NOTES ON A CONJECTURE OF SINGMASTER

Leetsch Charles Hsu
Institute of Applied Mathematics, Dalian University of Technology, Dalian, China

Peter Jau-Shyong Shiue

Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154-4020
Yi Wang
Institute of Applied Mathematics, Dalian University of Technology, Dalian, China
(Submitted January 1994)

1. INTRODUCTION

Let $\left\{a_{i}\right\}_{i=1}^{n}$ be a sequence of positive integers in nondecreasing order. Following Guy [1], $\left\{a_{i}\right\}$ is a sum=product sequence of size n if $\sum_{i=1}^{n} a_{i}=\prod_{i=1}^{n} a_{i}$. For example, it is easily shown that $\{2,2\},\{1,2,3\}$, and $\{1,1,2,4\}$ are the only sum=product sequences having sizes 2,3 , and 4 , respectively. Let $N(n)$ denote the number of different sum=product sequences of size n. Basing his research on various numerical data obtained by computer, David Singmaster has made some conjectures about $N(n)$. These conjectures were proposed during the closing session of the Fifth International Conference on Fibonacci Numbers and Their Applications (St. Andrews, Scotland, 1992); namely, $N(n)>1$ for $n>444, N(n)>2$ for $n>6324$, and $N(n)>3$ for $n>11874$. The most attractive conjecture is the statement that $N(n) \rightarrow \infty$ as $n \rightarrow \infty$.

The object of this note is twofold. First, we give an explicit expression for $N(n)$. Second, we investigate an extended conjecture for the number $N(n, k)$ of different (sum) ${ }^{k}=$ product sequences of size $n(n>k \geq 2)$. Then our extended conjecture is the assertion that $N(n)=\infty$ for $n>k \geq 2$. We prove this extended conjecture.

2. AN EXPRESSION FOR $N(n)$

As usual, denote by $[x]$ the integer part of $x>0$. Let $r_{k}(n)$ denote the number of different ordered solutions of the Diophantine equation, with $2 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{k}$,

$$
\begin{equation*}
\prod_{i=1}^{k} x_{i}-\sum_{i=1}^{k} x_{i}=n-k \quad(n>k \geq 2) . \tag{1}
\end{equation*}
$$

Moreover, we introduce a unit function $I\{x\}$ defined for rational numbers x by the following:

$$
I\{x\}= \begin{cases}1 & \text { if } x \text { is a nonnegative integer }, \tag{2}\\ 0 & \text { otherwise } .\end{cases}
$$

Proposition 1: Let $d(n)$ be the divisor function representing the number of divisors of n. For $n>3$, we have

$$
\begin{equation*}
N(n)=\left[\frac{1}{2}(d(n-1)+1)\right]+\sum_{k=3}^{m} r_{k}(n), \tag{3}
\end{equation*}
$$

where $m=\left[\log _{2} n\right]+2$ and $r_{k}(n)$ may be expressed in the form

$$
\begin{equation*}
r_{k}(n)=\sum_{2 \leq x_{1} \leq \cdots \leq x_{k-1}} I\left\{\frac{n-k+x_{1}+\cdots+x_{k-1}}{\left(x_{1} \cdots x_{k-1}\right)-1}-x_{k-1}\right\} \tag{4}
\end{equation*}
$$

the summation being taken over all integers x_{i} with $2 \leq x_{1} \leq \cdots \leq x_{k-1}$.
Proof: Notice that for any ordered solution $\left(x_{1}, \ldots, x_{k}\right)$ of (1) with $k \geq 2$ and $x_{1} \geq 2$ we may write

$$
\sum_{i=1}^{n-k} 1+\sum_{i=1}^{k} x_{i}=\left(\prod_{i=1}^{n-k} 1\right) \prod_{i=1}^{k} x_{i}
$$

so that it yields a sum=product sequence of size n. Thus, $N(n)$ may be expressed in the form

$$
N(n)=r_{2}(n)+r_{3}(n)+\cdots .
$$

Here the first term $r_{2}(n)$ just represents the number of ordered solutions of the equation $x_{1} x_{2}-$ $x_{1}-x_{2}=n-2$, which may be rewritten as $\left(x_{1}-1\right)\left(x_{2}-1\right)=n-1$. Since the number of divisors of $(n-1)$ is given by $d(n-1)$, it is clear that the number of distinct pairs $\left(x_{1}-1, x_{2}-1\right)$ with $x_{1} \leq x_{2}$ should be equal to $\left[\frac{1}{2}(d(n-1)+1)\right]$, which is precisely the first term of (3).

To show that $m=\left[\log _{2} n\right]+2$, it suffices to determine the largest possible k such that equation (1) with $n>k \geq 3$ may have integer solutions in $x_{i} \geq 2$. Now, by induction on k, it can be shown that the following inequality,

$$
\prod_{i=1}^{k} x_{i}-\sum_{i=1}^{k} x_{i} \geq \frac{1}{4} \prod_{i=1}^{k} x_{i},
$$

holds for all $x_{i} \geq 2$ and $k \geq 3$. (Here the routine induction proof is omitted.) Consequently, we may infer the following from (1):

$$
\frac{1}{4} x_{1} x_{2} \cdots x_{k} \leq n-k<n .
$$

Clearly, the largest possible k, viz. $m=\max \{k\}$, may be obtained by setting all $x_{i}=2$. Thus, we have $2^{m-2}<n$, and we obtain $m=\left[\log _{2} n\right]+2$.

Finally, let us show that $r_{k}(n)$ has the expression (4). As may be observed, one may solve (1) for x_{k} in terms of integers $x_{i} \geq 2(i=1, \ldots, k-1)$,

$$
x_{k}=\left(n-k+\sum_{i=1}^{k-1} x_{i}\right) /\left(\prod_{i=1}^{k-1} x_{i}-1\right) .
$$

Therefore, every ordered solution of (1) with $2 \leq x_{1} \leq \cdots \leq x_{k}$ just corresponds to the condition $I\left\{x_{k}-k_{k-1}\right\}=1$ and vice versa. Consequently, the number $r_{k}(n)$ (with $n>k \geq 3$) can be expressed as the summation (4).

As may be verified, (4) can be used in a straightforward manner to give the value $r_{2}(n)=$ $\left[\frac{1}{2}(d(n-1)+1)\right]$. However, there seems to be no way to simplify the summation (4) for the general case $k \geq 3$, although for given n and k the sum can be found using a computer.

Corollary 1: $N(n) \geq\left[\frac{1}{2}(d(n-1)+1)\right]$ for $n \geq 3$.
Corollary 2: $\lim _{n \rightarrow \infty} \sup N(n)=\infty$.

Corollaries 1 and 2 were also observed by Singmaster and his coauthors (cf. their preprint [2]). The following simple examples are immediate consequences of the corollaries.

Example 1: For $m>1$, we have $N\left(m^{n}+1\right) \rightarrow \infty(n \rightarrow \infty)$.
Example 2: If $\left\{p_{n}\right\}$ is the sequence of prime numbers, then we have $N\left(p_{1} p_{2} \cdots p_{n}+1\right) \rightarrow \infty$ as $n \rightarrow \infty$.

3. THE EXTENDED CONJECTURE

Given n and k with $n>k \geq 2$. The so-called extended conjecture is the statement that the number of different solutions of the Diophantine equation

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{k}=\prod_{i=1}^{n} x_{i}
$$

is infinite, namely, $N(n, k)=\infty$.
In what follows, we will prove the extended conjecture.
Theorem 1: For $n>k \geq 2$, the Diophantine equation

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)^{k}=\prod_{i=1}^{n} x_{i} \tag{5}
\end{equation*}
$$

has infinitely many solutions, namely, $N(n, k)=\infty$.
We shall accomplish the proof using three lemmas.
Lemma 1: For given integers $m \geq 0, \lambda \geq 1$, and $r \geq 2$, if the equation

$$
\begin{equation*}
\left(m+\sum_{i=1}^{r} x_{i}\right)^{2}=\lambda \prod_{i=1}^{r} x_{i} \tag{6}
\end{equation*}
$$

has a solution, then it has infinitely many solutions.
Proof: For the simplest case $m=0$ and $r=2$, let the equation

$$
\begin{equation*}
\left(x_{1}+x_{2}\right)^{2}=\lambda x_{1} x_{2} \tag{7}
\end{equation*}
$$

have a solution $\left(x_{1}, x_{2}\right)=\left(a_{1}, a_{2}\right)$. Without loss of generality, assume $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. Then (7) implies $a_{1}\left|a_{2}^{2}, a_{2}\right| a_{1}^{2}$, so that $a_{1}=a_{2}=1$ and consequently $\lambda=4$. Now, evidently, (7) has infinitely many solutions (x_{1}, x_{2}) with $x_{1}=x_{2}$ and $\lambda=4$.

Consider the general case $m>0$ or $r>2$. Now suppose (6) has a solution $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$. We shall construct a solution $B=\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ with $b_{1} \geq b_{2} \geq \cdots \geq b_{r}$ different from A as follows. Denote $\|A\|=\max _{1 \leq i \leq r} a_{i}=a_{1}$. Consider the quadratic equation in t :

$$
\begin{equation*}
\left(m+\sum_{i=1}^{r-1} a_{i}+t\right)^{2}=\lambda\left(\prod_{i=1}^{r-1} a_{i}\right) t . \tag{8}
\end{equation*}
$$

i.e.,

$$
t^{2}+\left\{2\left(m+\sum_{i=1}^{r-1} a_{i}\right)-\lambda \prod_{i=1}^{r-1} a_{i}\right\} t+\left(m+\sum_{i=1}^{r-1} a_{i}\right)^{2}=0
$$

By supposition, (8) has a root $t_{1}=a_{r}$. Using the relations between the roots and coefficients (Vieta's theorem), we see that the second root is given by

$$
\begin{equation*}
t_{2}=\lambda \sum_{i=1}^{r-1} a_{i}-2\left(m+\sum_{i=1}^{r-1} a_{i}\right)-t_{1}=\left(m+\sum_{i=1}^{r-1} a_{i}\right)^{2} / t_{1} \tag{9}
\end{equation*}
$$

From (9), we see that t_{2} is an integer and, moreover,

$$
t_{2}=\left(m+\sum_{i=1}^{r-1} a_{i}\right)^{2} / a_{r}>a_{1}^{2} / a_{r} \geq a_{1} .
$$

Now let us take $b_{1}=t_{2}, b_{2}=a_{1}, b_{3}=a_{2}, \ldots, b_{r}=a_{r-1}$. From (8), it is clear that $B=\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ is a solution of (6) with $\|B\|=\max _{i} b_{i}=b_{1}=t_{2}>a_{1}=\|A\|$, i.e., $\|B\|>\|A\|$.

Generally, if (6) has a solution $x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{r}^{(0)}\right)$ with $x_{1}^{(0)} \geq x_{2}^{(0)} \geq \cdots \geq x_{r}^{(0)}$, then the recursive algorithm

$$
\left\{\begin{array}{l}
x_{1}^{(j+1)}=\lambda \prod_{i=1}^{r-1} x_{i}^{(j)}-2\left(m+\sum_{i=1}^{r-1} x_{i}^{(j)}\right)-x_{r}^{(j)}, \tag{10}\\
x_{2}^{(j+1)}=x_{1}^{(j)}, x_{3}^{(j+1)}=x_{i}^{(j)}, \ldots, x_{r}^{(j+1)}=x_{r-1}^{(j)},
\end{array}\right.
$$

will yield infinitely many solutions $x^{(j)}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \ldots, x_{r}^{(j)}\right), j=0,1,2, \ldots$, such that $\left\|x^{(0)}\right\|<$ $\left\|x^{(1)}\right\|<\left\|x^{(2)}\right\|<\cdots$.

Lemma 2: Let $m>0$ and $r \geq 3$. Then the equation

$$
\begin{equation*}
\left(m+\sum_{i=1}^{r} x_{i}\right)^{2}=\prod_{i=1}^{r} x_{i} \tag{11}
\end{equation*}
$$

has infinitely many solutions.
Proof: Equation (11) is a form of (6) with $\lambda=1$. Now (11) has a solution $x_{1}=5(m+r+2)$, $x_{2}=4(m+r+2), x_{3}=5, x_{i}=1, i=4,5, \ldots, r$. In fact,

$$
\left(m+\sum_{i=1}^{r} x_{i}\right)^{2}=(m+5(m+r+2)+4(m+r+2)+5+(r-3))^{2}=100(m+r+2)^{2}=\prod_{i=1}^{r} x_{i} .
$$

Hence, Lemma 2 follows from Lemma 1.
In particular, taking $m=0$ in (11), we get
Corollary 3: $N(n, 2)=\infty$, where $n \geq 3$.
Lemma 3: Let $m \geq 1, r \geq 3$. Then

$$
\begin{equation*}
m\left(\sum_{i=1}^{r} x_{i}\right)^{2}=\prod_{i=1}^{r} x_{i} \tag{12}
\end{equation*}
$$

has infinitely many solutions.

Proof: For the case $r=3$, the substitution $x_{i}-m y_{i}(i=1,2,3)$ in (12) leads to

$$
\left(\sum_{i=1}^{3} y_{i}\right)^{2}=\prod_{i=1}^{3} y_{i}
$$

For the case $r>3$, taking $x_{r}=m$, we find that (12) becomes

$$
\left(m+\sum_{i=1}^{r-1} x_{i}\right)^{2}=\prod_{i=1}^{r-1} x_{i}
$$

Hence, Lemma 3 is implied by Lemma 2.
Proof of Theorem 1: It suffices to prove the theorem " $N(n, k)=\infty$ " for the case $k \geq 3$. In (12), let us take

$$
m=2^{(k-2)(k+3) / 2}, \quad r=n-k+2
$$

We will now show that from every solution $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$ of (12) there can be constructed a solution $x=\left(x_{1}, \ldots, x_{n}\right)$ of (9) by the following:

$$
\left\{\begin{array}{l}
x_{i}=a_{1}, 1=1,2, \ldots, r \tag{13}\\
x_{r+j}=2^{j-1} \sum_{i=1}^{r} a_{i}, j=1,2, \ldots, k-2
\end{array}\right.
$$

In fact we have, by computation:

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{k}=\left[\sum_{i=1}^{r} a_{i}+\sum_{j=1}^{k-2}\left(2^{j-1} \sum_{i=1}^{r} a_{i}\right)\right]^{k}=\left(1+\sum_{j=1}^{k-2} 2^{j-1}\right)^{k}\left(\sum_{i=1}^{r} a_{i}\right)^{k}=2^{k(k-2)}\left(\sum_{i=1}^{r} a_{i}\right)^{k}
$$

and

$$
\prod_{i=1}^{n} x_{i}=\prod_{i=1}^{r} a_{i} \cdot \prod_{j=1}^{k-2}\left(2^{j-1} \sum_{i=1}^{r} a_{i}\right)^{2}=m\left(\sum_{i=1}^{r} a_{i}\right)^{2} \cdot 2^{(k-2)(k+3) / 2}\left(\sum_{i=1}^{r} a_{i}\right)^{k-2}=2^{k(k-2)}\left(\sum_{i=1}^{r} a_{i}\right)^{k}
$$

That is,

$$
\left(\sum_{1}^{n} x_{i}\right)^{k}=\prod_{1}^{n} x_{i}
$$

Clearly, $x_{1} \leq x_{2} \leq \cdots \leq x_{r+k-2}=x_{n}$ so that $\|x\|>\|A\|$. The recursive algorithm (10) implies that $\{\|A\|\}$ is unbounded, so is $\{\|x\|\}$. Hence, (5) also has infinitely many solutions.

Theorem 2: For $n \geq 2 k \geq 4$, the Diophantine equation

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{k}=\prod_{i=1}^{m} x_{i}
$$

has at least $p(k)$ distinct solutions $\left(x_{i}, \ldots, x_{n}\right)$ which are contained in the simplex domain

$$
0<\sum_{i=1}^{n} x_{i}<(k+1)^{k+1}+(k+1) n \quad\left(x_{i}>0\right)
$$

where $p(k)$ is the partition function of k.

Proof: Every partition of k may be represented by the summation

$$
k=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{v} \quad(1 \leq v \leq k),
$$

where α_{i} are positive integers such that $1 \leq \alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{v}$. Denote $n=m+k+1$ with $m \geq k-1$. Then, corresponding to each partition ($\alpha_{1}+\alpha_{2}+\cdots+\alpha_{v}$) of k, one can construct a solution of the equation as follows:

$$
\left\{\begin{aligned}
x_{i} & =(k+1)^{\alpha_{1}}+(k+1)^{\alpha_{2}}+\cdots+(k+1)^{\alpha_{v}}+m-v+1 \text { for } i=1, \ldots, k, \\
x_{k+1} & =(k+1)^{\alpha_{1}}, x_{k+2}=(k+1)^{\alpha_{2}}, \ldots, x_{k+v}=(k+1)^{\alpha_{v}} ; \\
x_{j} & =1 \text { for } j=k+v+1, \ldots, k+m+1 .
\end{aligned}\right\}
$$

In fact, it may be verified at once that

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)^{k} & =\left\{\left[k(k+1)^{\alpha_{1}}+\cdots+(k+1)^{\alpha_{v}}+m-v+1\right] \cdot k+\sum_{i=1}^{v}(k+1)^{\alpha_{i}}+m-v+1\right\}^{k} \\
& =\left[(k+1)^{\alpha_{1}}+\cdots+(k+1)^{\alpha_{v}}+m-v+1\right]^{k} \cdot(k+1)^{k} \\
& =\left[(k+1)^{\alpha_{1}}+\cdots+(k+1)^{\alpha_{v}}+m-v+1\right]^{k} \prod_{i=1}^{v}(k+1)^{\alpha_{i}}=\prod_{i=1}^{n} x_{i} .
\end{aligned}
$$

Evidently the solution constructed above satisfies the condition

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} & =\left[(k+1)^{\alpha_{1}}+\cdots+(k+1)^{\alpha_{v}}+m-v+1\right](k+1) \\
& \leq\left[(k+1)^{k}+m\right](k+1)<(k+1)^{k+1}+(k+1) n .
\end{aligned}
$$

Hence, all the $p(k)$ distinct solutions are contained in the simplex domain as mentioned in the theorem.

Example 3: For $n=10, k=5$, the equation $\left(\sum_{i=1}^{10} x_{i}\right)^{5}=x_{1} x_{2} \cdots x_{10}$ has as least $p(5)=7$ different solutions contained in the interior of the region: $0<x_{1}+x_{2}+\cdots+x_{10}<6^{6}+60\left(x_{i} \geq 0\right)$.

ACKNOWLEDGMENTS

The authors thank the referee and Professor John Selfridge for their useful suggestions that led to an improved version of this manuscript.

REFERENCES

1. R. K. Guy. Unsolved Problems in Number Theory (Problem D24). 2nd ed. New York-Heidelberg-Berlin: Springer-Verlag, 1994.
2. David Singmaster, Mike Bennett, \& Andrew Dunn. "Sum=Product Sequences." Preprint. Polytechnic of the South Bank, London, SE1 0AA, England, 1993.
3. David Singmaster. "Untitled Brain Twister." The Daily Telegraph, Weekend Telegraph Section (9 E 16 April 1988), XV.
AMS Classification Numbers: 11A25, 11D41, 11D72
$8 \% \%$
