou [17], Philippou and Muwafi [18], and others, is in the calcu-
lation of the distribution of the discrete waiting time random variable 

Nm = number of independent Bernoulli trials performed 
until m consecutive successes are observed, 
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where each trial can result in "success" or "failure" with probabilities/? and q = I-p, respectively. 
Working with the probability generating function of Nm, which was derived by Feller [8, p. 323], 
in a manner similar to the derivation of (27) one can show that 

Pr(Nm = m + j) = £ Cm(£J-t)Pm+J-Y, (28) 
t=SIGE{i) 

for j > 0. Thus, (28) is an alternative to the formula for Pr(Nm -m+j) given by Theorem 3.1 in 
[18] in terms of multinomial coefficients. 

It may also be of interest to look into possible continuous counterparts for the general 
discrete distributions presented in this article, just as beta and binomial, and exponential and 
geometric are naturally related. One interesting aspect is the study of the appropriate family of 
conjugate priors for the extended binomial distribution of order m. Work is currently being done 
in this direction. 
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