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1. INTRODUCTION 

Two sequences of numbers concern us, namely, the Jacohsthal sequence {Jn} (see [4]) de-
fined by 

( i i ) Jn+2 = Jn+i + 2J„, J0 = 0, J, = 1, n > 0, 

and the Jacobsthal-Lucas sequence {jn} defined by 

Jn+2 = Jn+1 + Vn, Jo = 2 , ft = 1, Tl > 0. (1.2) 

Applications of these two sequences to curves are given in [4]. Sequence (1.1) appears in [11], 
but (1.2) does not. 

From (1.1) and (1.2) we thus have the following tabulation for the Jacohsthal numbers Jn 

and the Jacohsthal-Lucas numbers j n : 

n 
Jn 
Jn 

0 1 2 3 4 5 6 7 8 9 10 — 
0 1 1 3 5 11 21 43 85 171 341 ••• 
2 1 5 7 17 31 65 127 257 511 1025 ••• 

(1.3) 

When required, we can extend these sequences through negative values of n by means of the 
recurrences (1.1) and (1.2). Observe that all the Jn andy„ (except j0) are odd, by virtue of the 
definitions. 

Recurrences (1.1) and (1.2) involve the characteristic equation 

with roots 

so that 

x 2 - x - 2 = 0 

a = 2, £ = -1 

a + fi = l, ap=-2, a-j3 = 3 

Wherever it is sensible to do so, we will replace a, P by 2, - 1 , respectively. 
Explicit closed form expressions for Jn andy„ are (n > 1) 

r=0 ^ J 

(see [3]) and 

Jn = "L n n-r 2r. 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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Induction on n provides the required proofs. 
In the theory of minimal and maximal representations of nonnegative integers by elements of 

a sequence {an} (e.g., Fibonacci or Pell numbers; see [2], [7], [8]), we discover the importance of 
a new sequence whose members are those integers that can be represented both minimally and 
maximally by a sum of elements of {an} for which the coefficients are all unity. 

It is the object of this article to investigate the corresponding new sequences associated with 
{Jn} a n d { j j . 

But first we establish a few basic properties of the sequences (1.1) and (1.2), some of which 
will find subsequent application as our theme develops. 

2, BASIC PROPERTIES OF THE JACOBSTHAL NUMBERS 

Initially, these properties enter our mathematical Noah's Ark in pairs, as did (1.7) and (1.8). 
Standard techniques may be used to generate them and their numerous progeny, the most hand-
some of which is (2.9). 
Generating functions 

i=l 

^J^^il-x-lx2)-1 (cf. [3]), (2.1) 
1 

00 

Xi*'-1 = (l+4x)(l-x-2x2y\ (2.2) 
1=1 

Binet forms 

Simson formulas 

an - Bn 1 
Jn = ̂ -f- = ^(2"-{-m, (2-3) 

jn = a"+pn = 2" + {-\y. (2.4) 

Jn+lJ^-J2
n=(~iy2"-\ (2.5) 

UJn-x-il = 9{-\)"-l2"-' = -9(J„+1J„_1 - ^ ) . (2.6) 

Summation formulas 
n 

/=2 

n 

;=1 

_ Jn+2 ^ 
2 

_ Jn+2 ~ * 
2 ' 

(2.7) 

(2.8) 

The significance of the lower bound for / in the useful formulas (2.7) and (2.8) will become 
apparent later in Sections 4 and 5. 

Interrelationships 
]Jn = Jim (2-9) 

./„ = 4 * i + 2 ^ i , (2.10) 
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9 ^ = 7„+i+2y„_1, (2.11) 

J?„+i + 7n = 3(J„+1 + J„) = 3.2", (2.12) 

Ui-Jn = 3(Jn+1 - J„) + 4(-l)"+1 = 2" +2(-l)"+1, (2.13) 

jn+i ~ Vn = 3(2 y„ - J„+l) = 3(-l)"+1. (2.14) 

yn+i + Jn-i = 3(2^„+1 + J„_,) + 6(-l)"+1, (2.15) 

A! r +7„-r - 3(7„+r + ./n_r)+4(-l)"-'- = 2"-'(22' +1) + 2(- l )" - ; (2.16) 

7„+r - Jn-r = 3(^„+r - Jn-r) = ^ V ~ 1), (2.17) 

j„ = 3Jn+2(-l)" [cf. (2.12)], (2.18) 

3J„+j„=2"+\ (2.19) 

J*+J» = Un+i, (2-20) 

h m | ^ | = l i m | ^ ± 
\ 

n+l = 2, (2.21) 

urn I ^ = 3, (2.22) 

/H-2^.2 - il = -%Jn+2J«-2 - Jl) = 9(-l)"2""2, (2.23) 

JJn + JJm = lJm*« [™ = » ~* (2.9)], (2.24) 

JJn + 9JmJn = Vm+n, (2-25) 

j2„+9J2„=2j2n [m = win (2.25)], (2.26) 

•/m7„--/M7m = (-l)"2"+1Jm_„, (2.27) 

JJn-*JJn = <rV"Z*lUn, (2-28) 

7» - 9 J « = (-0"2"+2 [w = » in (2.28)]. (2.29) 
Economies of space (and cost!) preclude the addition of farther properties which may be of 

lesser interest and value. Observe, however, that (2.9) is an important feature of {Jn} and {j„}, 
being analogous to FnLn = F2n and P„Q„ = P2„ for Fibonacci and Lucas numbers, and Pell and 
Pell-Lucas numbers, respectively. One might remark, in passing that the infinite limit of our 
\Q„I P„ [cf. (2.22)] is mentioned in [12] in dealing with irrationality. 

Associated Sequences 
Invoking [6], we define the £* associated sequences {Jjk)} and {jj,k)} of {Jn} and {jn} to 

be, respectively, given by (k > 1) 

4 t ) = ̂ 7 1 ) + 24-71) (2-30) 
and 

Ak)=j&»+2j&\ (2.31) 
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where J<0) = Jn, jn
0) = j n . Accordingly, 

J?=jn by (2.10) 
and 

j® = 9Jn by (2.11) 

are the generic members of'the first associated sequences {Jjp} and {jjp}. 
Deducing the following neat results is an easy matter on appeal to (2.10) and (2.11): 

j{2m) _ <j2m r 

r(2m+l) __ q2m • 
Jn ~ J Jn-> 

j{2m) _ ^2m • 
Jn J Jn-> 

<2m-l) _ o2m r 
Jn ~ J Jn • 

j(2m) = j(2m-l)} 

j(2m) _ j(2m+T) | " 

Expressed succinctly, 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Analogous results to (2.34)-(2.37) for Fibonacci and Lucas numbers are stated In [6]. Pairs 
of results like these can be incorporated Into a more general system for polynomials that extends 
to negative values of m and n. Material on this research has been submitted for publication. 

3. JACOBSTHAL REPRESENTATION SEQUENCES 

Later, in Section 4, the significance of the summations (2.7) and (2.8) In representation 
theory will be manifested. 

Irrespective of this representation application, however, each of the two sequences (2.7) and 
(2.8)—now (3.1) and (3.2)—merits some discussion per se. Neither sequence appears in [11]. 

Write, for convenience, 

3 » = Z ^ Jo=0, 3i = l 
i=2 

and 

Jn = Hj„ Jo = 0-

(3.1) 

(3.2) 
1=1 

Consequently, we have the following tabulation for {2TJ and {]j (in both of which the ele-
ments are alternatively odd and even): 

(3.3) 
n 

l s r „ 
h 

0 1 2 3 4 5 6 7 8 9 10 -
0 1 4 9 20 41 84 169 340 681 1364 ••• 
0 1 6 13 30 61 126 253 510 1021 2046 ••• 
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Simple detective work readily enables us to spot the recurrences (3.4) and (3.5) in (3.3), which 
we expect to be modeled on (1.1) and (1.2). As with Jn andy„ in Section 2, we arrange the basic 
features of 2T„ and j n in pairs. 

Recurrence relations 

^+2 = ^+1 + 2 ^ + 3, (3.4) 

7*+2=iw+i+2Jw + 5. (3.5) 

Generating functions 

Binetforms 

Simson formulas 

Summations 

Interrelationships 

00 

£ S .̂JC'-1 = (1 + 2JC)(1 - 2x - x2 + 2x3)~\ (3.6) 
7 = 1 

00 

^ i * ' " 1 = (l + 4x)(l-2x-x2 + 2x3y\ (3.7) 
;=1 

or _- /„+3-3_2"+ 3 + ( - l )"-9 
" " 2 " 6 

(3.8) 

l=J^l=r^trr^ (39) 

9^i \-i - 9"« = 2"{(-ir1 -1} + (-1)" ( 3 lQ) 

= -1 when n is odd, 

i n + j„-i- i„2=2- i{9(-ir i -5}+5(-ir ( 3 n ) 

= 2"+1-5when»isodd. 

^ ^ = g " B + 2 - l - 3 ( » + l); ( 3 1 2 ) 

gj.^-i-sfr+O. (313) 

^+i+22T„_1 = j„ + 1 -2 , (3.14) 

J„+1 + 2j„_1 = 3(3?Tn_1 + 2), (3.15) 

2T2„=4J2n=4J„7„ by (2.9), (3.16) 

^2„+i=4^„+ 1-3, (3.17) 

J2n = V2n-4 = 6J2„ by(2.18), (3.18) 

72n+i=272„+1-l, (3.19) 
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Jn+1 + ^n ~ 
\Jn+l n even, 
Jn+x-1 nodd. 

jn+l + jn = 32n+l-5, 

J n ~ Jn-1 ~ ^n+h 

Jn Jn-l ~ Jn' 

or _ or _ o« un u n- 2 ~ ^ > 

1-1 - 1. 2"~l 
Jn Jn-2 ~ J ** •> 

Jn+r ~ Jn-r = X W«+r ~~ ^ n-r) ~ " \Yn+r ~ ° n-r) ~ ^ \Jn+r ~~Jn-r)> 

i+2i-2-i2-2"-2.9{(-ir-5}? 

Detenminantal evaluations 

and 

l i m l ^ M - l i m Jn+l 

V Jn 
•2, 

lim. ^ JL I -2 
' 2 ' 

[0 n even, 
3 9 - - 2 * = {l -dd, 
32T2„ = 2J2n by (3.31) 

y„ - l nodd, 
T - / = 

Jn-2 n even, 

i » n ~ ^ VAH-1 '> 

^ 7 7 J w ~~ 

f J„ - 1 w odd, 

Jn~ ^ n ~ ^n+1' 

^n ^n+l J n+2 
^n+l Jn+2 ^n+3 
J n+2 ^n+3 ^ n+4 

n even, 

• 1 . 

n+l^n+2 = 3(-l)n+12 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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j 

Jn Jn+1 Jn+2 
/V /J /V. 

Jn+1 Jn+2 Jn+3 
*i *i -̂  

Jn+2 Jn+3 Jn+4 

\«+lo«+l . 15 = 45(-l)"+12"+1 = —A^ by (3.37), (3.38) 

for which are required inter alia 

v„v„+3-?r„+l°r„+2 =2"+ 1{(- iy-3} (3.39) 
and 

JJn+3-LJn+2 =2".3{3(-l)»-5}. (3.40) 
With similar notation, it follows obviously from (1.1) and (1.2) that A7 = Â , = 0. 
Our selection of properties of {2T„} and {)n} in (3.4)-(3.40) does not exhaust the many 

pleasant features of these research-friendly sequences. However, they do give a "flavor" to {2T„} 
and {jn}. It might be noted that, on calculation, 

[Because {jn} is not a Lucas-type sequence as {jn} is, i.e., ]0 * 2, the "classical" relation of the 
type (2.9) cannot hold. Indeed, the left-hand side of (3.41) is rather unlovely.] Divisibility prop-
erties of (3.16) and (3.18) might also be observed. 

Associated Sequences 
With notation for associated sequences of {2T„} and {]n} similar to that for {</„} and {jn} in 

(2.30)-(2.33), we derive 
^ = ^ 1 - 2 by (3.14) (3.42) 

and 
^ = 3 ( 3 ^ + 2) by (3.15). (3.43) 

Invoking (3.14) and (3.15), we have, eventually, 

?Tn
2m) = 32w2Tw , (3.44) 

^ ^ ) = 32-C/JI+1-2), (3.45) 

fn
lm)^lmh (3-46) 

j{2m-i) = 3 2 « - i p af^ + 2) m (3 47) 

More briefly, 

J " ~7w+1 . (3.48) 

Both 2T^} and ffi are also expressible in terms of Jn and j n 9 but this alternative produces 
slightly less attractive formulas. 

Each of the sequences {9^} and {jfp} in (3.42) and (3.43) may be regarded as a separate 
individual entity with a mathematical life of its own, as for {2TW} and {jj, leading inter alia to 
Binet forms, generating functions, Simson formulas, recurrence relations, summation formulas, 
and miscellaneous interrelationships of varying importance. 
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Graphs 
Suppose we label a pair of rectangular Cartesian axes j (= y) and 2T (= x). Then (3.30), as n 

takes on its permissible values, the coordinates {2TW, jn) cluster about the line y = ^x, appearing 
alternately on opposite sides of this line. Likewise (2.22), in a changed notation, the points 
(Jn, jn) as n varies approximate to the line y - 3x. 

4 JACOBSTHAL REPRESENTATION OF POSITIVE INTEGERS: {JJ 

Primarily, our concern now is to answer the question: "Can a positive integer N be repre-
sented as a sum of Jacobsthal numbers?" 

Considerations of minimality and maximality of a representation do not enter into the argu-
ment at this stage. Nor does the possibility of uniqueness. Of course, for any minimal represen-
tation of N'm terms of {*/„}, we should need 

J ^ E E M (n, = o,i,2) (4.1) 
7=2 

subject to the criterion 
n/ = 2=>ni+1 = o (4.2) 

by virtue of (1.1). (Cf. the corresponding Pell condition for minimality [7].) 
Why the lower bound i = 2 in (4.1)? 
Recall from (1.3) that Jx = J2 = l. To avoid problems with this two-fold designation of 1, we 

will omit Jx from our deliberations and therefore deal only with {Jn}n>2 • 
Accordingly, write 

J'n = Jn*l (4-3) 
(i.e., J[ - J2 = 1,..., with JQ - 1) and 

n; = n,+1. (4.4) 
One has from (2.14), adjusted by (4.3), that 

2J'n = J'n+x-l<J'„+l, nodd, (2.14a) 

2J'„ = J'„+l + \> J'n+l, neven. (2.14b) 

For the set {Sk} of digits 0, 1, 2 of length k, 

(n;,n^,...,n;), (4.5) 
let us use the following symbolism: 

N™x = the largest integer in Sk 

Nfn = the smallest integer in 5^ 
i^ = the range of integers in Sk 

Ik - the number of integers in Ŝ J 

Now (Table 2), in each block of £ coefficient digits, the smallest number is necessarily given 
by 

(0,0,0,..., 0,1) (4.7) 

(4.6) 
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i.e., 
rmin N?" = J'k by (4.7), (4.8) 

and the largest number by either 

(0,0,0,...,0,2), kodd, (4.9) 
or 

Clearly, then, 

or 

(1,1,1,...,1,1), A:even. (4.10) 

# r x = 24 = J'M - 1 by (4.9), (2.14a), k odd, (4.11) 

Xr = tJ!=Vk by (4.10), (3.1), *even, 

= &^1 by (2.7) (4.12) 

= JJ+ 1-1 by (1.1), (2.14b), 

i.e.. 
N?™ = 4+1-1 for all*. (4.13) 

From (4.8) and (4.13), we derive 

4 = W + i - l ) - W - l ) obviously 
= JU-K (4-14) 
= 2^-i by( l l ) -

Thus, by (4.8) and (4.14), 

Lemma 1: 

J'k<N<JU~l. (4.15) 

For example, J/0 (= 683) < N = 1,000 < J{x - 1 (= 1,367 - 1 = 1,366). 

Lemma 2: k is uniquely determined by N. 

For instance, N = 1,000 => k = 10. 

Therefore, it has been shown that 

Theorem 1: Every positive integer N has a representation of the form 

N=iu;j; (4.i6) 
7 = 1 

where n ; = 0,1,2, and T% = 2 => I^+1 = 0. 

Details of the discussion encapsulated in Theorem 1 are assembled, in the symbolism of (4.6), 
in Table 1. 
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TABLE 1. Date for Representations Involving {Jn}} 

\V 
1 
2 
3 
4 
5 
6 

k 

sk 
5, 
s2 
53 

^ 4 

s5 
s6 

s* 

K 
1,2 
3,4 

5,..., 10 
11,...,20 
21,..., 42 
43,...,84 

•Jk>--->uk+l 

N™ 

J[ 
A 
A 
J\ 
J's 
J'6 

J'k 

N™ 
J ^ - l 
J 3 ' - l 
J'A-\ 
J 5 ' - l 

Jl-1 
J'n-\ 

• ^ i - l 

h 
2 (=2/^) 
2 (=2//) 
6(=2J^) 
10(=2J3') 
22(=2J^) 
42(=2J5') 

2^_, 

Specific information for the representation summarized in Table 1 is provided in Table 2. 
Recall the notation (4.3). 

'While based on the minimality criterion (4.2), our representation is by no means unique. As 
a simple illustration, N = 6 and N = 7 are also given by the sequences of coefficients (0,2) 
and (1,2), respectively. But our choice of representation of an integer N consistently includes 
the greatest J>n:J'n<N, e.g., 6 = J[ + J$ (= 1 + 5) rather than 6 = 2J£ (= 2 x 3) and 7 = 2 J{ + ,/J 
(=2 + 5) rather than 7=^J{ + 2J^ (= 1 + 6). Infinitely many similar situations exist, along with 
variations of them. 

Our chosen representation in Table 2 has the virtues of simplicity and methodical structure. 
Because of the usual patterns apparent in Table 2, we may refer to this representation as a 
patterned representation. 

For a detailed, but different approach to the representation of integers by means of Jacobsthal 
numbers, one might consult [1], which investigates a "special" sequence. This sequence is indeed 
our Jacobsthal sequence, though this cognomen is never alluded to. 

5. JACOBSTHAL REPRESENTATION OF POSITIVE INTEGERS: {jn} 

Turning now to {/„}, we may generally parallel the arguments used in Section 4, though here 
we need to commence the sequence with j0 (= 2), for otherwise there is no representation pos-
sible for the numbers 3 and 4. 

Key results corresponding to (2.14a) and (2.14b) are, from (2.14), 

Vn=Jn+l-3<Jn+i, " °dd, ( 2 ' 1 4 c ) 
and 

2jw = iw+1 + 3>in+1, weven. (2.14d) 

Symbolism used in Section 4 for {JJ will now, for {jn}, be replaced by non-capital letters. 
However, the set {sk} of digits 0, 1, 2 analogous to (4.5) must now become 

which is of length k +1. 
Adapting the notation in (4.6), we may proceed to establish and arrange the data in Table 3, 

using methods similar to those in the previous section. 
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TABLE 2. A Representation of Integers 1 < N < 100 
by Jacobsthal Numbers Jn 

1 
2 
3 
4 
5 
6 
7 
8 
9 

! 10 
! ii 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

ZEL 1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

_A_ 
1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

_j±_ 

2 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
2 

1 
1 
1 

_A_ JQ J7 Jg 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

h 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

_A_ J\ J5 J6 «/7 ^8 1 
1 
1 
2 

1 J 
1 ] 
1 J 
1 ] 
1 J 

1 
1 
1 
1 
1 
2 

1 J 
1 ] 
1 ] 
1 J 
1 1 

1 
1 
1 
1 
1 
2 

J 
3 
1 
J 
1 

L ] 
L 1 
L ] 
L J 
L ] 
L J 

' 

L 1 
L 
L 
L 
L 
I 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L j 
L j 
L 
L 



JACOBSTHAL REPRESENTATION NUMBERS 

TABLE 3. Data for Representations Involving {jn} n>0 

k 
1 
2 
3 
4 
5 
6 

k 

** 
*i 

*2 

s3 

*4 

*5 

*6 

*k 

1 
1.....4 

5,6 
7,...,16 

17, ...,30 
31,...,64 
65,...,126 

A'•••'J*:+l ~ 1 

r̂1 
7i 

k 
h 
h 
h 
h 

Jk 

jymK 

A"1 

7 3 - l 
7 4 - l 
75-1 
7 6 - l 
7 7 - l 

A + i - i 

'* 
4(=27o) 
2(=27 l) 
10(=2/2) 
14(=2;3) 
34(=2;4) 
62(=2;5) 

1h-\ 

i.e.. 

Now (Table 4), in each block of k +1 coefficient digits, the smallest number must be given by 
(0,0,0,...,0,0,1), (5.2) 

(5.3) 

and the largest by either 

or 

Then 

while 

NT=Jt by (5.2), 

(1,0,0,..., 0,0,2), kodd, 

(0,1,1,1,...,1,1,1), yfceven. 

Nrx = Vk + 2, A: odd, 
= A + i"3 + 2 by (2.14c) 

~ Jk+l ~ ^ 

^ r x = Z 7 , = i by (3.2), rceven, 

= Jk±2zl 
2 

by (2.8) 

_ 2 A + I + 3 ~ 5 
2 

= A+i - 1 ' 

by (1.2), (2.14d) 

i.e., for all k, 
A7ax = A + i - l -

Thus, 

Lemma3: jk<N<jk+l-1. 

Lemma 4: k is uniquely determined by N. 

Examples: j9 (= 511) < N = 1,000 < j10 - 1 (= 1,025 - 1 = 1,024); N = 1,000 =>k = 9. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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TABLE 4. A Representation of Integers 1 < N < 100 
by Jacobsthal-Lucas Numbers j n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

! 46 
1 47 
! 48 
49 
50 

k J 

1 
1 
1 \ 

1 
1 
1 ' 

1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 

1 

I h 

1 
L 1 

1 
L 1 

1 
1 1 

1 
1 1 

1 
1 1 

1 
1 1 

h k k k 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

2 1 
2 1 
2 1 

1 1 
1 1 
1 1 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

1 85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

Jo 
1 
1 

1 
1 
1 

1 

1 
1 
1 

1 
1 
1 

1 

1 
1 

! 1 

1 
1 
1 

1 
1 
1 

h 
1 
2 

1 

1 

1 
2 

1 

1 

1 

1 
2 

1 

1 

1 
2 

1 

1 

1 

1 
2 

1 

1 

1 
2 

1 

1 

1 
2 

k 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

k k 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

k k 1 

2 
2 
2 
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Theorem 2: Every positive integer N has a representation of the form 
oo 

. # = !>*.//» (5.9) 
1=1 

where ni = 0,1,2, and xi=2=> ni+l = 0. 

Actual details of the ^-representations are supplied in Table 4 above. As in the case of {Jn}, 
these representations contain the criterion for minimality [i.e., condition (4.2) adjusted to n{\ but 
our chosen representation is nonunique, being selected for convenience to demonstrate that a 
representation does exist. For instance, we may also have the following representations (cf. Table 
5), in which dots denote zeros: 

TABLE 5 

# = 3 4 • • • • 2 45 - 1 2 - 2 
35 • 1 • • 2 46 1 - 2 - 2 
36 1 • • • 2 48 1 1 2 - 2 

• 48 • . . • • 1 1 

The tabulation in Table 4 again expresses & patterned representation. 

6* FINALE 

A mild investigation into the possibility of maximum representations was essayed, but no 
conclusions are offered here. Nevertheless, we reiterate that both {Jn} and {jn} correspond to 
the MinMax sequences for Pell numbers that were introduced and examined in [7]. 

Our presentation of some of the basic features of Jacobsthal representations is meant to whet 
the appetite for further analyses of their properties. Among the opportunities available for explo-
ration are, at least, the following three: 

(a) polynomials {2T„(x)} and {j„(x)} which generalize {2T„} and {)„}, 
(b) generalizations of (3.4) and (3.5) when the additive constant is k, and 
(c) negatively-subscripted Jacobsthal numbers {2T_„} and {j_n}. 

Preliminary studies of these topics have been completed by the author, and papers prepared. 
For a selection of references relevant to our treatment of representations, one may consult 

[5]. (Reference [10], though not strictly germane to this paper, is included to remedy an omission 
in the choice in [5].) 

Historical Note 
The origins of Jacobsthal numbers (1), 1,3,5,11,21,..., where the first term in (1.3) does not 

occur, predate Jacobsthal's article [9]. Indeed [11], they and their loi de recurrence (and Binet 
form) are traceable, in a trigonometrical setting, to Nouvelle Correspondance Mathematique3 
Vol. 6 (1880), page 146, being there associated with the name of Brocard. 

Another, but much later, reference [11] is to page 12 of Vol. 26 (1963) of Eureka, the jour-
nal of the Archimedeans (Cambridge University Mathematical Society). Here, the first term 1 in 
(1.3) is given; however, the occurrence of the Jacobsthal numbers is in a purely recreational con-
text, namely: given the first six nonzero terms of (1.3), determine the next two numbers in the 
sequence. 
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Jacobsthal polynomials [3], [9] are natural algebraic extensions of their numerical counter-
parts. Knowing the long history of many mathematical ideas, we should be mildly surprised if the 
first use of the Jacobsthal numbers did not antedate the year 1880. 
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