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1. INTRODUCTION AND GENERALITIES 

The aim of this note is to extend the ideas explored in [3] to Pell numbers Pn and Pell-Lucas 
numbers Qn. 

More precisely, we shall parallel the arguments of [3] (the contents of which the reader is 
assumed to be aware of) to obtain expressions for both Pell numbers Px and Pell-Lucas numbers 
Qx which are real when the subscript x > 0 is a real quantity. Of course, these numbers (or 
better, functions) and the usual Pell numbers and Pell-Lucas numbers coincide when x = n is an 
integer. It will be shown that Px and Qx enjoy some of the main properties of Pn and Qn. 

For the convenience of the reader, let us recall the Binet forms for Pell and Pell-Lucas 
numbers and some identities involving them. These are (e.g., see [1], [5]) 

pn = (a
n -pn)l V8 (Binet form), (1.1) 

Qn = a
n +/T (Binet form), (1.2) 

where 

a = -\ip = 2-p = \ + <j2, (1.3) 
Pn+2 = 2Pn+\ + pn ipo = °> Pi = 1] (recurrence relation), (1.4) 

G,+2 = 20*1+0, [So = 0 = 2] (recurrence relation), (1.5) 

a ^ - i + ^ + i , 0.6) 

PnQn=Pm> (1-7) 
p

n-ip
n+i = pn +(-!)" (Simson formula analogue), (1.8) 

and 8 # = Qj-4(-iy ' . (1.9) 

In section 2 the exponential representations for Px and Qx are defined for all x and coincide 
with i^ and Qn, respectively, when n is an integer. In section 3 the polynomial-exponential 
representation for Px is defined only for x > 0 and coincides with Pn when w is a nonnegative 
integer, whereas the polynomial-exponential representation for Qx is defined only for x > 0 and 
coincides with Qn when ^ is a positive integer. In both sections some properties of these numbers 
are established. Finally, the application of a useful idea [7] is discussed briefly in section 4. It 
must be noted that, despite the fact that the numbers defined in sections 2-4 coincide only when 
x = n is an integer, they are denoted by the same symbol. Nevertheless, no misunderstanding can 
arise since each definition applies only to the appropriate section. The notation 

398 [NOV. 



REAL PELL AND PELL-LUCAS NUMBERS WITH REAL SUBSCRIPTS 

X(x), the greatest integer not exceeding x, 
^(x) = x - X(x), the fractional part of x, 

will be used, and the following properties of X(x) will be taken into account throughout the 
proofs: 

2[(x±l)/2] = A(x/2)+[l + ( - l ) ^ ] / 2 , (1.10) 

A[(x~2)/2] = A(x/2)-l, (1.11) 

22(x/2) = 2(x)-[ l - ( - l ) 1 (* ) ] /2 , (1.12) 

X(-x) = -X(x)-l [i.e., A(x) + 2(-x) = - l ] , if ^(x)>0. (1.13) 

The proofs of (1.10)-(1.13) are not difficult but they are very lengthy and tedious. They are left 
to the perseverance of the reader. Further, the conventions 

and 

will be assumed. 

(*A = 0, if k > 1 is an integer ([2], p. 48) 

£/(/) = 0,ifft<a 
i=a 

2. EXPONENTIAL REPRESENTATION OF Px AND Qx 

(1.14) 

(1.15) 

Keeping the Binet forms (1.1) and (1.2), and the definitions (2.13) and (2.14) of [3] in mind, 
leads us to define 

Px = [ax-(-l)X(x)a-x]/«M (2.1) 
and 

Qx = ax+(-l)Mx)a-x. (2.2) 

As an illustration, the behavior of Px vs x is shown in Figure 1 for 0 < x < 8. 

3 4 5 
X 

FIGURE 1. Behavior of Px vs x for 0 < x < 8 

The same function is plotted, within the interval 0.5 < x < 2.5 in Figure 2, to reveal the (rapidly 
decreasing) discontinuities connected with the integral values of x which are due to the greatest 
integer function inherent in the definition (2.1). 
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1.5 
X 

FIGURE 2. Graph of Px vs x for 0.5 < x < 2.5 

2.1. Some Properties of Px and Qx 

The numbers Px and Qx enjoy several properties of the usual Pell and Pell-Lucas numbers. 
For example, the identities (1.4)-(1.9) remain valid when n is replaced by x with only one excep-
tion. The exception is (1.7) which must be restated as follows. 

Proposition 1: 

PXQX 

l2x> if#x)<±, 
\P2x-a-2x/j2=Q2x/j8, if^(x)>|. 

This will be proved later. Moreover, it must be noted that the quantity (-1)" has to be 
replaced by (-l)*(x) in (1.8) and (1.9). 

The evaluation of finite sums analogous to those considered in [3] gives the results 
n J 

2^ x+k ~ ~Z\*n+l+x "*" *n+x ~~ *x ~ *x-l)> 
k=0 L 

where T stands separately for P and Q, and 

Z ~ \l\ln 

(2.3) 

(2.4) 
k=0 

n-\ 

Z ~~ Sdlln 
(2.5) 

k=0 

The identities (2.3)-(2.5) can be proved by using (2.1), (2.2), and the geometric series formula. 
The extension of Px and Qx to negative values of the subscript x can be obtained by replacing 

x by —x in the definitions (2.1) and (2.2), and by taking (1.13) into account. To our great sur-
prise, some simple calculations led to the following unexpected results 

\P_X = {-\)X^QXI^ 

la,=(-i)m+1pxJ$ 
for (f>(x) > 0, 

(2.6) 

(2.7) 
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which hold whenever x is not an integer. In spite of the unexpectedness of expessions (2.6) and 
(2.7), the numbers P_x and Q_x preserve many properties of P_n = (-l)"+1Pn and Q_n = (-l)"Qn. 
For example, the identity 

P-xQ-x = -PXQX (see Proposition 1) (2.8) 

holds whatever the nature of x. 

2.2. Some Detailed Proofs 
For space reasons, only a few among the properties stated in section 2.1 will be proved in 

detail. It is worth mentioning that the following equalities involving the quantity a [see (1.3)] are 
to be used in the proofs of (1.4)-(1.6): 

2a + l = a2, (2.9) 

l - 2 a _ 1 = a"2, (2.10) 

l + a2 = aV8. (2.11) 

Proof of (1.5) (for n replaced by x): By (2.2), 

20+i + Qx = 2[«*+1 + (-l)a(x+1)a~*-1] + ax + ( - l ^ a - 1 

= ax(2a +1) + (- l)m a~x(l - 2a"1) [since X(x + k) = X(x) + k, k an integer) 
= ax+2 + (-l)Hx)a-ix+2) [by (2.9), (2.10)] 

= a » « + (_!)*<*)+V(x+2) 

= 0 , 2 [ ^ (2.2)]. Q.E.D. 

Proof of (1.8) (for n replaced by x): By (2.1), 

Px^Px+l - Pi = ([ax~l + ( - l f»a- I + 1 ] [a I + 1 + ( - l ^ e T ^ - t o * - (-l)1(x) a~xf) 18 
= {{a2x + cT2jc + ( - l / w ( a 2 +a-2)]-[a2x + a~2x -2(-l)*(JE)])/8 
= (-l)A(x)(a2 + cT 2 -2) /8 
= {-\)X(x\a-a-y)2l% 
= (-l)*(I) [since a - a " 1 = 2>/2, by (1.3)]. Q.E.D. 

Proof of Proposition 1: By (2.1) and (2.2), 

^*& - p2x = («2X - «~2X) / V8 - [«2* - ( - ^ ^ o T 2 x ] IV8 
= a-2l[(-l)A(2jc)-l]/V8 

0, if X(2x) is even [i.e., if <f>(x) <y], 
Q.E.D. 

- « - 2 x / V2, if A(2x) is odd [i. e., if <j>{x) > l] . 
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3. POLYNOMIAL-EXPONENTIAL REPRESENTATION OF Px AND Qx 

Keeping the definitions (1.6) and (1.7) of [4] and the definitions (3.4) and (3.5) of [3] in 
mind, leads us to define 

A[(x-l)/2]x 1 .x 

and 
A(x/2) f . \ 

j=o x + J V •/ / 

Observe that the binomial coefficient defined as 

(S) = *' (*) = ^ " 1 ) - ^ " " + 1) (* >~ ^ » -teger) (3.3) 

makes sense ([2], p. 48) also if x is any real quantity. Moreover, observe that 
(i) for x = 0, the expression (3.2) gives the indeterminate form 0/0 so that Q, = 2 cannot be 

defined by (3.2), 
(ii) by (1.13) and (1.15), we see that the expression (3.1) allows us to get P0 = 0, and the exten-

sion to negative values of x yields P_x = Q_x = 0. 

As an illustration, we show the first few values of Px and Qx. They are 

Px = 0 (0<x<l) , 
Px = 2x~l ( l<x<3) , 
P, = 2*-3(x + 2) (3<x<5), 
Px = 2x~6(x2 + x + 28) (5 < x < 7) 

^ = 2*- 8 f -x 3 -x 2 +—x + 72] (7<x<9) 

Px = 2x-u(-x4--x3 +—x2+ — x + 856) ( 9 < x < l l ) , U 3 6 3 J * 

and 

& = 2 X (0<x<2), 
a = 2*-2(* + 4) (2<x<4), 
Q. = 2*~5(x2 + 5x + 32) (4 < x < 6), 

1X-71 1 J , J ^ QX=2X~' - x J + x 2 + —x + 128 (6<x<8), 

a = 2 - 1 0 ^ x 4 - I x 3
+ - ^ x 2

+ ^ x + 1024J (8<x<10). 

The behavior of Px vs x is shown in Figure 3 for 0 < x < 5.5. 
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FIGURE 3. Behavior of Pv vs JC for 0 < JC < 5.5 

3.1. Some Properties of Px and Qx 

Proposition 2: 

2Px+i+Px = 

1 x+2? 

Pr x+2 
'x-X(x/2)-l 

2(x/2) + l 

if X(x) is even, 

2*(x\ ifl(x)isodd. 

Proposition 3: 

2a+i+a= 
O x + 1 (x-Mx!2)\m i f l W i s e v e n 

[Qx+2> 

Proposition 4: Px+l + Px_x = Qx. 

3.2. Proofs 

Proof of Proposition 2: 
Case 1: X(x) even. By (3.1) and (1.10), write 

X{xl2)-

if X{x) is odd. 

Px + 2Px+l = X 
;=0 

X(xl2) 

X - \ - J \ 2 x - \ - 2 j + y X - J 2 x + l - 2 y 

J 

= X 
;= i 

+ 
/ -\ X{xl2) , 
(x-J\nx+\-2j ^ V (X-J)0x+1-2J 

j=0 

Taking (1.14) and (1.10) into account and using the basic recurrence ([8], p. 1) for the binomial 
coefficients (which holds also when the upper argument is not an integer) yields 

X(x/2) 

^ + 2/^1= X 
y=0 

X[(x+l)/2] 

= I 

X-J\ + (X~J 
X{xl2)/ , - .x 

2x+l-2; _ y | X + 1 - J I2X+I-2/ 

7=0 ^ J 

X + l - j U x + 1 - 2 / 
= Pr x+2-
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Case 2: A(x) odd. By (3.1), (1.10), and (1.12), write 
X{xl2) / 1 . \ X(xI2) 

PX+2PX+1= £ \ x- l j-J)2r™'+ I ^-J)r^ fx-\-j 

A(X/2)+l / 

- 2 fc< 
A(x/2) 

lewr^si, 
X ~ 7 9x+l-2y 

A ( J C / 2 ) + 1 / A X(x/2)+ls .> 

where 

X = x-A,(x/2)-l 
A(x/2) + l 

)X+l-2/l(x/2)-2 * - A ( x / 2 ) - l ^ 
A(JC/2) + 1 

^x-A(x) 

(3.4) 

(3.5) 

By (1.10), (3.5), and the basic recurrence for the binomial coefficients, expression (3.4) can be 
rewritten as 

X[(x+l)/2]f - x 

The proposition follows, since </)(x) -x- A(x). Q.E.D. 

Note: (1) Since the upper argument of the binomial coefficient in (3.5) is less than the lower one, 
X = 0 whenever x > 1 is an (odd) integer, giving 2PX+1 + PX = Px+2 • 

(2) Proposition 3 may be proved in a way similar to Proposition 2. 

Proof of Proposition 4: First, by (3.1), (3.2), and the binomial identity available in ([8], p. 
64), write 

X(x/2) 

= PX+1+ I 
X{xt2)-\ 

X(x/2) 

7=0 V J 

X-\-j\2x-2j 

/ = - l 

X-2-j\x-2-2j (3.6) 

Then, use (1.14), (1.11), and (3.1) to rewrite (3.6) as 
*[(*-2)/2] 

a = ^ i + 1 { j J)2X-2-2J=P*H+PX-I- Q.E.D, 

4. CONCLUDING REMARKS 

In this note, definitions have been proposed for Pell numbers Px and Pell-Lucas numbers Qx 

which are real when the subscript x is real. We feel that this particular study might be concluded 
suitably by observing that the idea explored in [7] applies beautifully to the afore-said numbers 
(see also [6]). In fact, following [7], we can define 

Px = [ax - cos(7rx)a-x] lS (4.1) 
and 
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Qx = ax + cos(7rx)a x. (4.2) 

The numbers Px and Q, defined in this way and the usual Pell and Pell-Lucas numbers obviously 
coincide when x is an integer. Moreover, their behavior vs x does not present any discontinuity, 
as shown in Figure 4 in the case of Qx. 

Of 3 

FIGURE 4. Behavior of Qx vs x for 0 < x < 2 

Some properties of these numbers are reported in the sequel. Their proofs are left as an 
exercise for the interested reader. It should be noted that (4.1) and (4.2) occur in [6] as x coordi-
nates of points on Pell and Pell-Lucas curves. Both x- and ^-coordinates for these curves were 
obtained independently of [7] as special cases of coordinates for a system of more general curves 
[6]. 

The identities (1.4)-(1.6) remain valid for PxmdQx, whereas the identity (1.7) does not. 
More precisely, we have 

PxQx = P2x-[^2(7rx)a-2x]/^. 

Moreover, the analogue of (1.8) is 

The extensions of (4.1) and (4.2) to negative values of x lead to 

l[sm2(ax)ax /•Js-Px]/ cos(^x), if <j>(x) * £, 
P"*"W!/8, if #*) = *, 

(4.3) 

(4.4) 

(4.5) 

and 

a*= 
[Qx - sin (nx)ax ] / cos(;rx), if 0(x) * \ , 

Iff1, if (j){x) _ I 
(4.6) 

Since the reader might find some difficulty in deriving (4.5) and (4.6),we give a sketch of the 
proof of (4.5). 

Proof of (4.5) (a sketch): Replace x by -x in (4.1), thus getting 

p_x = [a~x - cos(^x)ax] / V8 [since cos(-j) = coŝ y ]. 
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If>(x) = j , then cos(^x) = 0 so that Px = ax/Js [see (4.1)], and Px
l = <J%cTx = Sa~x IV8 = 

SP_X [see (4.7)]. If ^(x) * \ [i.e., cos(^x) * 0], multiply both sides of (4.7) by cos(/rx), and use 
the identity coi y = 1-sin2 >> to obtain the right-hand side of (4.5). Q.E.D. 

The proof of (4.6) is similar. Observe that (4.5) and (4.6) do not satisfy the analogue of (2.8) 
for <f>(x) > 0. In particular, when (j)(x) = ~ (i. e., x = n + j), we have 

PxQx + P-xQ-x = P2n+i- (4-8) 
Furthermore, the identity (2.3) remains valid for Px and Qx, whereas an attempt to find the 

identities corresponding to (2.4) and (2.5) required a great amount of calculations involving the 
use of Euler formulas for circular functions and the geometric series formula, and produced a 
couple of very unpleasant expressions. As an illustration, we exhibit the second one. This is 

Yn j2[^PVn +a'21"-cosjx In)] 

h r * Q/„n-a-1/"-a-2/"+(«-1/"-2)cos(^/«)-r K*y} 

The closed-form expression of the analogous sum 

£&,,*""=4^+i (410) 

k=o a -1 

is much simpler even though perhaps less interesting. 
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