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1. INTRODUCTION 

It is a well-known theorem of A. Hurwitz that for any real Irrational number £ there are 
infinitely many integers u and v > 0 satisfying 

1 
V5v 2 ' 

Usually this theorem is proved by using continued fractions; see Theorem 193 in [2]. 
S. Hartman [3] has restricted the approximating numbers f to those fractions, where u and v 

belong to fixed residue classes a and b with respect to some modulus s. He proved the following: 
For any irrational number £, any s > 1, and integers a and b, there are infinitely many integers 

u and v > 0 satisfying 
2s2 

(1) 

and 
w = a mods, v = b mods. 

The special case a = b = 0 shows that the exponent 2 of s2 is best-possible. In what follows, 
we are interested in the case where a and b are not both divisible by s; and we allow the denomi-
nators v to be negative. Using these conditions, S. Uchiyama [10] has published the following 
result: 

For any irrational number £, any s > 1, and integers a and ft, there are infinitely many integers 
u and v & 0 satisfying 

*--: <-4v2 (2) 

and 
u = a mods, v = b mods, 

provided that it is not simultaneously a = 0 mod s and b = 0 mod s. 

Years before, J. F. Koksma [4] had proved a slightly weaker theorem. From the case s = 2 
and Theorem 3.2 in L. C. Eggan's paper [1], it is clear that the constant j in (2) is best-possible. 
It is proved by Eggan that for any a > 0 and for any choice of the three types odd/odd, odd/even, 
or even/odd of the fractions f there is an irrational number £ so that no fraction of the chosen 
type satisfies 

V 
l-a 
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The case s = 2 has been studied by other authors, see, e.g., [5], [6], [8], and [9]. In this 
paper we prove a smaller bound for I^ - f l , assuming u = v mods for some prime s. Actually, 
the result is a bit stronger. 

Theorem 1: Let 0 < s < 1, and let/? be a prime with 

h denotes any integer that is not divisible by p. Then, for any real irrational number £, there are 
infinitely many integers u and v > 0 satisfying 

\<(l + £JPm (3) 
V 4sv 2 

and 
u = hv^0 mod p. 

To prove Theorem 1, we will apply the methods of S. Hartman [3] and S. Uchiyama [10]. It 
will be convenient to use the same notations as in Uchiyama's paper, but this is done for another 
reason: there is a small gap in the proof of Uchiyama's result stated above in (2). In what follows, 
we are concerned with the same difficulty at this point, and we will fill the gap. 

2. AUXILIARY RESULTS 

Apart from Hartman's method, we need two lemmas. 

Lemma 1: Let 0 < s < 1, and let/? be a prime, and let wx and w2 be integers with 

P>$. (4) 

0 < wx < p, 0 < w2 < p. (5) 

Then there are integers h, gh and g2 satisfying 

\b\<P, (6) 

0<|<?1|<(1 + ̂ 1 / 2 , 0<\g2\<(\ + s)pm, (7) 
and 

bwx = gx mod p, bw2 = g2 mod p. (8) 

Lemma 2: There are no integers x and y with xy > 0 satisfying simultaneously the following 
conditions: 

xy S\x2 y2j x{x+y) y[5{x2 (x+y) 

Proof of Lemma 1: We try to solve a linear system of equations 

wlx-yl+py1^0 
(9) 

w2x-y3 + py4=0} 
19 [FEB. 
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with integers x, yh y2, y3, andy4, where 

\*\<P, 

0<\yi\,\y3\<(l + s)P
m, 

and 
0<\y2\,\y4\<2kp. 

Hence, b = x,gx= yl9 and g2 = y3 satisfy (6), (7), and (8) in our lemma. But first we do need an 
auxiliary inequality: 

From p > (j) , we conclude that 
1 1 s s 

- 7 = + — < — + —=£. 

4p P 2 2 
For 0 < t < y, we have - T = < 1 +1; hence, 

This is equivalent to 

It follows that 

/<(P-D^I±£^-I]+IJ. 

p2<(p-l)\2\ l + e JP~ + 1 (10) 

where [a] denotes the integral part of a for nonnegative real numbers a. The integers Xu X2, 
and X3 are given by 

X = p-\ 
> ^ 2 ~ 

1 + £ in , X3 = kp, (11) 

where k is a sufficiently large positive integer satisfying 

p(p-l) + 2 l + £ 1/2 p + 2kp2 + l 

{2kp + \y 
2 P 

p-l 

By (10) and (11), this implies 

or 

(2pX1+2X2+2pX3 + l)2
 2 

(^Tr? < p{2Xi+1} 

(2(pX1 + X2+pX3) + i)2<(2Xl+l)(2X2 + l)2(2X3 + l)2. 

There are (2Xj + 1)(2X2 + 1)2(2X, +1)2 different sets of integers x, yv y2, y3, and y4 with 

-X^xZXi, -X2<yx,y3<X2, - X3 <y2,y4 <X3. 

(12) 
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We denote the left-hand sides of the two forms in (9) by fx and/2; for each such set of integers, 
we have 

-(pXl + X2+PX3)<flJ2<pXl + X2+pX3. 

Here we have applied (5). There are at most (2(pXl + X2+pX3) + l)2 different sets f and/2. 
But now, by (12) and the box principle, there must be two distinct sets of five numbers x, yh y2, 
y3, and y4 that correspond to the same set fx and/2; their difference gives a nontrivial solution of 
(9) where, by (11): 

0<\x\<p, (13) 

0< |^ ,b / 3 |< ( l + 4p1 / 2, (14) 
and 

0<\y2l\y4\<2kp. 

To finish the proof, we must show that yx ^ 0 and j>3 ^ 0. We assume the contrary for yx, which 
gives wpc = 0 mod p from the first equation in (9). Since p is a prime and 0<wl<p by (5), this 
holds if and only if x = 0 mod p. This means, by (13), that x = 0. Thus, the first equation in (9) 
becomes- py2 = 0 ory2 = 0 and the second one becomes ~y3+py4 = 0 or y3 = 0 mod p. Now we 
apply the condition Jp > 2 from (4), which yields 

(14) 

\y,\<(\ + e)pm<2pm<p; 
hence, y3 = 0. 

We have obtained x = yx = y2 = y3 = y4 - 0, which contradicts our construction of a non-
trivial solution of (9). We proceed in the same way if we assume y3 = 0. Thus, the proof of 
Lemma 1 is complete. 

Proof of Lemma 2: (See "Hilfssatz 2.2H, Ch. 10, in [7].) Without loss of generality, we may 
assume x > 0 and y > 0; hence, from the two inequalities stated in Lemma 2, we have 

Q>x2+y2-xy45 and 0>(2-V5)(x2+xy) + / . 

The sum of these inequalities gives 

0 > 2 | ^ ^ x 2 + ( l - V 5 ) x F + / l = 2 f ^ ~ 1 
\ 2 

-x-y 
J 

It follows that 2y = (V5 - l)x, which is impossible for x •*• 0. 

3. PROOF OF THEOREM 1 

Any real irrational number £, is represented by its continued fraction expansion, that is, 
£ = [a0;aj,a2, . . . ] , where a0 eZ, a„ eZ>0 (n>l). pn andg„ from the n* convergent ^ with 

£-Es. 1 £ ? 05) 
satisfy the recurrences 

1996] 21 



ON THE APPROXIMATION OF IRRATIONAL NUMBERS WITH RATIONALS RESTRICTED BY CONGRUENCE RELATIONS 

P-l = \ P0=®0, Pn=a„Pn-l+Pn-2 (n^ll 

It is well known that 

Pn-l<ln-Pn<ln-l = (-l)n (1 6) 

holds for all integers n > 1. According to the usual notations, we have to distinguish carefully the 
notation pm (with index m) and/?, which denotes the prime modulus in Theorem 1. 

Now, following the idea of Hartman, we consider for n > 1 a small system of congruences 

pnx+pn.]y = a mods,] 
(17) 

<lnX + <ln-iy = b mod 5, J 

where s > 2 is some positive integer and a and h are fixed integers such that there is not simul-
taneously a == 0 mod s and h = 0 mod s. It is easily proved by (16) that a solution of (17) is given 
by x = £„_! andy = fw, where the integers tn_x and r„ are determined by 

tm = (-l)m(aqm-bpm)mods. (18) 

In what follows, we consider only the sequence of all even integers n> 0. In (17) and (18), 
we put s = p and a-hb and so, for even integers n, we compute tn and tn_x by 

*»s*(*&-/>») mod/?, I 
k-i = *( /Vi" % - i ) mod p) 

If the sequence a0, a1? a2,... from £ = [a0; aha2,... ] is unbounded, there is an unbounded subset N 
of all positive integers such that, for certain integers 0 < wx < p and 0 < w2 < /?, we have, for all 
n eN: 

an>24p + l 
and 

hqn-Pn^wi mod/?, 
U A I <2°> 

pn-i-hqn_l^w2 mod/?.J 
Without loss of generality, we may assume that all integers from N are even; in the case in which 
a0,aha2,... has an unbounded subsequence only with odd indices, the arguments are the same 
apart from a change of sign in most of the subsequent formulas. 

Moreover, if the sequence a0,a1?a2,... is bounded, it is obvious that there is an unbounded 
subset N of all even positive integers satisfying (20) for all n eN with certain integers wx and w2. 

If it is wx = 0 orw2 = 0, we have pn = hqn mod/? or pn_x = hqn_l mod/? for all n eN; thus, 
the theorem is already proved in this case by taking the convergents -^ or -^J- according to 
wl = 0orw2= 0. The inequality (3) holds by (15); it remains to check the condition 

Pn - hqn * ° mod/? or pn_x = hqn_x 4 0 mod/? (n eN) 

from the theorem. Assuming the contrary for —-, we get 

pn = 0 = hqn mod/?. 
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From h4 0 modp then follows (pn,qn)^p, a contradiction to a well-known fact. In the same 
way, one sees that pn_1 = hqn_x = 0 mod pforn<=N is impossible. 

It remains to treat the case in which 0 < wx < p and 0 < w2 <p. Now conditions (4) and (5) 
of Lemma 1 hold; hence, there are integers h, ft, and ft satisfying (6), (7), and (8). By (8), (19), 
and (20), we may put 

'„=&, *„-! = & (PGN). (21) 
We define, for n e N, 

(22) 

By (17), for all n e iV, these integers un and vn satisfy 
un = hh, vn=b mod p , (23) 

and b^O modp is a consequence of (8) and 0<|g ,
1 |< j p . In particular, we conclude that 

Furthermore, we put, for n e JV, 

(24) 
v„(a, £) = &<*+ $,_,# 

This means that wn(g2, ft) = un and v„ (g2, ft) = vn. 
In the next step of our proof, we will follow Uchiyama [10]. From (7) we know that ft ^ 0 

and g2 ^ 0 ; therefore, we have to distinguish several cases according to the signs of ft and ft. 
We always assume n e N; in particular, we know that n is even. 

Some additional- arguments are necessary when ftft < 0 to show that the sequence vn from 
(22) is unbounded for certain subsets of 7V. This also fills the gap in Uchiyama's paper. 

Casel. gtg2>^ 
From (16) it is clear that, for all even w, we have 

£ L < ^ < B r i . (25) 

From this inequality and (22), we get 
% <ln-\ 

J ^ ^ J V l (26) 
% vn qn_x 

The relationship between £ and ^- now gives occasion to consider two subcases according to 

Case 1.1. Y~<^<y-fm infinitely many n GNX <=N 
Let 9 denote the sign of ft (resp. g2). For integers j > 0, we define integers 

Un,J = Un(g2+0JP>gl) = K + @PPnJ, 
/ n • \ (22)'(24) n 

V«fy=v,i(&+07P>&) = Vn + 0P^nJ-

(27) 
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Now we keep n fixed and, by straightforward computation, show that the fractions ^ f mono-
tonically decrease asy increases, and that 

Hence, by the assumption of Case 1.1, there exists some unique integer k>\ such that 

»n,k <t< 
U, %k-l 

\k Vn,k-l 
We also have 

Un, k Un,k+Un,k-l Un,k-l 
L _ < ! ! < ! ; 

Vn,k Vn,k+Vn,k-l Vn,k-l 

(28) 

(29) 

since both inequalities in (29) are equivalent to 

"»,i-iv«,t-v«,i-i"«,A>0; 
this holds because 

un,k-lvn,k ~ Vn,k-l»n,k = Qp(<lnUn ~ PnVn) 

(22) 
= 0P<J>n-l<ln-Pn<ln-l)gl 

(16) 

= (-l)"fciP>0. 
Again two subcases arise from (28) and (29): 

If we have 
"n,k <<f< 

Un,k +Un,k-l Un,k-l 
Vn,k+Vn,k-1 Vn,k-1 

(30) 

we assume that the following three inequalities hold simultaneously: 

yn,k J*Z*' 
un,k + un,k-\ 
Vr,,k+Vn,k-1 

•t* 
W 

J5(v«,k+v*,k-i)2' 

(31) 

(32) 

Un,k-\ e > W 
(33) 

where w = 9gxp. We sum up (31) and (32) and also (31) and (33); after some calculations and 
application of (30), we get 

1 ,ifi+- 1 
V

n,k(Vn,k+Vn,k-l) V 5 h £ * {Vn,k+Vn,k-l) 

and 
1 > ! 

Vn,kVn,k-l ^ 5 

1 1 
2 + ' 2 

\Vn,k Vn,k-lJ 
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From (22) and (27), from the definition of 6, and since gxg2 > 0, we know that vnJcvn ^ > 0 and, 
finalfy, all together contradict Lemma 2. Hence, at least one of the three inequalities—(31), (32), 
(33)—does not hold, and because each of the left-hand sides of these inequalities is positive, we 
have, for some 

u 
v 

\Un,k Un,k+Un,k-l U, 

vn,k Vn,k+Vn,k-i 
%k-l 

Vn,k-l \ 

But if £ satisfies 

^Sv1 VSv2 Sv1 

,3/2 

*n,k 

vn,k 

Un,k+Un,k-l <<f< 
U% n,k-l 

Vn,k-1 

we assume instead of (31), (32), (33), 

n,k f n,K W 

vn,k V5v2 
n,k 

(34) 

(35) 

s- u„k+u, n,k-l W 
Vn,k+Vn,Jc-l V S ^ ^ + V ^ ^ ) 2 ' 

(36) 

K ln,k-l 

vn,k-l 
-%> 

W 

J*i.k-i 
(37) 

Now we sum up (35) and (37), (36) and (37), which leads in the same way to a contradiction of 
Lemma 2. Hence, (34) holds in this subcase, too. 

For every fraction f satisfying (34), we know from (23) and (27) that either 

u = hv= hb modp 
or 

u = hv = 2hb mod p, 
where hb^Q modp implies 2hb 4 0 modp for all odd primes p. At last we note that \vn | tends 
to infinity for increasing neN^ this follows from (22) and from gxg2 > 0. By (27) this means 
that, independently from k defined in (28), each of the numbers K ^ I J v ^ ^ l , and \vn^k +vnJc_l\ 
tends to infinity for increasing neNv Thus, we have proved that there are infinitely many 
fractions f satisfying (34), u = hv modp and, without loss of generality, v>0 , provided the 
assumption of Case 1.1 holds for an unbounded subset Nx ofN. 

Case L20 y- < % < ̂ ^ for Infinitely many HGN2^N 

In this case we define, for integers j > 0, 

/ / > . x<22>'<24> r% 
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We proceed with similar arguments as in Case 1.1: 
For any fixed n, the fractions -^f monotonously increase withy"; and from 

]im
tSL=Pn=L 

we conclude that there is some unique integer k > 1 satisfying 
w, n,k-l fc

 un,k <<T< 
Vn,k-l Vn,k 

Again we consider the mediant ""* ""'k~l, which lies between ^—^ and —*-, and distinguish two 
yn,k'rvn,k-l V«,&-1 « ,* 

subcases according as £ is greater or smaller than the mediant. Instead of (30), we now have 
Vn,k-lUn,k ~Un,k-lVn,k = H ) ' % 2 ^ > °> 

and as in Case 1.1 we get infinitely many fractions f with 

< Vs7 " ~Js^~9 (38) v 

where u = hv£0 mod/?, provided the assumption of Case 1.2 holds for an unbounded subset N2 

of AT 

Case 2. & > 0, g2 < 0 

Let qn>p and assume vw = 0. From (qn,qn_^) = 1 and (22), we have qn\gi9 which is impos-
sible because 0<\gl\<p<qn. Hence, for sufficiently large n, we know that vn ^ 0 , and we 
distinguish two subcases according as vn > 0 or vn < 0. We may repeat all the arguments from 
Case 1 [with the exception of the infinity of the rationals f in (34) or (38)]; we leave the details to 
the reader. We only state the definitions of the fractions -^ corresponding to the subcases. 

Case 2.1. vn > 0 for infinitely many neN3c:N 

Unj=Un(gl+JP>gl\ 
Vn,J = Vn(gl + JP, gll f ° r . / ^ 0. 

Case 2.2. vn < 0 for infinitely many HGN4C:N 

Un,J = Un(g2>gl-JP)> 
VnJ = Vnigl, g\ ~ JP\ foU * 0. 

Case 3. gt < 0, g2 > 0 

Case 3.1. vn > 0 for infinitely many n GN5 C TV 

v»,/ = v»(&> a + J P X f o i 7 * o. 
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Case 3,2* vn < 0 for infinitely many n GN6 e N 

UnJ = Un(g2-JP,gl), 

vnj=vn(g2-JP,gi),' forj>0. 

It remains to show that in each of these four subcases there are infinitely many fractions f 
satisfying (34) or (38). We treat only subcase 2.1; there are no essential differences in the other 
cases. In this last part of the proof of Theorem 1, we also complete some details in Uchiyama's 
paper [10]. 

It suffices to show that the sequence of integers vn = qng2 + qn^gi is not bounded if n takes 
all values from N3. We assume the contrary, and from the assumptions of Case 2 we conclude 
that there is some positive real number C satisfying 

0«ln-i\gi\-<ln\g2\ZC (neN3) or 0< 

[note (7) and vn > 0]. Hence: 

ML 
g2 

9n c 

The sequence • 9n 
\^n-lJneN. 

Vn-1 l& ltfn-1 

tends to the positive rational number 

>0 forw GN3,n->co 

gi 
gi 

(39) 

Let us first assume that the sequence % a 1 ? a2,... is unbounded; we recall from the definition of N 
that 

neN3cN=>an>Zy[p + l. (40) 

From the recurrence relation for qn, we conclude 

and by qn_2 < qn_x it follows for all sufficiently large integers n eN3 that 

(41) 

a„ = 
<ln 

.011-1. 

a <39> 

9n-l 
a 
^2 

(7) 

+ 1 < | & | + 1 < 2 ^ + 1 

which contradicts (40). 
Now we treat the more interesting case where the sequence a0, al9 a2,... is bounded. In what 

follows, we assume that n e N3 is sufficiently large. We denote the continued fraction expansion 
of | ~ | for some integer r and cr > 1 by* 

2 I 

It is a well-known fact from the elementary theory of continued fractions that 

= l®n',an-h-->a2,all (42) 

* In the case r = 0, cQ = 1, gx = - g 2 , it is clear that |vw \=\gx\(anqn_x +qn_2 -qn_x) >\gx \qn_2 tends to infinity. 
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On the other hand we have, from (39) for all sufficiently large integers n GN3, 

S^ = [c0;cly...,cr+S(n)l 
qn-i 

where 
0*5{n) -> 0 for n eN3, n-»oo. 

For 0 < S(ri) < 1 we have, from (42), 

(43) 

an-r=Cr, 

"Vi-r-1 
1 

S(n)\ (44) 

-1 / 2 < S(ri) < 0 implies 

a. 

a„_r = cr-l, 

1 
n-r-l 

•*n-r~2 

l + S(n) 

1 

= 1, 

!+<?(/)) •1 L Sin) 
(45) 

By (43), (44), and (45), a certain unbounded subsequence of a0,ax,a2,... is given, a contradiction 
to our assumption. 

The proof of Theorem 1 is now complete. 

4. CONCLUDING REMARKS 

The application of Lemma 2 in the proof of Theorem 1 will lead to some nice results by the 
way, if we put s-2 instead of s = p in (17). The following result is, in some sense, a supplement 
of Scott's and Robinson's theorems (see [9] and [8]). 

Theorem 2: For any irrational number £, there are infinitely many pairs of integers ux and vl>0, 
respectively ^ a nd v2 > 0> satisfying 

0) 

(H) 

v, VSvf and Mj = vl mod 2; 

" 2 

V5v2
2 and v2 = 0 mod 2, respectively. 

To prove (i), put a = 1 and i = 1 in (17); for (ii), let a = 1 and 6 = 0. It is obvious that we do 
not need Lemma 1. 

Now let us consider such a real number £ where a„ = 0 mod 2 for all n > 0 in the continued 
fraction expansion of £. From the recurrence relations, it can easily be seen that this implies 

pn+qn^lmo&2 {n>\). 
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For instance £ = 1 + V2 = [2; 2] belongs to these numbers. We derive the following corollary from 
Theorem 2(i). 

Corollary 1: There is an uncountable set of real numbers such that, for every number £ from this 
set, there are infinitely many Dirichlet-approximants f satisfying 

I V 

such that no fraction f belongs to j — : n > l]. 

To appreciate this corollary, we refer to Theorem 184 in [2], which states that 

Ht:-4if 
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