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1. INTRODUCTION AND PRELIMINARIES 

The theory of polynomials the coefficients of which belong to finite fields (e.g., see [4]) is 
a valid mathematical tool to face various problems arising in telecommunication engineering. For 
example, it plays a crucial role in the design of scramblers and descramblers, multilevel co-
decoders, linear shift-registers, etc., and in the analysis of their performances (e.g., see [1], [5]). 
It is sometimes necessary to fix our attention on special classes of these polynomials, such as 
irreducible and primitive polynomials [4], [5]. For example, for the sequence generated by a 
linear feedback shift register to be of maximal length, the characteristic polynomial of the register 
must be primitive [1], [2]. 

To seek irreducible polynomials or to factor reducible ones, it is useful to have at disposal 
criteria for the divisibility over the finite field GF(q) (q a prime or a power of a prime) of a 
polynomial f(x) by a polynomial g(x) of degree less than that of f(x). Some criteria for the 
divisibility over GF(2) are well known. As a minor instance, we have that: (i) if the coefficient of 
the zero-degree term of f(x) vanishes, then this polynomial is divisible by its term of lower 
degree; (ii) if the number of the nonzero coefficients is even, then f(x) is divisible by x + 1. 

Following the notation of Lidl [4], let f(x) GGF(^)[X] andg(x) e GF(q)[x] be two poly-
nomials of arbitrary degree n and m (m<ri), respectively, 

f(x) = 5 > k x \ ak G G F ( ? ) , an # 0 (mod?), (1.1) 
fc=0 

g(x) = x'" -^bkx\m<n, bk GF{q). (1.2) 

The polynomial f(x) is divisible in GF(q) by g(x) if the remainder of f(x):g(x) is congru-
ent to zero modulo q. In Section 2, criteria for this divisibility are established which involve the 
use of certain mih -order recurring sequences. The ubiquitous Fibonacci numbers make their 
appearance in the case rn-q-2. In Section 3, three special cases are analyzed, the last of which 
turns out to be a useful tool for ascertaining the irreducibility or the primitivity of certain classes 
of polynomials. 

Throughout this paper, all relations and algebraic manipulations are meant to be performed 
modulo q. This fact will be indicated explicitly only in the final results. 

2* THE MAIN RESULT 

The (provisional) remainder ft(x) obtained at the 7th step (0</ <n-m + l) of the long divi-
sion f(x): g(x) has the form 
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f](x) = YdrPx"-i-\rPeGF(<i). (2.1) 

Obviously, the actual remainder of this division is fn_m+l(x). Moreover, we assume that f0(x) = 
f(x), which implies 

>f =«„_,(/ = 0,1,...,«). (2.2) 
Since the term of (n-i-rrif*-degree of the quotient is given by r^xn~l~m, using the long 

division algorithm gives the (/* + l)th provisional remainder 

^ ( ^ / ( x M V - ^ (2.3) 

whereas, by definition (2.1), we can write 

^iW-^Z^V-'-^1. (2.4) 

By identifying the terms of the same degree in (2.3) and (2.4), the following system of n-i 
difference equations can be written 

1% (m<j<n-i-\\ o ( , + 1 ) H ( ; ,..;..... , , . <2-5> 
the initial conditions of which are given by (2.2). 

By (2.2), the second equation of (2.5) produces 

r ( 2 ) _ r(l) _ r (0) _ 

r(3) _ (2) _ (1) _ (0) _ ( 2 6 x 
J ~, 7+1 ~~ 7+2 ~ 7 + 3 ~ "n-j-3 

rp=rji^ = - = a„_J_i (m<j<n-i-l), 

whence, as a special case, 
C = «„-„,-/• (2.60 

The first equation of (2.5) produces the equations 

V ~ V + i ^ V y - i ' o > 
/ / - ! ) _ (/-2) , (;-2) 
7 + 1 - 7 + 2 ^ um-j-2r0 

(i-m+J+1) _ r{i-m+j) i r(j-m+j) 
rm-\ ~rm + #(/o 

Summing both sides of these equations and using (2.6 ̂  yields 
m-j m-j 

rp = rtm+J) + S bm_Mrt^ = a„_,_, + X A- , .*™ (0 < 7 < m -1). (2.7) 
£=l £=l 
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For j = 0, (2.7) reduces to 
m 

r ^ - n 4 - V / > f-('-*) 

where r0
(/"° = 0 if i < £9 and (2.2) applies. 

Proposition 1: 

r0 = 2^an~h^i-h+h 

(2.8) 

/i=0 

where the integers Zh obey the recurrence 

Zh ~ bm-\Zh-l + ®m-lZh-2 ~* ^ ^0^h-n 

which is of m* -order if bQ # 0 (mod g), and has initial conditions 

Ẑ  = 0 (for - w + 2 < h < 0) and Zx = 1 

or, equivalently, 

(2.9) 

(2.10) 

(2.11) 

Z, = l, 
^2 ~ "w-lA, 
Z3 = hm-\Z2 H 

Zm = bm-\Zm-\ + bm-2Zm-2 + '~+blZl. 

Z 3 = V l Z 2 + t 2 Z l (2.1 n 

Proof: We shall prove that replacing the right-hand side of (2.9) in (2.8) yields an identity. 
In fact, this replacement gives the equation 

i j - i 

Z^an-hZi-h+l - an-i + bm-\2^an~hZi-h 

,-2h=° ,-„ (212) 
+ bm-2£u

an-hZi-h-\ + '" +bQZ^an-hZi-h-m+\-
h=0 h=0 

By reducing all summations in (2.12) to the same upper range indicator (namely, i-m\ we can 
write 

-h+\ 

h=0 

an-iZ\ + a « - / + 1 ^ 2 + ' *' + an-i+m-lZm + 2w an-hZi-h 

i-m 

= <V/ + ̂ _i(<V/+izi + a„_/+2Z2 + • • • + a„_/+w_1Zw_1) + bm_^an^{_h 
h--

i-m 

+ bm_2(an_MZx + — +a„_;+w_1Zw_2) + ̂ X ^ - ^ - f c - i + ' 
/i=o 

z-m »-m 

+ bl(an_l+m_lZl) + bJ^a„_hZi_h_m+2+b^ 

The above equation can be rewritten as 

-m+\' 
h=0 
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an-i (Zl ~ 1) + <V/+ l ( Z 2 " bm-lZl) + ' *' + an-i+nt-l(Zm ~ bm-lZm-l * l Z l ) 
i-m 

+ ^L an-h(Zi-h+\ ~ bm-\Zi-h ~ b
m-2Zi-k-\ b0Zj_m_h+1) = 0, 

h=0 

which, by (2.10) and (2.11') is identically satisfied. Q.E.D. 

Recalling that the quantities rj"~m+l) (j - 0,1, . . . , m-1) are the coefficients of the remainder 
of f(x):g(x), it becomes patent that f(x) is divisible by g(x) iff rjn~m+l) = 0(mod#) for all 
admissible values ofy. By (2.9), after some simple manipulations, one can see that the condition 
r(n-m+l) s Q ^m ( ) d ^ j s s a t i s f i e d tf 

Z ^ _ w + 2 ^ 0 ( m o d ? ) . (2.13) 
h=m-l 

By using the first equation of (2.5), we can get analogous conditions pertaining to rjn~m+1) for 
1 < j < m -1. For example, letting j = 0 in (2.5) yields 

r ^ ^ l ) = r ^ - ^ 2 ) _ ^ i r ^ w + l ) s / b ( « - w + 2 ) ( m o d ^ ) [by (2.13)], 

whence, by (2.9), the condition r^n-m+l) = r0
(""w+2) = 0 (mod?) is satisfied if 

f,ahZh_m+3^0(modq). (2.14) 
h-m-l 

Iterating this procedure for all values of/ allows us to state our main result. 

Proposition 2 (main result): The polynomial f(x) is divisible by the polynomial g{x) iff 

t , ahZh_m+J+2 ^ 0 (mod q) for/ = 0,1, . . . , m -1. (2.15) 
h=m-J-l 

3. SPECIAL CASES 

For small values of m, or for special polynomials f(x), the divisibility conditions (2.15) sim-
plify remarkably. In this section, three special cases are discussed in detail. 

C a s e l : m = l 

If m = 1, Proposition 2 tells us that f(x) is divisible by x-b0 [b0 4 0 (mod?)] iff 

Z ^ ^ + i - Z ^ o - 0 ( m o d ? ) , (3.1) 
h=0 h=0 

since Zh -bQZh_l with Zx = 1 [see (2.10)-(2.11)] implies Zh -b^'1. The condition (3.1) agrees 
with the well-known fact (e.g., see [4], Theorem 1.64) that, if f(b0) = 0 (mod?), then f(x) is 
divisible by x-b0 [cf point (ii) in Section 1]. 

Case 2: m = 2 

Ifm = 2, Proposition 2 tells us that f(x) is divisible by x2 -b x x - b0 [b0 4 0 (mod ?)] iff 
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£ <*hZh+J - ° (™>d q) (j = 0,1), (3.2) 
h=\-j 

where the numbers Zh are the generalized Fibonacci numbers Wh [more precisely, the numbers 
Wh{bXi -b0; 0,1)] which have been studied extensively over the past years (e.g., see [3] for back-
ground material). In particular, if q - 2, f(x) is divisible by x2 - x -1 iff 

j]ahFh+J^0(mod2) 0 = 0,1), (3.3) 
h=i-j 

where Fh denotes the hth Fibonacci number. Taking into account that Fh is even iff h = 0 (mod 3), 
conditions (3.2) can be rewritten as 

5>* s S^-°(m o d 2)- (3-4) 
h=\ h=l 

h4Q (mod 3) h£2 (mod 3) 

Case 3: f(x) = xn-l 

If f(x) = xn -1, then Proposition 2 tells us that / (x) is divisible by g(x) iff 
fZn_m+j+2 = 0 (mod qr) (y = 0,1, • • •, m - 2), 

l ^ + i ^ 2 ! ^ 1 (modqr). 

When n = qm -I and m is a prime not less than q, the fulfillment of (3.5) implies that g(x) [b0 # 0 
(modg)] is irreducible (see [4], Theorem 3.20). Moreover, if q = 2 and /? is a Mersenne prime, 
then g(x), beyond being irreducible, is primitive (see [4], Corollary 3.4). 

The fulfillment of (3.5) can be checked out rapidly by means of the software implementation 
of an m-cell linear feedback shift register [2] having g(x) as its characteristic polynomial, and 
initial state [1, 0, 0, ..., 0]. Once this is made, one simply has to ascertain that the m terms 
ZM_w+2, Zn_m+3,..., Zn+l of the sequence {Zh} generated by this device satisfy (3.5). 
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