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1. INTRODUCTION 

Background 

MinMax numbers {M„}, and their subsidiary numbers {Nn}, for Pell numbers {Pn} were 
studied in some detail in [2]. They are those positive integers for which the minimal and maximal 
representations by Pell numbers coincide. 

Analogous results for the MinMax numbers {&„}, and their subsidiary numbers {2ft„}, for the 
modified Pell numbers {qn} have been obtained in [3]. (qn -\Qn, where Qn are the Pell-Lucas 
numbers [4].) 

Our motivation in this paper is to extend these MinMax number systems to their algebraic 
polynomial counterparts {M„(x)}, {Nn(x)}, {2,„(x)}, an(^ O^wOO}* anc* t 0 analyze their proper-
ties. When x = 1, the MinMax numbers {Mn(l)} = {Mn}, etc., are naturally specified. 

Pell polynomials {Pn(x)}, n > 0, are defined recursively [4] by 
Pn+2(x) = 2xP„+l(x) + Pn(x), P0(x) = 0, i>(x) = 1, (1.1) 

while the modified Pell polynomials {q„(x)}, n > 0, are similarly defined by 

?«+2W = 23f?H+lW + ?n(4 % (X) = 1, <l\ (X) = X- (! -2) 
A useful connective between (1.1) and (1.2) is gn(x) = xPn{x) + Pn„x{x). 

Detailed information on the properties of, and interrelations between, {Pn(x)} and {Q„(x) -
2qn{x)} appear in [4] and [5], including lists of some of these polynomials. To conserve space, 
we assume that these data are accessible to the reader. 

Just as there is the connection [2] between Mn and Pn, so there is the polynomial nexus 

Mn(x) = fjPi(x). (1.3) 
/ = 1 

The Sequence {q*(x)} 

Allied to {qn{x)} is the polynomial sequence {q*(x)} defined by the recurrence relation 

q*n+2(x) - 2xq*n+l + q*n(x\ q&x) = 1, qftx) = 1. (1.4) 

Whereas q{(x) = x, here q*(x) - 1. Consult Table 1. 
Putting x - 1 in q*(x), we find that q*=qn. Expressed otherwise, both {<?*(x)} and {qn(x)} 

are polynomial generalizations of the modified Pell numbers {qn}. 
By standard methods, we derive the generating function 

[ l - ( l - 2 x ) j ; ] [ l - ( 2 x y + / ) r 1 - X ^ y 0-5) 
7=0 

1996] 7 



MINMAX POLYNOMIALS 

and the Binet form 

<iW=o-*>«--o-««»- (,6) 
a- p 

where [2] 
\a = x + A r - — 
i where A = Vx2 -+1 (1.7) 
[J3 = x-A 

leading to 
q;(x) = P„(x) + P„_1(x). (1.8) 

For convenience, in (1.7) we employ the abbreviated symbolism a = a(x)7 J3 = /?(x), A = A(x). 
Using (1.7) and (1.8) in conjunction with the Binet form and Simson formula for {Pn(x)}, we 

have eventually the Simson analogue for {q*(x)}: 

^+iC-(^w)2=(-ir^. o-9) 

TABLE 1 

9o(*) = 1 %(x) = 1 
ql(x) = 1 qx(x) = x 
ql(x) = 2x + l #2(x) = 2x24-l 
^(x) = 4x2 + 2x +1 <73(x) = 4x3 4-3x 
$;(x) = 8x3 + 4x2 + 4x +1 q4(x) = 8x4 4- 8x2 4-1 
ql(x) = 16x4 + 8x3 4-12x2 4- 4x 4-1 #5(x) = 16x5 + 20x3 + 5x 
^(x) = 32x5 + 16x4 + 32x3 + 12x2+6x + l 
q*(x) = 64x6 + 32x5 + 80x4 + 32x3 + 24x2 + 6x +1 
%*(x) = 128x7 + 64x6 + 192x5 +80x4 +80x3 + 24x2 + 8x + l 

2. MINMAX POLYNOMIALS {Mn(x)} 

Define the polynomials {Mn(x)}, n > 0, by the recurrence relation 
M„+2(x) = 2xM„+1(x) + M„(x) + l, M0(x) = 0, M1(x) = l. (2.1) 

Polynomials {Mw(x)} may be called theMinMaxpolynomials for the Pell numbers. 
Letting x = 1 gives us the MinMax numbers {Mn} for the Pell numbers [2]. 
Table 2 displays the first few polynomials of {Mn(x)}. 
That (1.3) and (2.1) are in conformity may be deduced by exploiting the defining recurrence 

relation (1.1) for {Pn{x)} and recalling (1.1) that Px{x) = 1. 
It is a straightforward procedure by a standard technique to obtain the generating function for 

{M„(x)}: 
co 

[1 - (2x 4- \)y + (2x - 1 ) / + / ]" ' = X Hi*)?-1 • (2-2) 
/=1 
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From (1.3) and [4, (2.15)], we may express Mn(x) explicitly by means of the double summa-
tion 

;=1 k=Q 
V 

1 \2xy-2k~l 

Illustration of (2.3): 
Mn(x) = 1024x10 + 512x9 +2560x8 + 1152x7 +2304x6 

+ 896x5 + 896x4 + 280x3 +140x2 + 3 Ox + 6 

(on calculation), which is readily verifiable from Table 2 and (2.1). 

TABLE 2. The MinMax Polynomials M„(x) (n = 0,1, 2,..., 10) 
M0(x 
Mx(x 
M2(x 
M3(x 
M4(x 
M5(x 
M6(x 
M7(x 
Ms(x 
M9(x 

Ml0(x 

(2.3) 

= 0 
= 1 
= 2x + l 
= 4x2+2x + 2 
= 8x3 + 4x2+6x + 2 
= 16x4+8x3 + 16x2 + 6x + 3 
= 32x5 + 16x4 + 40x3 + 16x2 + 12x + 3 
= 64x6 + 32x5 + 96x4 +40x3 + 40x2 + 12x + 4 
= 128x7 + 64x6 + 224x5 + 96x4 + 120x3 + 40x2 + 20x + 4 
= 256x8 + 128x7 +512x6 + 224x5 + 336x4 + 120x3 +80x2 +20x + 5 
= 512x9+256x8 + 1152x7 + 512x6 + 896x5 + 336x4 + 280x3+80x2+30x + 5 

Combining (1.3) and [4, (2.11)], we derive 

P„+1(x) + P „ ( x ) - l _ C i ( * ) - l M„(X): 

yielding the Binet form 

Mn(x): 

2x 2x 

2xA 
A characteristic feature of {Mn(x)} is the Simson formula 

Other derivations of interest in the MinMax theory include 
M„(x)-M„_l(x) = P„(x), 

M„(x) - M„_2(x) = q*„(x) by (2.7), (1.8), 

Mn(x) + M^) = PUX)Hl-x
X)P"iX)-1 by(2.4),(l.l) 

(=a(x) by (4.3)), 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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M„(x) + Mn_2(x) = ( 1 + X ) J P " ( X ) +
X

( 1 X)P"~l l by (2.7), (2.9) 

(=K-i X by (3.1)). 
(2.10) 

3. THE SUBSIDIARY MINMAX POLYNOMIALS {Nn(x)} 

Next, we introduce a sequence of polynomials {N„(x)} associated with {Mn(x)} which we 
define thus (»>1): 

N„(x) = M„+1(x) + Mn_l(x), N0(x) = l. (3.1) 

These polynomials {Nn(x)} may be called the subsidiary polynomials of {Mn(x)} for the Pell 
numbers. Table 3 lists the first few of them. See also (2.10). 

TABLE 3. The Subsidiary MinMax Polynomials Nn(x) (« = 0,1, 2, . . . , 9) 
N0(x) = l 
Nx(x) = 2x + l 
N2(x) = 4x2+2x + 3 
#3(x) = 8x3 + 4x2+8x + 3 
N4(x) = 16x4 4-8x3 4-20x2 4-8x4-5 
#5(x) - 32x5 + 16x4 4-48x3 4-20x2 + 18x4-5 
N6(x) = 64x6 +32x5 4-112x4 + 48x3 + 56x2 4- 18x4-7 
N7(x) = 128x7 4- 64x6 4- 256x5 4-112x4 4- 160x3 4- 56x2 4- 32x 4- 7 
Ns(x) = 256x8 + 128x7 +576x6 + 256x5 -f 432x4 + 160x3 + 120x2 4-32x4-9 
N9(x) = 512x9 + 256x8 + 1280x7 4- 576x6 4-1120x5 4- 432x4 4- 400x3 4- 120x2 4- 50x 4- 9 

When x = 1, the numerical specializations are the subsidiary numbers {Nn} investigated in 
[2]. 

For the criterion N0(x) - 1 to prevail in (3.1), we necessarily have M_x(x) = 0, obtainable by 
extension of (2.1) to the value of n - - 1 . 

Immediately from (3.1) with (2.1) flows the consequence 
N„+2(x) = 2xN„l(x) + N„(x) + 2 («>0), (3.2) 

which is the recurrence relation for {/V„(x)}. 
The generating function for {Nn(x)} is, from (2.2) and (3.1), 

(1 +/)[1 - (2x + \)y + (2x - \)y2 +/]"1 = I ^ W " 1 -

Explicitly, from (2.3) and (3.1), 
/=i 

n-\ 

#„(*) = 2£ 
7 = 1 

(\n=l\ 

. £ = 0 V 

i-2k~\ 

) i=n 
A + \ 

V 

(2x ) ' - 2 ^ - 1 

(3.3) 

(3 4) 
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in which A stands for the second summation in the double summation, as represented symboli-
cally. 

Perseverance in calculation with (3.5) leads us to, for instance, 

#10(x) = 1024x10 + 512x9+2816x8 + 1280x7 + 2816x6 + 1120x5 

+123 2x4 + 400x3 + 220x2 + 50x +11, 

which may be readily checked from Table 3 and (3.2), or directly from (3.1) in conjunction with 
Table 2. Recall the expression for Mu(x) in the illustration of (2.3). 

Equations (2.4) and (3.1) produce 

Nn(x) = (l + x)P„+1(x) + (l-x)Pn(x)-l 

= QB±M+QMzl 
2x 

(3.5) 

(where Q„{x) = P„+l(x) + P^ix) [4, (2.1)]), leading to the Binet form, see (1.7), 

Nn(x)=a»(l + a)+ni + P)-2 ( 3 6 ) 

Suitable algebraic manipulation, involving (3.5) and [4], reveals in due course the Simson 
formula for {Nn(x)}9 

^•W^-W-<W^" M -^ ' ( f 2 A V i r ' - (3-7) 
Furthermore, (3.5) with (1.2), in which Q„(x) = 2qn(x), reveals that 

#„(*)-#„_,(*) = G,(*)> (3.8) 
whence 

K(x) - N„_2(x) = Qn+l(x) + Qn(x). (3.9) 
Moreover, 

N„(x) + N^Qc) = g"+ l ( x ) + ( 1"X ) Q"( X )"2 by (3.5) (3.10) 

and 

Nn(x) + N„_2(x) = (1 + x)Qn(x) + (l-x)Q„_l(x)-2 b y ( 3 8 X ( 3 1 0 ) ( 3 1 1 ) 

Pemsing the polynomial properties in Sections 2 and 3, one is struck by the harmonious 
balance of those results for {Mn(x}} relating to {Pn(x)} and similar ones for {Nn(x)} relating to 
{Q„(x)} ("sweet harmony of contrasts"), e.g., compare (2.10) and (3.11). 

This mathematical symbiosis does not really transfer to the polynomials to be discussed in 
Sections 4 and 5, though. 

Notice, however, the same direct nexus between results for {Mn{x)} in relation to P„(x) and 
those for {2t„(x)} in relation to {q*}, e.g., contrast (2.10) and (4.10). 

Comparison, e.g., of (3.11) and (4.10) shows the balance between results for {Nn(x)} in rela-
tion to {Qn(x}} and those for {2,„(x)} in relation to {g*(x)}, thus completing the third "side" of a 
"triangle" of relationships, i.e., (2.10), (3.11), and (4.10). 
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Second-order expressions (excepting the Simson analogues) are generally less manageable. 
Difference of squares such as M%(x)-M%_l(x) = (Mn(x) + Mn_l(x))(Mn(x)-Mn_1(x)), etc., are 
readily derivable from (2.7) and (2.9), but direct calculations and simplifications would otherwise 
be onerous. Coming to the sum of squares, we discover that 

M2
n{x) + Mll(x) = -^ ^aw+^w-aw-z^wK1 

and 

N2„(x)-NU*) = ^2 l^Qiln)(*) + W * ) - GtaOO - 2ifo(*) + 4 

where, in the latter equation, we have used the symbolism, e.g., 
Pin)(x) = P»+l(x) + 2Pn(x) + Pn_x(x). 

(2.11) 

-2P„(x) (3.12) 

(3.13) 

4. THE MINMAX POLYNOMIALS {&„(*)} 

Instead of the MinMax polynomials for the Pell numbers, we now consider the analogous 
polynomials for the modified Pell numbers. 

Define the MinMax polynomials {2,„(x)},«> 0, for the modified Pell numbers {qn}—see 
(1.2)—by the recurrence relation 

ln+2(x) = 2x2Ln+l(x) + £„(x) + 2, &„(*) = 0, a,(x) = l. (4.1) 

Table 4 records the simplest of these polynomials. 

TABLE 4. The MinMax Polynomials SLn(x) (#i = 0,1, 2,. . . , 7) 

a0(*) = o 
2Lx(x) = 1 
&2(x) = 2x + 2 
a3(x) = 4x2+4x + 3 
&4(x) = 8x3+8x2+8x + 4 
a5(x) = 16x4 + 16x3 +20x2 + 12x + 5 
a6(x) = 32x5 + 32x4+48x3+32x2+18x + 6 
a7(x) = 64x6 + 64x5 + 112x4 +80x3 + 56x2 +24x + 7 

Letting x = 1, we obtain the MinMax numbers {&„} for {qn} given in [3], namely, {&„(*)} = 
{1,4,11,28,69,168,407,...}. 

Without difficulty, we establish the generating function 

(1 + y)[l- (2x + \)y + (2x - 1 ) / + / ] " l = £ % (*)/'~l • 

Immediately, we have from (4.2) with (2.2) that [cf. (2.9)] 

(4.2) 
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2,„(x) = Mn(x) + Mn_1(x). 

With (2.5) substituted in (4.3), there results the Binet form for &„(x), see (1.7), 

an-\\ + a)2-pn-\\ + pf-2h 
\(X): 

2xA 
which gives, with (1.6), 

n W " 2x 
Compare this with the form for N„(x) in (3.5). 

Using (4.5) along with (1.4) and (1.8), we discover the Simson formula 

a^cx^oo -ate)=(-lr'-isJafiizM. 
It readily follows from (4.5) and (1.4) that 

2L„(x)-2Ln_l(x) = f„(x), 
whence 

Also, 
a„w-a„_2(x) = ^+1(x)+^(x). 

&„(*) + a„_!(x) = ^ { ^ + 1 (*) + (1 - x)q*(x) - 2} by (4.5), (1.4), 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

giving 

&„(*) + a„_2(x) = ̂ {(1 + x)q*„(x) + (1 - x)qU - 2} by (4.7) 

(=&„_,(*) by (5.1)). 

An important result is 

a„(x) = !#(*) . 

(4.10) 

(4.11) 
i= i 

Proof of (4.11) 

Etf(*) = \\{\-P)ta<-(\-a)±p\ by(1.6) 
/=i A I /=i 1=1 J 

1 J/, ax 1-a" /i ^ l->g" 

(1 + a) 0+/?) 1 - j g " 

= (1 + g)(l - /?)(! - a") - (1 - q)(l + /?)(! - n 
A(l-«)(!-/?) 
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_:(2 + A ) ( l - « " ) - ( 2 - A ) ( l - / r ) 
-2JCA yK ' J 

= 2 + A-2 + A-[an(2 + a + g-1)-/3"(2+J3+/r1)] 
-2xA 

= a"-\\ + af - p"-\\+pf - 2 A 
2JCA 

= a„(x) by (4.4). 
So, 

a„(*) = £#(*) *!?/(*)• 
i = l / = l 

5. THE SUBSIDIARY MINMAX POLYNOMIALS {<3ln(x)} 

We now introduce a sequence of polynomials {^fln(x)} which bears the same relationship to 
{&„(*)} for {qn(x)} as {Nn(x)} bears to {M„(x)} forP„(x). 

Define the subsidiary MinMaxpolynomials {2ft„(x)} of {2,„(x)} for {qn(x)} by 

aII(x) = aJtrt(x)+al_1(x), »„(*) = o, (5.i) 
whence, by (4.1), 

Sft„+2(x) = 2xSft„+1(x) + &„(*) + 4. (5.2) 

For the definition to apply for « > 0, we must have SL_x(x) = - 1 . Some of the most elemen-
tary of these polynomials are displayed in Table 5. 

TABLE 5. The Subsidiary MinMax Polynomials &„(*) (n = 0,1, 2,..., 5) 
<3l0(x) = 0 
2ft1(x) = 2x + 2 
<3l2(x) = 4x2+4x + 4 
<3l3(x) = Sx3 + &x2 + l0x + 6 
&4(x) = 16x4 + 16x3 + 24x2 +16* + 8 
a5(x) = 32x5 + 32x4 +56x3 + 40x2 + 26x +10 

Puttingx = 1 gives <3ln{\) = 4M„(1), i.e., <3l„ = 4M„ as in [3]. 
It is a relatively effortless exercise to determine the generating function 

2[(l + x) + ( l -x) j ] [ l - (2x + l ) j + ( 2 x - l ) / + / r 1 = £ a , . ( x ) y - 1 (5.3) 
7 = 1 

leading to 
» „(*) = 2[(1 + x)M„(x) + (1 - x)M„_1(x)]? (5.4) 

where we have invoked (2.2). 
After a little simplification involving (2.1) in (5.4), this is reducible to [cf. (3.10)] 

<3ln(x) = N„(x) + N„_l(x) (5.5) 
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which by (3.6) ensures the Binet form, see (1.7), 

" W " 2x 
Equations (5.1) and (4.1) together produce 

2x 
Q„+l(x) + 2Q„(x) + Qn_l(x)~4 

2x 

<3t„(x) = -

by (5.5) and (3.5). 

Next, 
^ W - a ^ ^ ^ W + W * ) by(5.1), (4.7) 

= a ( * ) + GU(*) by (1.8), [4,(2.1)] 
= 2(?„(x) + q„_i(x)) since 0„(x) = 2q„(x) 
= Nn(x)-N„.2(x) by (5.5), 

leading to expressions for l3i„(x)-<3l„_2(x). 
Moreover, 

a"-2(l + af + p"-\\ + flf -8 
2x 

whence 
&„(*) +&,-i(*) = - by(5.6) 

(5.6) 

(5.7) 

(5.8) 

&„(*) + &„ t(x) =, g"-^x) + 36"-'<*> + 3Q»W + 0,+i(*) ~ 8 

on using the Binet form [4, (3.31)] for {Q„(x)}. An expression for <3ln(x) + '3tn_2(x) 
joining (5.8) to (5.10), n -> n -1 in the latter equation. 

(5.9) 

(5.10) 

follows by 

6. MISCELLANEOUS REMARKS 

Determinantal Values 
Computation gives us the pleasing and somewhat unexpected result, 

\K(X) M,+i(*) K+i(x) 
Wn+l(x) Mn+2(x) Mfl+3(x)| = (-l)", 

M1+2OO H+3W K+A(X) 

(6.1) 

which is clearly independent of x. Establishing (6.1) requires (2.1) and the Simson formula for 
P„(x) [4, (3.30)], together with some routine determinantal manipulations. 

Similarly, the appropriate algebraic maneuvering leads to 

!#,,(*) ^rflW ^2(X) 
\Nn+l(x) Nn+2(x) Nn+3(x) 
\Nn+2(x) Nn+3(x) N„+4(x) 

which is not independent of x [cf. (6.1)]. 

» + l A 2 = 8(-l)"+1A (6.2) 

1996] 15 



MINMAX POLYNOMIALS 

An investigation into a corresponding determinantal value for {2,„(x)} led to some unlovely 
algebra which was abandoned. However, to compensate for this disappointment, our general 
endeavors are rewarded with a result such as (6.1). 

Diagonal Functions 

When analyzing the structure of a set of polynomials, it is sometimes instructive to consider 
the rising (and descending) diagonal functions which, in the inward eye, are inherent in the system 
along upward (downward) slanting "lines." See, for instance, [1]. 

While such new polynomial sets can create some interest (e.g., the existence of certain dif-
ferential equations—partial or ordinary), preliminary efforts with polynomials exposed in this 
paper do not seem particularly promising. But for "Time's winged chariot hurrying near," one 
could be encouraged to persevere with this challenge. 

Other MinMax Systems 

MinMax numbers for the Fibonacci numbers are exhibited in [2]. From these one may con-
struct corresponding Fibonacci polynomials. Likewise, for the Lucas numbers and their polyno-
mials. Experience suggests that an interconnected theory for these polynomials and for Lucas 
polynomials analogous to that established in the preceding treatment might be possible. 

One does not have to be psychic to expect that similar developments might be worthwhile 
involving polynomials abstracted from other number sequences, e.g., Jacobsthal numbers. 

The Tables 
Of passing aesthetic appreciation is the varying pattern of constants in the polynomials listed 

in Tables 1-5, e.g., in Table 3 the sequence {1,1, 3, 3, 5, 5, 7, 7, 9, 9,...} for {N„(x)}. 

7. CONCLUSION 

It should be noted that numerical, i.e., nonpolynomial, recurrences specialized from (2.1), 
(3.2), (4.1), and (5.2)—along with other recurrences with a fixed additive constant—have 
recently been investigated in [2]. 

One wonders, en passant, what opportunities for discovery might exist from the innovative 
invention of polynomial sequences of the kind defined by p„(x) = xqn(x) + qn_l(x), or perhaps 
p*(x) = xq*(x) + q*_l(x). 

There are further possible variations on our theme. Among these is the extension of our 
polynomials to negatively-subscripted symbols, e.g., {M_n(x)}, but our ambitions are tempered by 
the sobering reminder of Longfellow that "Art is long and Time is fleeting." 
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Fibonacci Association and Technische Universitat Graz. 
Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and their 
generalizations are welcome. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission 
of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to: 

PROFESSOR GERALD E. BERGUM 
THE FIBONA CCI QUARTERLY 
COMPUTER SCIENCE DEPARTMENT 
BOX 2201 
SOUTH DAKOTA STATE UNIVERSITY 
BROOKINGS, SD 57007-1596 

PROFESSOR F. T. HOWARD 
DEPARTMENT OF MATH. & COMP. SCI. 
BOX 7388 REYNOLDA STATION 
WAKE FOREST UNIVERSITY 
WINSTON-SALEM, NC 27109 
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