# THE DISTRIBUTION OF SPACES ON LOTTERY TICKETS

Norbert Henze

Institut für Mathematische Stochastik, Universität Karlsruhe, Englerstr. 2, 76128 Karlsruhe, Germany (Submitted March 1994)

## **1. INTRODUCTION**

In many lotteries (e.g., Florida State, Canadian, German) people choose six distinct integers from 1 to 49 so that the set of all lottery tickets is given by

$$T = \{t = (t_1, t_2, \dots, t_6) : 1 \le t_1 < t_2 < \dots < t_6 \le 49\}.$$

Assuming a uniform distribution over all  $\binom{49}{6}$  tickets, Kennedy and Cooper [1] obtained the expectation and the distribution of the "smallest space" random variable

$$S(t) = \min\{t_{j+1} - t_j : j = 1, 2, 3, 4, 5\}$$

and asked for the distribution of the "largest spacing"

$$L(t) = \max\{t_{i+1} - t_i : j = 1, 2, 3, 4, 5\}.$$

By means of a certain "shrinking procedure," we provide a simple derivation of the results of Kennedy and Cooper. Moreover, we use this idea to obtain the distribution (and expectation) of L as well as the (joint) distribution of the individual "spacing" random variables given by

$$X_{i}(t) = t_{i+1} - t_{i}, \quad j = 1, ..., 5,$$
 (1.1)

A generalized lottery will be treated in the final section. As a bit of convenient but nonstandard notation, let

$$\binom{m}{n}^{+} = \begin{cases} 0, & \text{if } m < 0, \\ \binom{m}{n}, & \text{otherwise,} \end{cases}$$

denote a slight modification of the binomial coefficient  $\binom{m}{n}$ .

### 2. DISTRIBUTION OF A SINGLE SPACING

We first consider the distribution of the  $j^{\text{th}}$  spacing random variable  $X_j$  defined in (1.1). The crucial observation is that a 6-tuple  $t = (t_1, ..., t_6)$  from T satisfying  $t_{j+1} - t_j \ge k$ , where  $k \in \{1, 2, ..., 44\}$  may be "shrunk" into a 6-tuple  $u = (u_1, ..., u_6)$ , where

$$u_v = t_v,$$
  $v = 1, 2, ..., j,$   
 $u_v = t_v - (k-1),$   $v = j+1, ..., 6.$ 

Obviously, this "shrinking procedure" is a one-to-one mapping from  $\{t \in T : t_{j+1} - t_j \ge k\}$  onto the set  $M = \{(u_1, ..., u_6) : 1 \le u_1 < u_2 < \cdots < u_6 \le 49 - (k-1)\}$  which has cardinality  $\binom{50-k}{6}$ . We therefore obtain

$$P(X_j \ge k) = {\binom{50-k}{6}}^+ / {\binom{49}{6}}, \quad k \ge 1,$$

NOV.

and thus

$$P(X_{j} = k) = P(X_{j} \ge k) - P(X_{j} \ge k + 1)$$
  
=  $\binom{49}{6}^{-1} \left[ \binom{50-k}{6}^{+} - \binom{49-k}{6}^{+} \right] = \binom{49-k}{5}^{+} / \binom{49}{6}, k \ge 1$ 

Using the general fact that, for an integer-valued random variable N, expectation and variance may be computed from

$$E(N) = \sum_{k \ge 1} P(N \ge k)$$
(2.1)

and

$$Var(N) = 2\sum_{k \ge 1} kP(N \ge k) - E(N) - (E(N))^2$$
(2.2)

(this is readily seen upon writing

$$E(N) = \sum_{j \ge 1} jP(N = j) = \sum_{j \ge 1} \left( \sum_{k=1}^{j} 1 \right) P(N = j),$$
  
$$E(N(N+1)) = \sum_{j \ge 1} j(j+1)P(N = j) = 2\sum_{j \ge 1} \left( \sum_{k=1}^{j} k \right) P(N = j),$$

and then interchanging the order of summation); it follows that

$$E(X_j) = {\binom{49}{6}}^{-1} \sum_{k=1}^{44} {\binom{50-k}{6}} = \frac{50}{7} = 7.1428..$$

and

$$\operatorname{Var}(X_j) = 2 \cdot \binom{49}{6}^{-1} \sum_{k=1}^{44} k \cdot \binom{50-k}{6} - E(X_j) - (E(X_j))^2 = \frac{3225}{98} = 32.9081....$$

Note that the distribution of  $X_j$  does not depend on j, which is intuitively obvious.

# 3. JOINT DISTRIBUTION OF SPACINGS

For the sake of lucidity, we first consider the joint distribution of two spacings  $X_i$  and  $X_j$ , where  $1 \le i < j \le 5$ . Here the idea is to "shrink" a ticket  $(t_1, ..., t_6) \in T$  satisfying  $t_{i+1} - t_i \ge k$ ,  $t_{j+1} - t_j \ge \ell$ , where  $k, \ell \ge 1, k + \ell \le 45$ , into the 6-tuple  $(u_1, ..., u_6)$ , where

$$u_{v} = t_{v}, \qquad v = 1, \dots, i,$$
  

$$u_{v} = t_{v} - (k-1), \qquad v = i+1, \dots, j,$$
  

$$u_{v} = t_{v} - (k-1) - (\ell-1), \qquad v = j+1, \dots, 6.$$

Since the "shrinking mapping" is now one-to-one from  $\{t \in T : t_{i+1} - t_i \ge k, t_{j+1} - t_j \ge \ell\}$  onto  $\{(u_1, \ldots, u_6) : 1 \le u_1 < \cdots < u_6 \le 49 - (k-1) - (\ell-1)\}$ , we obtain

$$P(X_i \ge k, X_j \ge \ell) = {\binom{51-k-\ell}{6}}^{+} / {\binom{49}{6}}, \quad k, \ell \ge 1,$$

and thus, by the inclusion-exclusion principle

1995]

$$P(X_{i} = k, X_{j} = \ell) = P(X_{i} \ge k, X_{j} \ge \ell) - P(X_{i} \ge k, X_{j} \ge \ell + 1) - P(X_{i} \ge k + 1, X_{j} \ge \ell) + P(X_{i} \ge k + 1, X_{j} \ge \ell + 1)$$

$$= \binom{49}{6}^{-1} \left[ \binom{51 - k - \ell}{6}^{+} - 2\binom{50 - k - \ell}{6}^{+} + \binom{49 - k - \ell}{6}^{+} \right] = \binom{49 - k - \ell}{4}^{+} / \binom{49}{6},$$
(3.1)

 $(k, \ell \ge 1)$ . From this and

$$E(X_i X_j) = \sum_{k \ge 1} \sum_{\ell \ge 1} k\ell P(X_i = k, X_j = \ell) = \sum_{k \ge 1} \sum_{\ell \ge 1} P(X_i \ge k, X_j \ge \ell)$$
$$= \binom{49}{6}^{-1} \sum_{k \ge 1} \sum_{\ell \ge 1} \binom{51 - k - \ell}{6}^{+} = \frac{1275}{28} = 45.535...$$

the correlation coefficient between  $X_i$  and  $X_j$  is given by

$$\rho(X_i, X_j) = \frac{E(X_i X_j) - E(X_i)E(X_j)}{\left(\operatorname{Var}(X_i)\operatorname{Var}(X_j)\right)^{1/2}} = -\frac{1}{6}.$$
(3.2)

The fact that  $\rho(X_i, X_j)$  is negative is also intuitively obvious since large values of  $X_i$  tend to produce small values of  $X_j$  and vice versa.

It should now be clear how to obtain the joint distribution of more than two spacings. For example, a ticket  $(t_1, ..., t_6)$  satisfying

$$t_{i+1} - t_i \ge k_i, \quad i = 1, \dots, 5,$$
 (3.3)

where  $k_1 + \dots + k_5 \le 48$ , may be "shrunk" into the ticket  $(u_1, \dots, u_6)$ , where

$$u_1 = t_1, \quad u_j = t_j - \sum_{\nu=1}^{j-1} (k_{\nu} - 1), \quad 2 \le j \le 6.$$

This shrinking mapping is one-to-one from the set of tickets satisfying (3.3) onto the set of ordered 6-tuples from 1 to  $54 - \sum_{\nu=1}^{5} k_{\nu}$ . We therefore have

$$P(X_j \ge k_j \text{ for } j = 1, 2, ..., 5) = \binom{54 - k_1 - k_2 - k_3 - k_4 - k_5}{6}^+ / \binom{49}{6}$$
(3.4)

 $(k_1 \ge 1, ..., k_5 \ge 1)$ , and probabilities of the type  $P(X_j = \ell_j, j = 1, 2, ..., 5)$  may be obtained from (3.4) and the method of inclusion and exclusion by analogy with (3.1). Note that the joint distribution of  $(X_1, X_2, X_3, X_4, X_5)$  is invariant with respect to permutations of the  $X_j$ .

#### 4. THE DISTRIBUTION OF THE SMALLEST SPACING

The idea of "ticket shrinking" yields the following simple derivation of the results of Kennedy and Cooper [1] concerning the minimum spacing  $S = \min(X_1, X_2, X_3, X_4, X_5)$ .

Since  $S \ge k$  if and only if each of the  $X_j$  is not smaller than k, (3.4) entails

$$P(S \ge k) = {\binom{54-5k}{6}}^{+} / {\binom{49}{6}}, \quad k \ge 1,$$

and thus

428

$$P(S = k) = P(S \ge k) - P(S \ge k + 1)$$
  
=  $\binom{49}{6}^{-1} \left[ \binom{54 - 5k}{6}^{+} - \binom{49 - 5k}{6}^{+} \right], k \ge 1.$ 

From (2.1) the expectation of S is

$$E(S) = {\binom{49}{6}}^{-1} \sum_{k=1}^{9} {\binom{54-5k}{6}} = \frac{4381705}{2330636} = 1.88004...,$$

and, in addition to Kennedy and Cooper, the variance of S [computed from (2.2)] is given by

$$\operatorname{Var}(S) = \frac{6842931587015}{5431864164496} = 1.25977....$$

## 5. THE DISTRIBUTION OF THE LARGEST SPACING

We now answer the question posed by Kennedy and Cooper [1] concerning the distribution of the largest spacing  $L = \max(X_1, X_2, X_3, X_4, X_5)$ .

Noting that  $L \ge k$  if and only if at least one of the  $X_j$  is not smaller than k, the reasoning of section 3 and the inclusion-exclusion formula yield

$$P(L \ge k) = P(X_1 \ge k \text{ or } X_2 \ge k \text{ or } \cdots \text{ or } X_5 \ge k)$$
  
=  $5P(X_1 \ge k) - \binom{5}{2}P(X_1 \ge k, X_2 \ge k) + \binom{5}{3}P(X_1 \ge k, X_2 \ge k, X_3 \ge k)$   
 $-\binom{5}{4}P(X_j \ge k; \ j = 1, ..., 4) + 5P(X_j \ge k; \ j = 1, ..., 5)$   
 $= \binom{49}{6}^{-1}\sum_{j=1}^{5} (-1)^{j-1}\binom{5}{j}\binom{49-j(k-1)}{6}^{+1}$ 

 $[k \ge 1;$  note that  $P(L \ge k) = 0$  if  $k \ge 45$ ] and thus

$$P(L=k) = P(L \ge k) - P(L \ge k+1)$$
  
=  $\binom{49}{6}^{-1} \sum_{j=1}^{5} (-1)^{j-1} \binom{5}{j} \left[ \binom{49-j(k-1)}{6}^{+} - \binom{49-jk}{6}^{+} \right] \quad (k = 1, 2, ..., 44).$ 

Figure 5.1 shows a bar chart of the probability distribution of the maximum spacing L.



FIGURE 5.1. Distribution of the Largest Spacing on a "6/49" Lottery Ticket

1995]

Note that the distribution is skewed to the right. The mode is 14 and has a probability of 0.0828..., whereas the mean "largest space" is given by

$$E(L) = \sum_{k=1}^{44} P(L \ge k) = \frac{109376345}{6991908} = 15.643...$$

#### 6. THE GENERAL CASE

It is clear that the reasoning given above carries over nearly literally to the case of a generalized lottery where r numbers from the sequence 1, 2, ..., n are chosen. For a ticket  $t = (t_1, ..., t_r)$ with  $1 \le t_1 < \cdots < t_r \le n$  let, as above,  $X_j(t) = t_{j+1} - t_j$ ,  $1 \le j \le r -$ , denote a single spacing, and write  $S(t) = \min_{1 \le j \le r-1} X_j(t)$ ,  $L(t) = \max_{1 \le j \le r-1} X_j(t)$  for the smallest resp. the largest spacing.

As a simple consequence of the idea of "ticket shrinking," we have

$$P(X_{j_1} \ge k_1, X_{j_2} \ge k_2, \dots, X_{j_m} \ge k_m) = \binom{n - \sum_{\nu=1}^m (k_\nu - 1)}{r}^+ / \binom{n}{r}$$
(6.1)

 $(1 \le m \le r-1; 1 \le j_1 < j_2 < \dots < j_m \le r-1; k_1 \ge 1, \dots, k_m \ge 1)$  which entails that the individual spacings are exchangeable, i.e., the joint distribution of any subset of  $X_1, \dots, X_{r-1}$  depends only on the cardinality of this subset.

For a single spacing  $X_i$ , it follows that

$$P(X_{j} \ge k) = {\binom{n+1-k}{r}}^{+} / {\binom{n}{r}}, \quad k \ge 1,$$

$$P(X_{j} = k) = {\binom{n}{r}}^{-1} \left[ {\binom{n+1-k}{r}}^{+} - {\binom{n-k}{r}}^{+} \right] = {\binom{n-k}{r-1}}^{+} / {\binom{n}{r}}, \quad k \ge 1,$$

$$E(X_{j}) = \sum_{k=1}^{n+1-r} P(X_{j} \ge k) = \frac{n+1}{r+1},$$

$$Var(X_{j}) = 2 \cdot \sum_{k=1}^{n+1-r} k P(X_{j} \ge k) - \frac{n+1}{r+1} - {\binom{n+1}{r+1}}^{2} = \frac{(n+1)r(n-r)}{(r+1)^{2}(r+2)}.$$
(6.2)

Note that  $P(X_j = k) = 0$  if k > n+1-r.

For the smallest spacing *S*, we have

$$P(S \ge k) = \binom{n - (r - 1)(k - 1)}{r} / \binom{n}{r}, \quad k \ge 1,$$

$$P(S = k) = \left[\binom{n - (r - 1)(k - 1)}{r} - \binom{n - (r - 1)k}{r}^{+}\right] / \binom{n}{r}, \quad k \ge 1,$$

$$E(S) = \binom{n}{r} \sum_{k=1}^{-1} \binom{n - (r - 1)(k - 1)}{r}^{+}$$

(see also Kennedy and Cooper [1]).

[NOV.

430

Finally,

$$P(L \ge k) = \binom{n}{r} \sum_{\nu=1}^{1r-1} (-1)^{\nu-1} \binom{r-1}{\nu} \binom{n-\nu(k-1)}{r}^{+}, \quad k \ge 1,$$
  

$$P(L = k) = \binom{n}{r} \sum_{\nu=1}^{1r-1} (-1)^{\nu-1} \binom{r-1}{\nu} \left[\binom{n-\nu(k-1)}{r}^{+} - \binom{n-\nu k}{r}^{+}\right], \quad k \ge 1,$$
  

$$E(L) = \binom{n}{r} \sum_{k=1}^{1} \sum_{\nu=1}^{r-1} (-1)^{\nu-1} \binom{r-1}{\nu} \binom{n-\nu(k-1)}{r}^{+}.$$

Note that P(L = k) = 0 if k > n - r + 1 and P(S = k) = 0 if k > (n - 1) / (r - 1).

**Remark:** In addition to  $X_1(t), ..., X_{r-1}(t)$ , one could introduce the spacings  $X_0(t) = t_1$  and  $X_r(t) = n + 1 - t_r$ . By an obvious modification of the "shrinking argument," it is readily seen that (6.1) remains valid for the larger range  $1 \le m \le r+1$ ,  $0 \le j_1 < j_2 < \cdots < j_m \le r$  which entails the exchangeability of  $X_0, X_1, \ldots, X_r$ .

Since  $\sum_{j=0}^{r} X_j = n+1$ , it follows that

$$n+1 = E\left(\sum_{j=0}^{r} X_{j}\right) = \sum_{j=0}^{r} E(X_{j}) = (r+1) \cdot E(X_{j})$$

which gives a second derivation of (6.2). Moreover, from the equality

$$0 = \operatorname{Var}\left(\sum_{j=0}^{r} X_{j}\right) = \sum_{j=0}^{r} \operatorname{Var}(X_{j}) + \sum_{\substack{j=0\\j \neq k}}^{r} \sum_{k=0}^{r} \operatorname{Cov}(X_{j}, X_{k})$$

and exchangeability, we obtain the covariance

$$\operatorname{Cov}(X_j, X_k) = -\frac{1}{r} \operatorname{Var}(X_j), \quad 0 \le j \ne k \le r,$$

and thus the correlation coefficient

$$\rho(X_j, X_k) = -\frac{1}{r}, \quad 0 \le j \ne k \le r,$$

which is a generalization of (3.2).

Finally, redefining S and L as to include the spacings  $X_0$  and  $X_r$ , the expressions for the distribution and expectation of S resp. L continue to hold if each "r-1" is replaced by "r+1" [of course,  $\binom{n}{r}$  remains unchanged].

### REFERENCE

 R. E. Kennedy & C. N. Cooper. "The Statistics of the Smallest Space on a Lottery Ticket." The Fibonacci Quarterly 29.4 (1991):367-70.

AMS Classification Numbers: 60C05, 05A99, 60E05

1995]