DIAGONALIZATION OF THE BINOMIAL MATRIX

Eric Liverance

Department of Mathematics, Macquarie University, NSW 2109, Australia

John Pitsenberger

P.O. Box 407, Mount Rainier, MD 20712 (Submitted May 1994)

1. INTRODUCTION

The results of this paper assume a familiarity with linear algebra. A good reference for the results assumed here is [1].

As is well known, the Fibonacci numbers may be generated in the following manner. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Then

$$A^{h} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} F_{h+1} \\ F_{h} \end{bmatrix}.$$

If we diagonalize A as

$$A = BDB^{-1} = \begin{bmatrix} \gamma & -1/\gamma \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \gamma & 0 \\ 0 & -1/\gamma \end{bmatrix} \begin{bmatrix} \gamma & -1/\gamma \\ 1 & 1 \end{bmatrix}^{-1},$$

where $\gamma = \frac{1+\sqrt{5}}{2}$ is the golden ratio, then from

$$\begin{bmatrix} F_{h+1} \\ F_h \end{bmatrix} = A^h \begin{bmatrix} 1 \\ 0 \end{bmatrix} = BD^h B^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

one obtains the formula

$$F_h = \frac{\gamma^h - (-1/\gamma)^h}{\sqrt{5}}.$$
 (1.1)

More generally, if $f(x) = x^m - s_1 x^{m-1} - \dots - s_m$ is a polynomial with distinct roots α_i , and C is the companion matrix of f(x),

<i>C</i> =	$\begin{bmatrix} s_1 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$		•••	S_{m-1} 0 \vdots 1	s_m 0 \cdots 0	,
	LO	0		1	٧J	

then $v_h = C^h v_0$ generates the recurrence sequence with initial values given by v_0 and recurrence polynomial f(x). Again, we can diagonalize $C = BDB^{-1}$ and obtain the formula

$$a_h = \sum A_i \alpha_i^h, \tag{1.2}$$

for some $A_i \in \mathbb{C}$.

In fact, there is nothing special about companion matrices here. If M is any square matrix over \mathbb{Z} (say) and $v_h = M^h v_0$, then, as we shall prove in the next section, each component of v_h is a recurrence sequence with recurrence polynomial equal to the characteristic polynomial of M.

Now let us examine some generalizations of the relation above for the Fibonacci numbers. One way to generalize the matrix A above is to the binomial matrix. For example, consider

$$A_3 = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}; \quad v_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

By following the above method, we find that the characteristic polynomial of A_3 is $x^3 - 2x^2 - 2x + 1$; the eigenvalues of A_3 are $1/\gamma^2$, -1, γ^2 ; and

$$A_{3}^{h}v_{0} = \begin{vmatrix} F_{h+1}^{2} \\ F_{h}F_{h+1} \\ F_{h}^{2} \end{vmatrix}.$$
 (1.3)

We prove in this article a generalization of this observation. We find that the eigenvalues of the n-by-n binomial matrix are powers of the golden ratio. As a consequence, we shall derive the generalization of (1.3) above. Moreover, we show how explicitly to diagonalize this binomial matrix, and we give recurrence relations for the characteristic polynomials.

More precisely, let $\gamma = \frac{1+\sqrt{5}}{2}$ be the golden ratio. Let $A_n = [a_{i,j}]$ be the "inverted" (or upsidedown) binomial matrix (Pascal's triangle):

$$a_{ij} = \begin{cases} 0 & \text{if } i+j > n+1, \\ \binom{n-i}{j-1} & \text{otherwise.} \end{cases}$$

Let $W_n = \{\gamma^{n-1-i}(-1/\gamma)^i\}_{i=0}^{n-1}$ and let $Q_n(x) = \prod_{w \in W_n} (x - w)$. Let D_n be the diagonal matrix whose diagonal entries are the elements of W_n listed in decreasing order according to size of the absolute value. Let E_n be the eigenvector matrix of A_n with column vectors listed in decreasing order of absolute value of the corresponding eigenvalues, and with its columns scaled so that the bottom row is all 1's. So, for example, for n = 5 we have

$$A_{5} = \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \qquad D_{5} = \begin{bmatrix} \gamma^{4} & 0 & 0 & 0 & 0 \\ 0 & -\gamma^{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\gamma^{-2} & 0 \\ 0 & 0 & 0 & 0 & \gamma^{-4} \end{bmatrix},$$

$$E_{5} = \begin{bmatrix} \gamma^{4} & -\gamma^{2} & 1 & -\gamma^{-2} & \gamma^{-4} \\ \gamma^{3} & -\gamma^{-1}/4 & -1/2 & \gamma/4 & -\gamma^{-3} \\ \gamma^{2} & \gamma/2 & -1/6 & -\gamma^{-1}/2 & \gamma^{-2} \\ \gamma & \gamma^{3}/4 & 1/2 & -\gamma^{-3}/4 & -\gamma^{-1} \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

The main result follows.

FEB.

Theorem 1.4: The eigenvalues of A_n are exactly the set of values in W_n , so that the characteristic polynomial of A_n is $Q_n(x)$. Moreover, an explicit recursive method can be given for generating E_n and E_n^{-1} so that we can diagonalize A_n explicitly as

$$E_n^{-1}A_nE_n = D_n$$

In addition, the coefficients of the characteristic polynomial of A_n can be generated recursively.

In Section 2 we present some background on recurrence sequences and derive a simple selfcontained proof of the first statement (Theorem 2.8). In Section 3 we give recurrence relations for the characteristic polynomial array (Definition 3.4, Proposition 3.5, and Corollary 3.11) and in Section 4 we give an explicit diagonalization of A_n (Theorem 4.3). As a consequence, we obtain a second proof that the characteristic polynomial of A_n is $Q_n(x)$. In Section 5 we give a generalization (Theorem 5.10). This approach demonstrates the explicit recursive method (Corollaries 5.8 and 5.9) for generating the eigenvector matrices. As a consequence of this approach, we obtain a third proof that the characteristic polynomial of A_n is $Q_n(x)$. However, slightly more algebra is required for this approach.

The first proof is based on elementary facts from vector recurrences, for which we provide a quick review. We give an overview of the second proof. We define recursively an array of numbers $b_{n,m}$ (Definition 3.4). From the n^{th} row of this array of numbers $b_{n,m}$, we form a polynomial $P_n(x)$. We show inductively that the roots of $P_n(x)$ form the set W_n , whence $P_n(x) = Q_n(x)$. Finally, we demonstrate that the companion matrix of $P_n(x)$ is similar to A_n , giving our result, since similar matrices have the same eigenvalues. The similarity computation requires the auxiliary matrices that we define in Section 4.

2. REVIEW OF RECURRENCE SEQUENCES

We present a review of recurrence sequences and, as a consequence, obtain a quick proof of the first statement of Theorem 1.4. Moreover, we find an interesting characterization of recurrence sequences generated by $Q_n(X)$ (Theorem 2.8) using some of the results developed in later sections. See [3] for generalities regarding recurrence sequences.

Definition 2.1: A sequence (a_h) satisfying a linear recursion

$$a_h = \sum_{k=1}^n s_k a_{h-k}$$

is called a (linear) recurrence sequence. We call the polynomial $x^n - \sum_{k=1}^n s_k x^{n-k}$ the recurrence polynomial for (a_h) , and we say it generates (a_h) . We call (a_h) degenerate if it is also generated by a polynomial of smaller degree.

If f(x) has m roots α_k , then, as in (1.2), it is easy to show that

$$a_h = \sum_{k=1}^m A_k(h) \alpha_k^h, \qquad (2.2)$$

where the $A_k(h)$ is a polynomial whose degree is the multiplicity of α_k in f(x). Moreover, any such generalized power sum is a recurrence sequence with recurrence polynomial f(x). Hence, it

follows that the set of all recurrence sequences with recurrence polynomial f(x) is a vector space of dimension n.

We shall make use of the following proposition in Section 4 below.

Proposition 2.3: Let x_h be a recurrence sequence of degree *s* with recurrence polynomial $p(x) = \prod_{k=1}^{s} (x - \alpha_k)$ with the α_i distinct and let y_h be a recurrence sequence of degree *t* with recurrence polynomial $q(x) = \prod_{\ell=1}^{t} (x - \beta_{\ell})$ with the β_{ℓ} distinct. Let *W* be the distinct set of numbers of the form $\alpha_k \beta_{\ell}$ with w = |W|. Then the sequence $x_h y_h$ is a recurrence sequence of degree *w* with recurrence polynomial $\prod_{\lambda \in W} (x - \lambda)$.

Proof: The vector space of sequences with recurrence polynomial p(x) is spanned by the sequences α_k^h for k = 1, ..., s. Thus, we can write $x_h = \sum_{k=1}^s u_k \alpha_i^h$ for some u_k . Similarly, we can write $y_h = \sum_{\ell=1}^t v_\ell \beta_\ell^h$ for some v_ℓ . Multiplying yields

$$x_h y_h = \sum_{k,\ell} u_k v_\ell (\alpha_k \beta_\ell)^h.$$

Thus, $x_h y_h$ is in the span of the sequences λ^h for $\lambda \in W$ and, hence, has recurrence polynomial as above. \Box

It is easy to characterize the space of sequences generated by a polynomial.

Proposition 2.4: The sequence (a_h) is a nondegenerate recurrence sequence generated by f(x) of degree *n*, if and only if the matrix

$$A = \begin{bmatrix} a_{n-1} & a_n & \cdots & a_{2n-1} \\ a_{n-2} & a_{n-1} & \cdots & a_{2n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_0 & a_1 & \cdots & a_{n-1} \end{bmatrix}$$

is invertible. In this case, the *n* sequences $(a_{h+k})_{k=0}^{n-1}$ generate the space of recurrence sequences generated by f(x).

Proof: If A had a nontrivial element in its kernel, then so would

$$C^{h}A = \begin{bmatrix} a_{h+n-1} & a_{h+n} & \cdots & a_{h+2n-1} \\ a_{h+n-2} & a_{h+n-1} & \cdots & a_{h+2n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{h} & a_{h+1} & \cdots & a_{h+n-1} \end{bmatrix},$$

where C is the companion matrix for f(x). This is true if and only if (a_h) is a degenerate recurrence sequence. \Box

Next, we consider recurrence sequences that arise from matrices. This generalization is quite simple.

Definition 2.5: Let M be an n-by-n matrix and let v_0 be an n-dimensional column vector. The sequence of vectors (v_h) defined by $v_h = M^h v_0$ is called a vector recurrence sequence.

If M is the companion matrix for f(x),

<i>M</i> = <i>C</i> =	<i>s</i> ₁ 1 : 0	${s_2 \atop 0 \\ \vdots \\ 0}$	••••	s_{m-1} 0 \vdots 1	S_m 0 \cdots 0	,
	Lv	U		T		

then our situation is closely related to recurrence sequences. Let

$$v_0 = \begin{bmatrix} a_{n-1} \\ \vdots \\ a_0 \end{bmatrix},$$

and let (a_h) be the corresponding recurrence sequences generated by f(x). Then

$$v_h = C^h v_0 = \begin{bmatrix} a_{n+h-1} \\ \vdots \\ a_h \end{bmatrix}$$

Even in a more general case, this picture is only altered with a change of basis.

Proposition 2.6: Let M be an *n*-by-*n* matrix with characteristic polynomial f(x). Suppose further that f(x) is actually the minimal polynomial of M, so that we have the similarity relation $M = BCB^{-1}$, where C is the companion matrix of f(x). Let (v_h) be the vector recurrence sequence generated by M with initial value v_0 . Then the *i*th component of (v_h) forms a recurrence sequence (v_h^i) with recurrence polynomial f(x). Moreover, the recurrence sequence generated by f(x) with initial values given by $B^{-1}v_0$ is nondegenerate if and only if the *n*-by-*n* matrix $[v_0 \cdots v_{n-1}]$ is invertible. Hence, in this case, the (v_n^i) form a basis of the space of recurrence sequence sequences generated by f(x).

Remark: The condition that f(x) is the minimal polynomial of M is not necessary; however, the statement becomes more complicated and the conclusion weaker.

Proof: Using the similarity relation, we find that

$$C \cdot [(B^{-1}v_0) \quad \cdots \quad (B^{-1}v_{n-1})] = [(B^{-1}v_1) \quad \cdots \quad (B^{-1}v_n)].$$

Thus, $(B^{-1}v_h)$ is a vector recurrence sequence for the matrix C. In other words,

$$B^{-1}[v_0 \cdots v_{n-1}] = A = \begin{bmatrix} a_{n-1} & a_n & \cdots & a_{2n-1} \\ a_{n-2} & a_{n-1} & \cdots & a_{2n-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_0 & a_1 & \cdots & a_{n-1} \end{bmatrix},$$

where (a_h) is a recurrence sequence generated by f(x). Thus,

$$M^{h}v_{0} = BC^{h}(B^{-1}v_{0}) = B\begin{bmatrix}a_{n+h-1}\\\vdots\\a_{h}\end{bmatrix}.$$

This implies that the i^{th} component (v_h^i) is a linear combination of recurrence sequences generated by f(x); hence, (v_h^i) itself is generated by f(x).

1996]

The last statement then follows by applying Proposition 2.4 to $A = B^{-1}[v_0 \cdots v_{n-1}]$, and noting that B is invertible. \Box

We apply the above development to our binomial matrices. We shall consider the sequences $(F_{h+1}^{n-i}F_h^{i-1})$ for $1 \le i \le n$ as column vectors for fixed h.

Proposition 2.7: For all $h \ge 0$, $A_n[F_{h+1}^{n-i}F_h^{i-1}] = [F_{h+2}^{n-i}F_{h+1}^{i-1}]$. In other words, $(F_{h+1}^{n-i}F_h^{i-1})$ is a recurrence sequence generated by the characteristic polynomial of A_n for all $i, 1 \le i \le n$.

Proof: This follows trivially by induction. One must only check the top entry, which follows from the relation

$$\sum_{j=1}^{n} {\binom{n-1}{j-1}} F_{h+1}^{n-j} F_{h}^{j-1} = (F_{h+1} + F_{h})^{n-1} = F_{h+2}^{n-1}. \quad \Box$$

Now we use (1.1):

$$F_{h+1}^{n-i}F_{h}^{i-1} = \left(\frac{\gamma^{h+1} - (-1/\gamma)^{h+1}}{\sqrt{5}}\right)^{n-i} \left(\frac{\gamma^{h} - (-1/\gamma)^{h}}{\sqrt{5}}\right)^{i-1} = \sum_{w \in W_{n}} A_{w}w^{h}$$

Thus, by (2.2), the polynomial $Q_n(x) = \prod_{w \in W_n} (x - w)$ generates each of the sequences $(F_{h+1}^{n-i}F_h^{i-1})$. Clearly, if we can show that $(F_{h+1}^{n-i}F_h^{i-1})$ is nondegenerate of degree *n*, then we must have

char poly
$$(A_n) = Q_n(x)$$
.

Theorem 2.8: The eigenvalues of A_n are W_n ; hence, the characteristic polynomial of A_n is $Q_n(x)$. Moreover, the sequences $(F_{h+1}^{n-i}F_h^{i-1})_{i=1}^n$ form a basis for the space of recurrence sequences generated by $Q_n(x)$.

Proof: In light of the above, it only remains to show that the matrix $[F_{j+1}^{n-i}F_j^{i-1}]$ is invertible. If we scale the j^{th} column by dividing by F_{j+1}^{n-1} , then we obtain the Vandermonde matrix $[(F_i/F_{i+1})^{i-1}]$, and as is well known, this determinant is nonzero. \Box

3. THE CHARACTERISTIC POLYNOMIAL

We set out some well-known (and easily proved) facts about the Fibonacci and Lucas numbers to refer to later.

$$\gamma^h = \frac{L_h + F_h \sqrt{5}}{2}.\tag{3.1}$$

$$\gamma^{-h} = (-1)^h \frac{L_h - F_h \sqrt{5}}{2}.$$
(3.2)

$$F_h L_k + F_k L_h = 2F_{h+k}.$$
 (3.3)

We shall see that the following array of numbers gives the coefficients of the characteristic polynomial of A_n .

Definition 3.4: Define the array of numbers $b_{n,m}$ for $n, m \ge 0$ as follows. Let $b_{n,0} = 1$ for all $n \ge 0$ and let $b_{n,m} = 0$ for m > n. For $0 < m \le n$, we define $b_{n,m}$ recursively by

FEB.

$$b_{n,m} = b_{n-1,m-1} \frac{F_n}{F_m} (-1)^m.$$

Proposition 3.5: For $m \le n$, we have

$$|b_{n,m}| = \frac{F_n F_{n-1} \cdots F_{n-m+1}}{F_m \cdots F_1}.$$

Moreover, $|b_{n,m}| = |b_{n,n-m}|$, and we have the relation

$$b_{n,m} = b_{n,m-1} \frac{F_{n-m+1}}{F_m} (-1)^m.$$

The proof is obvious. The first several rows of the $b_{n,m}$ array are given in Table 3.6, where *n* indexes the rows and *m* indexes the columns.

TABLE 3.6. Coefficients of the Characteristic Polyne
--

	0	1	2	3	4	5	6	7	8
0	1	0	0	0	0	0	0	0	0
1	1	-1	0	0	0	0	0	0	0
2	1	-1	-1	0	0	0	0	0	0
3	1	-2	-2	1	0	0	0	0	0
4	1	-3	-6	3	1	0	0	0	0
5	1	-5	-15	15	5	-1	0	0	0
6	1	-8	-40	60	40	-8	-1	0	0
7	1	-13	-104	260	260	-104	-13	1	0
8	1	-21	-273	1092	1820	-1092	-273	21	1

Definition 3.7: Let $P_n(x) = \sum_{j=0}^n b_{n,n-j} x^j$. The first few $P_n(x)$ (which can be read from Table 3.6) and W_n (defined in Section 1) are:

$P_1(x) = x - 1$	$W_1 = \{1\}$
$P_2(x) = x^2 - x - 1$	$W_2 = \{\gamma, -\gamma^{-1}\}$
$P_3(x) = x^3 - 2x^2 - 2x + 1$	$W_3 = \{\gamma^2, -1, \gamma^{-2}\}$
$P_4(x) = x^4 - 3x^3 - 6x^2 + 3x + 1$	$W_4 = \{\gamma^3, -\gamma, \gamma^{-1}, -\gamma^{-3}\}$

We note that the (n-1) column of the $b_{n,m}$ array is just the coefficients of the formal power series $(-1)^n / P_n((-1)^{n-1}x)$. This is equivalent to

$$\sum_{k=0}^{n} (-1)^{k(n-1)} b_{n,k} b_{k+j,n-1} = 0$$

for all $j \ge n-1$. Although we do not use this fact here, we record it as Corollary 3.11 to Theorem 3.8.

Theorem 3.8: The set of roots of the polynomial $P_n(x)$ is exactly W_n : $P_n(x) = Q_n(x)$.

Proof: We use induction. Since $W_n = (-1/\gamma)W_{n-1} \cup \{\gamma^{n-1}\}$, we have the relation

$$Q_n(x) = \frac{1}{(-\gamma)^{n-1}} P_{n-1}(-\gamma x) \cdot (x - \gamma^{n-1}).$$
(3.9)

1996]

We rewrite this as

$$Q_{n}(x) = (x + (-1)^{n} (-\gamma)^{n-1}) \sum_{j=0}^{n-1} b_{n-1, n-1-j} (-\gamma)^{j-n+1} x^{j}$$

= $x^{n} + (-1)^{n} b_{n-1, n-1} + \sum_{j=1}^{n-1} [b_{n-1, n-j} (-\gamma)^{j-n} + (-1)^{n} b_{n-1, n-1-j} (-\gamma)^{j}] x^{j}.$

Thus, we need to show the relation

$$b_{n,n-j} = b_{n-1,n-j} (-\gamma)^{j-n} + (-1)^n b_{n-1,n-1-j} (-\gamma)^j.$$
(3.10)

By equations (3.1) and (3.2), this can be written as

$$b_{n,n-j} = b_{n-1,n-j} \left(\frac{L_{n-j} - F_{n-j}\sqrt{5}}{2} \right) + (-1)^{n+j} b_{n-1,n-j-1} \left(\frac{L_j + F_j\sqrt{5}}{2} \right).$$

By Proposition 3.5, this becomes

$$b_{n,n-j} = (-1)^{n+j} b_{n-1,n-j-1} \left[\frac{F_j}{F_{n-j}} \left(\frac{L_{n-j} - F_{n-j} \sqrt{5}}{2} \right) + \frac{L_j + F_j \sqrt{5}}{2} \right]$$
$$= (-1)^{n+j} b_{n-1,n-j-1} \left[\frac{F_j L_{n-j} + F_{n-j} L_j}{2F_{n-j}} \right].$$

By equation (3.3) above, this simplifies to

$$b_{n,n-j} = (-1)^{n+j} b_{n-1,n-j-1} \frac{F_n}{F_{n-j}},$$

which follows from Definition 3.4. \Box

Corollary 3.11: The (n-1) column of the array $b_{n,m}$ forms the coefficients of the formal power series $(-1)^n / P_n((-1)^{n-1}x)$. More precisely, we have

$$\frac{(-1)^n}{P_n((-1)^{n-1}x)} = \sum_{k=0}^{\infty} b_{k+n-1,n-1}x^k.$$

Proof: Repeated application of (3.10) gives the following:

$$b_{n,m} = \gamma^{n+1} \sum_{k=1}^{n-m+1} (-1)^{km} \gamma^{-k(m+1)} b_{n-k,m-1}.$$

By changing the order of summation and relabeling the indices, this is equivalent to

$$b_{k+n-1,n-1} = (-1)^{n-1} \sum_{s=0}^{k} b_{s+n-2,n-2} \gamma^{s} (-\gamma)^{(k-s)(1-n)}.$$

But this just expresses the power series identity

[FEB.

$$\sum_{k=0}^{\infty} b_{k+n-1,n-1} x^{k} = (-1)^{n-1} \left(\sum_{s=0}^{\infty} b_{s+n-2,n-2} (\gamma x)^{s} \right) \left(\sum_{t=0}^{\infty} \left(\frac{x}{(-\gamma)^{n-1}} \right)^{t} \right).$$
(3.12)

Now, applying induction, the inverse of the right-hand side of (3.12) is just

$$(-1)^{n-1}\left(\frac{P_{n-1}((-1)^{n-2}\gamma x)}{(-1)^{n-1}}\right)\left(1-\frac{x}{(-\gamma)^{n-1}}\right) = \frac{(-1)^n}{(-\gamma)^{n-1}}P_{n-1}((-1)^{n-2}\gamma x)((-1)^{n-1}x-\gamma^{n-1})$$

Substituting $y = (-1)^{n-1}x$, we have

$$\frac{(-1)^n}{(-\gamma)^{n-1}}P_{n-1}(-\gamma y)(y-\gamma^{n-1})=(-1)^nP_n(y),$$

by (3.9) and Theorem 3.8. Thus, as required, the left-hand side of (3.12) is

$$\sum_{k=0}^{\infty} b_{k+n-1, n-1} x^k = \frac{(-1)^n}{P_n((-1)^{n-1} x)}. \quad \Box$$

4. EXPLICIT DIAGONALIZATION

We define the following integral matrices that will be used to diagonalize A_n in Theorem 4.3 explicitly.

Definition 4.1: Let n > 1. Let C_n be the companion matrix for $P_n(x)$, $C_n = [c_{ij}]$, where

$$\begin{cases} c_{i, i+1} = 1 & \text{for } i = 1, \dots, n-1, \\ c_{n, j} = -b_{n, n+1-j} & \text{for } j = 1, \dots, n, \\ c_{i, j} = 0 & \text{otherwise.} \end{cases}$$

Let $R_n = [r_{ij}]$, where $r_{ij} = \binom{n-1}{j-1}F_{i-2}^{j-1}F_{i-1}^{n-j}$. Let $M_n = [m_{ij}]$, where $m_{ij} = \binom{n-1}{j-1}F_{i-1}^{j-1}F_i^{n-j}$.

Observe that the i^{th} row of R_n gives the terms in $(F_{i-2} + F_{i-1})^{n-1}$ and that the i^{th} row of M_n gives the terms in $(F_{i-1} + F_i)^{n-1}$. These matrices will be used in Theorem 4.3 to prove that A_n is similar to C_n . The matrix R_n arose originally by observing the relation $R_n E_n = V_n$ (see Definition 4.2). From here, it is natural to bring in the companion matrix C_n , since V_n is the eigenvector matrix for C_n .

We illustrate Definition 4.1 for n = 5:

$$C_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -5 & -15 & 15 & 5 \end{bmatrix}, \qquad R_{5} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 4 & 6 & 4 & 1 \\ 81 & 216 & 216 & 96 & 16 \end{bmatrix},$$
$$M_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 4 & 6 & 4 & 1 \\ 16 & 32 & 24 & 8 & 1 \\ 81 & 216 & 216 & 96 & 16 \\ 625 & 1500 & 1350 & 540 & 81 \end{bmatrix}.$$

1996]

Definition 4.2: For each n > 1, let V_n be the Vandermonde matrix which is the eigenvector matrix for C_n with eigenvectors listed in decreasing order of the absolute values of the corresponding eigenvalues.

Thus, for example, we have

$$V_{5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ \gamma^{4} & -\gamma^{2} & 1 & -\gamma^{-2} & \gamma^{-4} \\ \gamma^{8} & \gamma^{4} & 1 & \gamma^{-4} & \gamma^{-8} \\ \gamma^{12} & -\gamma^{6} & 1 & -\gamma^{-6} & \gamma^{-12} \\ \gamma^{16} & \gamma^{8} & 1 & \gamma^{-8} & \gamma^{-16} \end{bmatrix}.$$

Theorem 4.3: For all *n*, we have the relation $M_n = C_n R_n = R_n A_n$. Moreover, $P_n(x)$ is the characteristic polynomial of A_n , R_n is invertible, and the eigenvector matrix of A_n is given by

$$E_n = R_n^{-1} V_n.$$

Proof: Multiplying the first n-1 rows of C_n by R_n clearly gives the first n-1 rows of M_n . For the last row, for each j, $1 \le j \le n$, we must show the relation

$$\sum_{k=1}^{n} -b_{n,n+1-k} F_{k-2}^{j-1} F_{k-1}^{n-j} = F_{n-1}^{j-1} F_{n}^{n-j} .$$
(4.4)

Now $P_2(x)$ is the recurrence polynomial for the sequence F_k (and, hence, for F_{k-1}). Thus, using the fact that $W_u W_v = W_{u+v-1}$, we can apply Proposition 2.3 repeatedly to find that $P_m(x)$ is the recurrence polynomial for the sequence whose h^{th} entry is a product of m-1 factors, each chosen from the set $\{F_h, F_{h-1}\}$. In other words, $P_m(x)$ is the recurrence polynomial for the sequence $F_{h-1}^{j-1}F_h^{m-j}$ for any $j, 1 \le j \le m$. Explicitly, this means that

$$\sum_{k=1}^{m} -b_{m,m+1-k} F_{r+k-m-2}^{j-1} F_{r+k-m-1}^{m-j} = F_{r-1}^{j-1} F_{r}^{m-j}.$$

Equation (4.4) now follows, since it is just this same recurrence relation for m=n at the r=n term. This proves $M_n = C_n R_n$.

To prove $M_n = R_n A_n$ it is equivalent to show that, for all *i*, *j* with $1 \le i, j \le n$, we have

$$\sum_{k=0}^{n-j} \binom{n-1}{k} F_{i-2}^k F_{i-1}^{n-k-1} \cdot \binom{n-k-1}{j-1} = \binom{n-1}{j-1} F_{i-1}^{j-1} F_i^{n-j}.$$

Combining the binomials and dividing by F_{i-1}^{j-1} , this is equivalent to showing

$$\sum_{k=0}^{n-j} \binom{n-j}{k} F_{i-2}^k F_{i-1}^{n-k-j} = F_i^{n-j}.$$

But, by the binomial theorem, this is just $(F_{i-2} + F_{i-1})^{n-j} = F_i^{n-j}$, which is just the Fibonacci recursion. This proves that $C_n R_n = R_n A_n$.

The fact that R_n is invertible was actually proved previously in the proof of Theorem 2.8; again, we can scale R_n to obtain a Vandermonde matrix which has a nonzero determinant. Hence, C_n and A_n satisfy the similarity relation $A_n = R_n^{-1}C_nR_n$. Thus, they have the same characteristic

FEB.

polynomial $P_n(x)$. Since V_n is the eigenvector matrix for C_n , the similarity relation shows that $R_n^{-1}V_n$ is the eigenvector matrix for A_n . \Box

5. A GENERALIZATION

In this section we give an alternative development of Theorem 1.4. As a result, we obtain a recursive method of generating the eigenvector matrix. Moreover, we find a nice explanation for the eigenvalue behavior. Our methods yield the following generalization: if any matrix is generated in the same way as the A_n , then it must be essentially binomial.

Definition 5.1: Let B be a 2-by-2 matrix, $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Define an *n*-by-*n* matrix $S_n(B)$ as follows: the *j*th entry of the *i*th row of $S_n(B)$ is given by

$$S_n(B)(i, j)$$
 = the coefficient of $x^{n-j}y^{j-1}$ in $(ax+by)^{n-i}(cx+dy)^{i-1}$.

Then, for $A = A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, by the binomial theorem we have $A_n = S_n(A)$. For general B as in Definition 5.1, we let $B_n = S_n(B)$. Thus, we have

$$B_{2} = B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad B_{3} = \begin{pmatrix} a^{2} & 2ab & b^{2} \\ ac & ad + bc & bd \\ c^{2} & 2cd & d^{2} \end{pmatrix},$$
$$B_{4} = \begin{pmatrix} a^{3} & 3a^{2}b & 3ab^{2} & b^{3} \\ a^{2}c & 2abc + a^{2}d & 2abd + b^{2}c & b^{2}d \\ ac^{2} & 2acd + bc^{2} & 2bcd + ad^{2} & bd^{2} \\ c^{3} & 3c^{2}d & 3cd^{2} & d^{3} \end{pmatrix}.$$

Lemma 5.2: Let $B = B_2$ be a 2-by-2 matrix, $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and let $B_n = S_n(B)$. Then B_n may be generated recursively from B_{n-1} by

$$B_n(i, j) = bB_{n-1}(i, j-1) + aB_{n-1}(i, j),$$

$$B_n(n, j) = \binom{n-1}{j-1}c^{n-j}d^{j-1},$$

with the convention that $B_n(i, j) = 0$ for j < 1 or j > n.

Proof: Induction on n. \Box

In order to prove the next lemmas, we need to define some notation.

Definition 5.3: Let $R = \mathbb{C}[x, y]$ be the ring over \mathbb{C} in two indeterminates. Define V_n to be the \mathbb{C} -vector space of homogeneous polynomials in R of degree n-1. A basis for V_n is $\{x^{n-1}, x^{n-2}y, \dots, y^{n-1}\}$, so V_n is of dimension n. Any 2-by-2 matrix $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ induces a ring homomorphism, $\phi_B : R \to R$, by sending x to ax + by and sending y to cx + dy. Since ϕ_B is degree-preserving and linear in x and y, it induces a linear transformation on V_n . We denote this linear transformation by $\phi_{B,n}$.

1996]

Lemma 5.4: If we write an element V_n as a row vector with respect to the basis $\{x^{n-1}, x^{n-2}y, \dots, y^{n-1}\}$, then the action of $\phi_{B,n}$ on V_n is given by multiplication by $S_n(B)$ on the right.

Proof: The *i*th basis vector of V_n , namely, the vector $x^{n-i}y^{i-1}$, goes to $(ax + by)^{n-i}(cx + dy)^{i-1}$ under the linear transformation $\phi_{B,n}$, which just forms the *i*th row of $S_n(B)$. \Box

Lemma 5.5: Let B and C be 2-by-2 matrices. Then $S_n(BC) = S_n(B)S_n(C)$.

Proof: The matrix equation $BC = B \cdot C$ gives rise to the ring homomorphism equation $\phi_{BC} = \phi_C \circ \phi_B$ (note that the matrices act on the right; hence, ϕ_B is applied first). Since the ring homomorphisms act the same on V_n , we obtain the equality of linear transformations $\phi_{BC,n} = \phi_{C,n}\phi_{B,n}$. Now, by Lemma 5.4, we obtain $S_n(BC) = S_n(B)S_n(C)$

Theorem 5.6: Let $G_n = S_n(E_2)$, where $E_2 = \begin{bmatrix} \gamma & -1/\gamma \\ 1 & 1 \end{bmatrix}$ is the eigenvector matrix for A_2 . Then

 $A_n G_n = G_n D_n$.

Hence, G_n is the eigenvector matrix for A_n (scaled so that the bottom row of G_n is the top row of A_n) and D_n is the diagonalization of A_n , giving the eigenvalues of A_n to be $(-1)^{n-i}\gamma^{2i-n+1}$ as *i* ranges from 0 to n-1.

Proof: As we have observed after Definition 5.1, we have

$$S_n(A_2) = A_n. \tag{5.7}$$

If we start with the matrix equation $A_2E_2 = E_2D_2$ and apply the operator S_n , then, from Lemma 5.5 and equation (5.7), we obtain

$$A_n S_n(E_2) = S_n(E_2) S_n(D_2)$$

The action of D_2 on V_2 sends x to γx and y to $-\gamma^{-1}y$. Therefore, $S_n(D_2)$ sends $x^i y^{n-1-i}$ to $(-1)^{n-1-i}\gamma^{2i-n+1}x^i y^{n-1-i}$, which is exactly the action of D_n . Thus, $D_n = S_n(D_2)$ and, consequently, $S_n(E_2)$ must be the eigenvector matrix. This gives the result. \Box

Remark: These results can be interpreted in terms of the symmetric algebra of \mathbb{C}^2 , denoted Sym \mathbb{C}^2 (see [2], p. 141). If e_1 and e_2 are a basis for \mathbb{C}^2 , the ring R above is isomorphic to the symmetric algebra of \mathbb{C}^2 by sending x to e_1 and y to e_2 . The set of homogeneous polynomials of degree n of R is just the (n-1)-fold symmetric tensor product of \mathbb{C}^2 , denoted Symⁿ⁻¹ \mathbb{C}^2 . As we have observed above, the linear transform A_2 acting on \mathbb{C}^2 induces an action on Sym \mathbb{C}^2 .

Lemma 5.2 gives an explicit means for computing the eigenvector matrix. Since $G_n = S_n(E_2)$, we have the following recursive method for computing the eigenvector matrix.

Corollary 5.8:

$$G_{n}(i, j) = -1/\gamma G_{n-1}(i, j-1) + \gamma G_{n-1}(i, j),$$

$$G_{n}(n, j) = \binom{n-1}{j-1}.$$

Similarly, we can compute the inverse of the eigenvalue matrix so that the explicit diagonalization of A_n can be given. We have

[FEB.

$$H_2 = G_2^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 1/\gamma \\ -1 & \gamma \end{bmatrix}.$$

Thus, since $H_n = G_n^{-1} = S_n(G_2^{-1})$, we obtain the following result from Lemma 5.2.

Corollary 5.9:
$$H_n(i, j) = \frac{1}{\sqrt{5}} [1/\gamma B_{n-1}(i, j-1) + B_{n-1}(i, j)],$$
$$H_n(n, j) = \sqrt{5}^{n-1} {\binom{n-1}{j-1}} (-1)^{n-j} \gamma^{j-1}.$$

We note that the proof of Theorem 5.6 actually shows the following generalization.

Theorem 5.10: Let B be a 2-by-2 matrix with distinct nonzero eigenvalues α and α' . Then eigenvalues of $S_n(B)$ are $\alpha^{(n-i)} \alpha'^{(i-1)}$, where *i* ranges from 1 to *n*. Moreover, if E is the eigenvector matrix for B, then the eigenvector matrix for $S_n(B)$ is $S_n(E)$.

However, we also note that if the set of matrices $S_n(B)$ comes from a single array of numbers as the inverted binomial matrices (the A_n) do, then the array of numbers must be essentially binomial.

Theorem 5.11: Let B be a 2-by-2 matrix. Suppose that the entries of the matrix $S_n(B)$ come from a single array of numbers for each n > 1. Then B must be of the form $\begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}$. In this case, the entries of the *i*th row of $S_n(B)$ are just the coefficients of $(ax + by)^{n-i}$.

Proof: Assume $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then

$$S_3(B) = \begin{bmatrix} a^2 & 2ab & b^2 \\ ac & ad + bc & bd \\ c^2 & 2cd & d^2 \end{bmatrix},$$

so that we must have $c^2 = c$, 2cd = d, ac = a, ad + bc = b. These imply that c = 1 and d = 0. Then the entries of the *i*th row of $S_n(B)$ are the coefficients of $(ax + by)^{n-i}$ and, hence, just the binomial matrix scaled by powers of a and b. \Box

REFERENCES

- 1. Kenneth Hoffman & Ray Kunze. *Linear Algebra*, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1971.
- 2. Nathan Jacobson. Basic Algebra II. San Francisco, CA: W. H. Freeman, 1980.
- Alfred J. van der Poorten. "Some Facts that Should Be Better Known Especially about Rational Functions." In *Number Theory and Applications*, pp. 497-528. Ed. R. A. Mollin. Dordrecht: Kluwer, 1988.

AMS Classification Numbers: 11B39, 11B65, 11C20

*** *** ***