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1. INTRODUCTION 

Let us consider the generalized Lucas sequence {Vn} defined by the recurrence relation 

where P is a positive integer and Q = ±l. A Fibonacci pseudoprime with parameters P and Q 
[(P, 0-FPSP] is a composite number n such that 

Vn = P (mod n). 

Recently (see [1], [2], and [5]), the following theorem was proved. 

Theorem 1: There do not exist even Fibonacci pseudoprimes with parameters P = 1 and Q = -l. 

In this paper, our aim is to investigate the existence of the even (P, 0-FPSP. We shall 
prove the following result. 

Theorem 2: If (P, Q) * (1, -1) and (P, Q) * (1,1), then there exists at least one even Fibonacci 
pseudoprime with parameters P and Q. 

Theorem 2 is a consequence of Theorem 1 and of the following propositions. 

Proposition 1: There do not exist even Fibonacci pseudoprimes with parameters P = Q = l. 

Proposition 2: n = 2k, k > 2. is a (P, 0-FPSP, Q = ±1, if and only if P = 2 (mod2*) o r P s - l 
(mod 2*). 

Proposition 3: If P = 0 (mod 4) or P = 1 (mod 4) (with P * 1) and if (P, Q) * (5,1), then there 
exists an odd prime number/? such that n~2p is an even (P, 0-FPSP. 

Proposition 4: There exist odd prime numbers/? and q, with p * q, such that n - 2pq is an even 
(5,1)-FPSP. 

2. PRELIMINARIES 

In this section, we shall gather some lemmas which will be needed in the sequel. 

Lemma 1: If P = 0 (mod 4) and Q = ±1, then the number A- P2 -P-2Q admits an odd prime 
divisor. 

Proof: We have A = 2 (mod 4) since P = 0 (mod 4), whence A admits an odd prime divisor, 
unless A = ±2, which is clearly impossible. 
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Lemma 2: If P = 1 (mod 4) and Q = ±1, then the number A - P2 - P - 2Q admits an odd prime 
divisor p*3, unless (P, Q) = (1, -1), (P, 0 = (1,1), or (P, 0 = (5,1). 

Proof: We have A = 2 (mod 4) since P = 1 (mod 4), whence A admits an odd prime divisor, 
unless A = ±2. We consider two possibilities: 

(a) Assuming first that Q = - 1 , we see that A- P2 -P + 2 = ±2 if and only if P = 1. More-
over, A = ±1 (mod 3). Thus, A admits an odd prime divisor p =* 3 when P ^ 1. 

(h) Supposing now that 0 = 1, we see that A = P2-P-2 = ±2 if and only if P = l. 
Moreover, 4̂ = 0 (mod 3) only if P = 2 (mod 3). Thus, 4̂ admits an odd prime divisor p^3, 
except possibly when P = 1 (mod 4) and P = 2 (mod 3); in other words, when P = 5 (mod 12). 
If P = 5, then A = lS = 2-32. If P > 5 , we put P = l2k + 5(k>l) and we get that A = 
18(2& +1)(4& +1) and at least one of the factors (2k +1) or (4k +1) contains an odd prime divisor 
p * 3, since g.c.d. (2k +1,4k 4-1) = 1. This completes the proof 

Lemma 3: Let {ak} be a sequence of integers defined by the recurrence relation 

%+i = % 2 -2, k>\. (2.1) 

If ax is even, then ak = 2 (mod2*), & > 1, and if ax is odd, then ak = -l (mod2*), £ > 1. 

Proof: The statements clearly hold for k = 1. Let us suppose that ak = a (mod 2*), where 
£ > 1 and a = -1 or a = 2 (notice that a2 -2 = a) . Thus, we have 

â  = a + /12*, where X is an integer 
and 

ak+l = a2 - 2 = a2 - 2 + 2*+1(a^ + ^22^!) 

^ a 2 - 2 = a (mod2*+1). 

This completes the proof. 

3. PROOFS 

Proof of Proposition 1: Let us consider the sequence 

It is clear that the sequence {Vn} is periodic, with period 6 and that 

V6k=2, k>0, and V6k±2 = - 1 , k > 0, 

which implies that there does not exist an even (1,1)-FPSP. 

Proof of Proposition 2t It is well known and readily proven [4] that, for every n > 0, V2n -
V2-2Q\ and thus that 

V2k+l = V2
k - 2(±lf = V2 - 2, for k > 1. 

Hence, the sequence ak - Vlk satisfies the recurrence relation (2.1). Noticing that ax = V2 =P2 -
2Q s P2 = P (mod 2), we see by Lemma 3 that V2k = 2 (mod 2k) if k > 1 and P is even, and that 
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V2k = -1 (mod 2k) if k > 1 and P is odd. Hence 2k (k > 1) is a (P, 0-FPSP if and only if P = 2 
( m o d 2 * ) o r P s - l (mod 2k). 

Remark: The proof for P odd positive and Q = -1 can be found on page 175 in [2]. 

Corollary: n = 4 is a (P, 0-FPSP if and only if P = 2 (mod 4) or P = -1 (mod 4). 

Proof of Proposition 3: We first recall some well-known properties: 
(i) If P is even, then V„ = 0 (mod 2) for every n > 0. 

(ii) If P is odd, then F„ = 0 (mod 2) if and only if n = 0 (mod 3). 
(iii) If p is a prime number, then Vnp = F„ (mod/?) for every w > 0. 

For a proof of (iii), the reader may wish to consult [3] or [4]. Let us now suppose that P = 0 
(mod 4) or P = 1 (mod 4) and that/? is an odd prime number. The congruence V2p = P (mod 2p) 
is equivalent to the system 

V2p^P(mod2) (3.1) 
and 

V2p^P (mod/?). (3-2) 

By (i) and (ii), the congruence (3.1) holds for every odd prime number/? if P = 0 (mod 4) and for 
every prime number p > 3 if P = 1 (mod 4). By (iii), we see that (3.2) is equivalent to V2 = P 
(mod/?) which can also be written 

P 2 - P - 2 g ^ 0 (mod/?). (3.3) 

If P = 0 (mod 4), we see by Lemma 1 that there exists an odd prime number /? such that (3.3) 
and, thus, (3.2) hold. If P = 1 (mod/?) and P > 5, we see by Lemma 2 that the same result holds 
(with p > 3), so the proof is complete. 

Remark: If (P, Q) = (5,1), we see by Lemma 2 that there does not exist an odd prime number/? 
such that n = 2p is a (5,1)-FPSP. Actually, we see by (3.3) that p = 3 and by (ii) we have V2p = 
F6 = 0 # 5 (mod2). 

Proof of Proposition 4: Let us suppose that (P, Q) - (5,1). We shall prove that n = 6554 = 
2-29-113 is an even (5,1)-FPSP. Let N(p) be the period of the sequence {Vn} modulo/?. By 
direct computation, one can see that N(2) = 3, N(29) = 5, and #(113) = 57. We also see that 
6554 = -1 [mod N(p)\ where /? = 2, /? = 29, or /? = 113. Hence, 

^6554 = VkN{P)-l S VN(P)-1 = WN{P) ~ * W l = 5 ( m ° d P) > 

and therefore, 
F6554^5(mod6554). 

This completes the proof. 
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Remark: One can also verify that the numbers 11026 = 2-37-149, 26506 = 2-29-457, and 
119074 = 2-29-2053 are even (5,1)-FPSP. This can be easily checked, noticing that N(37) = 9, 
#(149) = 75, and #(457) = #(2053) = 57. 
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