E. R. Suryanarayan

Department of Mathematics, University of Rhode Island, Kingston, RI 02881 (Submitted May 1994)

1. INTRODUCTION

In this paper we define the Brahmagupta matrix [see (1), below] and show that it generates a class of homogeneous polynomials x_n and y_n in x and y satisfying a host of relations; the polynomials contain as special cases the well-known Fibonacci, Lucas, and Pell sequences, and the sequences observed by Entringer and Slater [1], while they were investigating the problem of information dissemination through telegraphs; x_n and y_n also include the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [5], [7], and the Morgan-Voyce polynomials in Ladder Networks and in Electric Line Theory [6], [9]. We also extend some series and convolution properties that hold for the Fibonacci and Lucas sequences and the Pell and Pell-Lucas polynomials to x_n and y_n [7], [5].

2. THE BRAHMAGUPTA MATRIX

To solve the indeterminate equation $x^2 = ty^2 \pm m$ in integers, where t is square free, the Indian astronomer and mathematician Brahmagupta (ca. 598) gave an iterative method of deriving new solutions from the known ones by his samasa-bhavana, the principle of composition: If (x_1, y_1, m_1) and (x_2, y_2, m_2) are trial solutions of the indeterminate equation, then the triple $(x_1x_2 \pm ty_1y_2, x_1y_2 \pm y_1x_2, m_1m_2)$ is also a solution of the indeterminate equation which can be expressed using the multiplication rule for a 2 by 2 matrix. Notice that if we set

$$B(x, y) = \begin{bmatrix} x & y \\ \pm ty & \pm x \end{bmatrix},$$
(1)

and $m = \det B$, then the results

$$B(x_1, y_1)B(x_2, y_2) = B(x_1x_2 \pm ty_1y_2, x_1y_2 \pm y_1x_2),$$
(2)

$$\det[B(x_1, y_1)B(x_2, y_2)] = \det B(x_1, y_1) \det B(x_2, y_2) = m_1 m_2, \tag{3}$$

give the Brahmagupta rule. Equation (3) is usually referred to as the *Brahmagupta Identity* and appears often in the history of number theory [10].

Let M denote the set of matrices of the form

$$B = \begin{bmatrix} x & y \\ ty & x \end{bmatrix},\tag{4}$$

where t is a fixed real number and x and y are variables. Define B to be the Brahmagupta matrix. M satisfies the following properties:

1. M is a field for $x, y, t \in R$ and t < 0; in particular, if t = -1, then we have the well-known one-to-one correspondence between the set of matrices and the complex numbers x + iy:

$$\begin{bmatrix} x & y \\ -y & x \end{bmatrix} \leftrightarrow x + iy.$$

FEB.

2. The following eigenrelations, in which T denotes the transpose, hold:

$$B[1,\pm\sqrt{t}]^T = (x\pm y\sqrt{t})[1,\pm\sqrt{t}]^T,$$

and these relations imply

$$B^n[1,\pm\sqrt{t}]^T = (x\pm y\sqrt{t})^n[1,\pm\sqrt{t}]^T$$

and

$$\begin{bmatrix} x & y \\ ty & x \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{t}{2}} & -\sqrt{\frac{t}{2}} \end{bmatrix} \begin{bmatrix} x + y\sqrt{t} & 0 \\ 0 & x - y\sqrt{t} \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2t}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2t}} \end{bmatrix}.$$

Define

$$B^{n} = \begin{bmatrix} x & y \\ ty & x \end{bmatrix}^{n} = \begin{bmatrix} x_{n} & y_{n} \\ ty_{n} & x_{n} \end{bmatrix} = B_{n}.$$

3. Then the following recurrence relations are satisfied:

$$x_{n+1} = xx_n + tyy_n, \ y_{n+1} = xy_n + yx_n,$$
(5)

with $x_n = x$ and $y_n = y$.

4. Using the above eigenrelations, we derive the following Binet forms for x_n and y_n :

$$x_{n} = \frac{1}{2} [(x + y\sqrt{t})^{n} + (x - y\sqrt{t})^{n}], \qquad (6)$$

$$y_{n} = \frac{1}{2\sqrt{t}} \left[\left(x + y\sqrt{t} \right)^{n} - \left(x - y\sqrt{t} \right)^{n} \right], \tag{7}$$

and $x_n \pm \sqrt{t} y_n = (x \pm \sqrt{t} y)^n$.

- 5. Let $\xi_n = x_n + y_n \sqrt{t}$, $\eta_n y_n \sqrt{t}$, and $\beta_n = x_n^2 ty_n^2$, with $\eta_n = \eta$, $\xi_n = \xi$, and $\beta_n = \beta$; we then have $\xi_n = \xi^n$, $\eta_n = \eta^n$, and $\beta_n = \beta^n$. To show the last equality, consider $\beta^n = (x^2 ty^2)^n = \xi^n \eta^n = \xi_n \eta_n = (x_n^2 ty_n^2) = \beta_n$. Notice that $\beta = \det B$.
- 6. The recurrence relations (5) also imply that x_n and y_n satisfy the difference equations:

$$x_{n+1} = 2x x_n - \beta x_{n-1}, \ y_{n+1} = 2x y_n - \beta y_{n-1}.$$
 (8)

Conversely, if $x_0 = 1$, $x_1 = x$, and $y_0 = 0$, $y_1 = y$, then the solutions of the difference equations (8) are indeed given by the Binet forms (6) and (7).

- 7. Notice that if we set x = 1/2 = y and t = 5, then $\beta = -1$ and $2y_n = F_n$ is the Fibonacci sequence, while $2x_n = L_n$ is the Lucas sequence, where n > 0. For the number-theoretic properties of F_n and L_n , the reader is referred to [2] and [3].
- 8. In particular, if x = y = 1 and t = 2, then both x_n and y_n satisfy $x_n^2 2y_n^2 = (-1)^n$ and they generate the Pell sequences:

$$x_n = 1, 1, 3, 7, 17, 41, 99, 239, 577, \dots, y_n = 0, 1, 2, 5, 12, 29, 70, 169, 408, \dots$$

It is interesting to note that if we set

$$a = 2(x_n + y_n)y_n$$
 $b = x_n(x_n + 2y_n), c = x_n^2 + 2x_ny_n + 2y_n^2,$

1996]

31

we then obtain integral solutions of the Pythagorean relation $a^2 + b^2 = c^2$, where a and b are consecutive integers [8].

9. If t = 1, then $x_n + y_n = (x + y)^n$, and if t = -1, then $x_n + iy_n = (x + iy)^n$. Also, for every square free integer t, the set of matrices **M** is isomorphic to the set $\{x + y\sqrt{t} | x, y \in Z\}$, where Z is the set of integers.

$$e^{B} = \frac{1}{4} \begin{bmatrix} e^{\xi} + e^{\eta} & \frac{1}{\sqrt{t}} (e^{\xi} - e^{\eta}) \\ \sqrt{t} (e^{\xi} - e^{\eta}) & e^{\xi} + e^{\eta} \end{bmatrix}, \quad \det e^{B} = e^{2x}$$

To show these results, let us write $2x_k = \xi^k + \eta^k$, $2\sqrt{t}y_k = \xi^k - \eta^k$. Since

$$e^B = \sum_{k=0}^{\infty} \frac{B^k}{k!}$$
 and $\frac{B^k}{k!} = \frac{1}{k!} \begin{bmatrix} x_k & y_k \\ ty_k & x_k \end{bmatrix}$,

we express x_k and y_k in terms of ξ and η and obtain the desired results.

11. x_n and y_n can be extended to negative integers by defining $x_{-n} = x_n \beta^{-n}$ and $y_{-n} = -y_n \beta^{-n}$. We will then have

$$B^{-n} = \begin{bmatrix} x & y \\ ty & x \end{bmatrix}^{-n} = \begin{bmatrix} x_{-n} & y_{-n} \\ ty_{-n} & x_{-n} \end{bmatrix} = B_{-n};$$

here we have used the property

$$\left(\begin{bmatrix} x & y \\ ty & x \end{bmatrix}^{-1}\right)^n = \left(\frac{1}{\beta}\begin{bmatrix} x & -y \\ -ty & x \end{bmatrix}\right)^n = \frac{1}{\beta^n}\begin{bmatrix} x_n & -y_n \\ -ty_n & x_n \end{bmatrix}.$$

All the recurrence relations extend to the negative integers, also. Notice that $B^0 = I$, the identity matrix.

3. THE BRAHMAGUPTA POLYNOMIALS

1. Using the Binet forms (6) and (7), we can deduce a number of results. Write x_n and y_n as polynomials in x and y using the binomial expansion:

$$x_{n} = x^{n} + t \binom{n}{2} x^{n-2} y^{2} + t^{2} \binom{n}{4} x^{n-4} y^{4} + \cdots,$$

$$y_{n} = n x^{n-1} y + t \binom{n}{3} x^{n-3} y^{3} + t^{2} \binom{n}{5} x^{n-5} y^{5} + \cdots$$

Notice that x_n and y_n are homogeneous in x and y. The first few polynomials are

$$x_0 = 1, \ x_1 = x, \ x_2 = x^2 + ty^2, \ x_3 = x^3 + 3tyx^2, \ x_4 = x^4 + 6tx^2y^2 + t^2y^4, \dots,$$

$$y_0 = 0, \ y_1 = y, \ y_2 = 2xy, \ y_3 = 3x^2y + ty^3, \ y_4 = 4x^3y + 4txy^3, \dots.$$

2. If t > 0, then x_n and y_n satisfy

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \sqrt{t}, \quad \lim_{n \to \infty} \frac{x_n}{x_{n-1}} = \lim_{n \to \infty} \frac{y_n}{y_{n-1}} = x + \sqrt{t}y.$$

FEB.

$$\frac{\partial x_n}{\partial x} = \frac{\partial y_n}{\partial y} = nx_{n-1},$$
$$\frac{\partial x_n}{\partial y} = t\frac{\partial y_n}{\partial y} = nty_{n-1}.$$

From the above relations, we infer that x_n and y_n are the polynomial solutions of the wave equation

$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{t}\frac{\partial^2}{\partial y^2}\right)U = 0.$$

4. If $\beta = -1$, then $ty^2 = x^2 + 1$, then the difference equations (8) become

$$x_{n+1} = 2x x_n + x_{n-1}, \quad y_{n+1} = 2x y_n + y_{n-1}.$$
(9)

5. If $2x = \alpha$ and $\beta = 1$, $x_1 = 1$, $x_2 = \alpha$, and $y_1 = 1$, $y_2 = \alpha - 1$, then x_n and y_n generate Morgan-Voyce polynomials [6], [9].

4. RECURRENCE RELATIONS

1. From the Binet forms (6) and (7), we can derive the following recurrence relations:

(i)
$$x_{m+n} = x_m x_n + t y_m y_n$$
,
(ii) $y_{m+n} = x_m y_n + y_m x_n$,
(iii) $\beta^n x_{m-n} = x_m x_n - t y_m y_n$,
(iv) $\beta^n y_{m-n} = x_n y_m - x_m y_n$,
(v) $x_{m+n} + \beta^n x_{m-n} = 2x_m x_n$,
(vi) $y_{m+n} + \beta^n y_{m-n} = 2x_n y_m$,
(vii) $x_{m+n} - \beta^n x_{m-n} = 2t y_m y_n$,
(viii) $y_{m+n} - \beta^n y_{m-n} = 2x_m y_n$,
(ix) $2(x_m^2 - x_{m+n} x_{m-n}) = \beta^{m-n} (\beta^n - x_{2n})$,
(x) $x_{2m} - 2t y_{m+n} y_{m-n} = \beta^{m-n} x_{2n}$.
(10)

2. Put m = n in (i) and (ii) above; then we see that

$$x_{2n} = x_n^2 + ty_n^2, \quad y_{2n} = 2x_n y_n,$$

and these relationships imply that

- (a) x_{2n} is divisible by $x_n \pm i\sqrt{t}y_n$, if t > 0,
- (b) x_{2n} is divisible by $x_n \pm i\sqrt{t}y_n$, if t < 0,
- (c) y_{2n} is divisible by x_n and y_n ; also, if r divides s, then x_{rn} and y_{rn} are divisors of y_{sn} .
- 3. Let $\sum_{k=1}^{n} = \sum_{k=1}^{n} \sum_{k=1}$

(i)
$$\sum x_{k} = \frac{\beta x_{n} - x_{n+1} + x - \beta}{\beta - 2x + 1}$$
,
(ii) $\sum y_{k} = \frac{\beta y_{n} - y_{n+1} + y}{\beta - 2x + 1}$,
(iii) $\sum x_{k}^{2} = \frac{\beta^{2} x_{2n} - x_{2n+2} + x_{2} - \beta^{2}}{2(\beta^{2} - 2x_{2} + 1)} + \frac{\beta(\beta^{n} - 1)}{2(\beta - 1)}$,
(iv) $\sum y_{k}^{2} = \frac{\beta^{2} x_{2n} - x_{2n+2} + x_{2} - \beta^{2}}{2t(\beta^{2} - 2x_{2} + 1)} - \frac{\beta(\beta^{n} - 1)}{2t(\beta - 1)}$,
(v) $2\sum x_{k} x_{n+1-k} = nx_{n+1} + \frac{\beta y_{n}}{y}$,
(vi) $2t \sum y_{k} y_{n+1-k} = nx_{n+1} - \frac{\beta y_{n}}{y}$,
(vii) $2\sum x_{k} y_{n-k+1} = 2\sum y_{k} x_{n-k+1} = ny_{n+1}$.

4. Now we show an interesting result which generalizes a property that holds between F_n and L_n , namely, $e^{L(x)} = F(x)$, where

$$F(x) = F_1 + F_2 x + F_3 x^2 + \dots + F_{n+1} x^n + \dots,$$

and

$$L(x) = L_1 x + \frac{L_2}{2} x^2 + \frac{L_3}{3} x^2 + \dots + \frac{L_n}{n} x^n + \dots$$

(see [4]). Let X and Y be generating functions of x_n and y_n , respectively; that is,

$$X = \sum_{1}^{\infty} \frac{x_n}{n} s^n, \quad Y = \sum_{1}^{\infty} y_n s^n,$$

then $Y(s) = sye^{2X(s)}$. To prove this result, consider $Y(s) = y_1s + y_2s^2 + y_3s^3 + \dots + y_ns^n + \dots$. Then $sY(s) = y_1s^2 + y_2s^3 + y_3s^4 + \dots + y_ns^{n+1} + \dots$, and $s^2Y(s) = y_1s^3 + y_2s^4 + \dots + y_ns^{n+2} + \dots$. Substituting the power series for Y(s) into the expression $Y(x) - 2xsY(s) + \beta s^2Y(s)$, we obtain

$$[1-2xs+\beta s^{2}]Y(s) = ys + \sum_{k=1}^{\infty} [y_{k+1}-2xy_{k}+\beta y_{k-1}]s^{k+1},$$

where we have put $y_1 = y$. Now, using the property $y_{k+1} - 2xy_k + \beta y_{k-1} = 0$ in equation (8), we find that the above expression reduces to

$$[1 - 2xs + \beta s^{2}]Y(s) = ys.$$
(12)

Now consider the series

$$X(s) = x_1 s + \frac{x_2}{2} s^2 + \frac{x_3}{3} s^3 + \dots + \frac{x_n}{n} s^n + \dots,$$

and in it express x_n in terms of ξ_n and η_n to get

$$X(s) = \frac{1}{2}(\zeta + \eta)s + \frac{1}{2}\left[\frac{1}{2}(\xi^{2} + \eta^{2})\right]s^{2} + \frac{1}{3}\left[\frac{1}{2}(\xi^{3} + \eta^{3})\right]s^{3} + \dots + \frac{1}{n}\left[\frac{1}{2}(\xi^{n} + \eta^{n})\right]s^{n} + \dots,$$

which can be rewritten in the form

FEB.

$$X(s) = \frac{1}{2} \left[\xi s + \frac{1}{2} \xi^2 s^2 + \frac{1}{3} \xi^3 s^3 + \cdots \right] + \frac{1}{2} \left[\eta s + \frac{1}{2} \eta^2 s^2 + \frac{1}{3} \eta^3 s^3 + \cdots \right]$$

Therefore,

$$X(s) = -\frac{1}{2}\ln(1-\xi s) - \frac{1}{2}\ln(1-\eta s) = -\frac{1}{2}\ln[(1-\xi s)(1-\eta s)].$$

Since $(1 - \xi s)(1 - \eta s) = 1 - 2xs + \beta s^2$, we have

$$2X(s) = -\ln[1 - 2xs + \beta s^{2}].$$
(13)

Now compare (12) and (13) and obtain the desired result: $Y(s) = sye^{2X(s)}$.

5. SERIES SUMMATION INVOLVING RECIPROCALS OF x_n AND y_n

Let us look at some infinite series summations involving x_n and y_n and extend some of the infinite series results that are known for F_n and L_n [4] and for $P_n(x)$ and $Q_n(x)$ [7] to x_n and y_n . First, we shall show that

1.
$$\sum_{k=1}^{\infty} \frac{1}{x_{k+1}} \left(\frac{2x}{x_{k-1}} - \frac{\beta+1}{x_k} \right) = \frac{1}{x}.$$

To show the above result, consider

$$\frac{1}{x_{k-1}x_k} - \frac{1}{x_k x_{k+1}} = \frac{x_{k+1} - x_{k-1}}{x_{k-1} x_k x_{k+1}}$$
$$= \frac{2x x_k - \beta x_{k-1} - x_{k-1}}{x_{k-1} x_k x_{k+1}} = \frac{2x}{x_{k-1} x_{k+1}} - \frac{\beta + 1}{x_k x_{k+1}},$$

where we have used the property $x_{k+1} = 2xx_k - \beta x_{k-1}$. Therefore,

$$\sum_{k=1}^{\infty} \frac{1}{x_{k+1}} \left(\frac{2x}{x_{k-1}} - \frac{\beta+1}{x_k} \right) = \sum_{k=1}^{\infty} \left(\frac{1}{x_{k-1}x_k} - \frac{1}{x_k} \right) = \frac{1}{x_0x_1} = \frac{1}{x_0}$$

In particular, if $ty^2 = 1 + x^2$ and y = 1, then $\beta = -1$, and the above result reduces to

$$\sum_{k=1}^{\infty} \frac{1}{x_{k-1}x_{k+1}} = \frac{1}{2x^2},$$

where x_k is given by equation (9). Similarly, we can show that

2.
$$\sum_{k=r+1}^{\infty} \left(\frac{2x}{x_{k-1}x_{k+1}} - \frac{\beta+1}{x_{k+1}x_k} \right) = \frac{1}{x_r x_{r+1}}$$

For the special case $ty^2 = 1 + x^2$ and y = 1, then $\beta = -1$ and the above result becomes

$$\sum_{k=r+1}^{\infty} \frac{1}{x_{k-1}x_{k+1}} = \frac{1}{2xx_rx_{r+1}},$$

where x_k is given by equation (9). Following a similar argument, we can show

1996]

$$\sum_{k=r+1}^{\infty} \left(\frac{2x}{y_{k-1}y_{k+1}} - \frac{\beta+1}{y_ky_{k+1}} \right) = \frac{1}{y_ry_{r+1}}$$

Again using $2xx_k = x_{k+1} + \beta x_{k-1}$, we can derive

$$\sum_{k=r+1}^{\infty} \frac{2xx_k}{x_{k-1}x_{k+1}} = \sum_{k=r+1}^{\infty} \left(\frac{1}{x_{k-1}} + \frac{\beta}{x_{k+1}} \right).$$

If $ty^2 = 1 + x^2$ and y = 1, then we have

3.

4.

5.

$$\sum_{k=r+1}^{\infty} \frac{x_k}{x_{k-1}x_{k+1}} = \frac{1}{2x} \left(\frac{1}{x_r} + \frac{1}{x_{r+1}} \right),$$

where x_k is given by equation (9). Similarly, from the recurrence relation $2xy_k = y_{k+1} + \beta y_{k-1}$, we have

$$\sum_{k=r+1}^{\infty} \frac{2xy_k}{y_{k-1}y_{k+1}} = \sum_{k=r+1}^{\infty} \left(\frac{1}{y_{k-1}} + \frac{\beta}{y_{k+1}} \right).$$

In particular, if $ty^2 = 1 + x^2$ and y = 1, then $\beta = -1$ and the above result becomes

$$\sum_{k=r+1}^{\infty} \frac{y_k}{y_{k-1}y_{k+1}} = \frac{1}{2x} \left(\frac{1}{y_r} + \frac{1}{y_{r+1}} \right),$$

where y_k is now given by equation (9).

6. Now we generalize the results of items 2 and 3 of this section; we shall show that

$$\sum_{k=2}^{\infty} \frac{1}{x_{(k+1)r}} \left(\frac{2x_r}{x_{(k-1)r}} - \frac{\beta^r + 1}{x_{kr}} \right) = \frac{1}{x_r x_{2r}}.$$

To show this, we consider the left-hand side of the above result:

$$\sum_{k=2}^{\infty} \frac{1}{x_{(k+1)r}} \left(\frac{2x_r x_{kr} - \beta^r x_{(k-1)r} - x_{(k-1)r}}{x_{(k-1)r} x_{kr}} \right)$$

The above result can be simplified by using property (v) of (10), with m = rk, n = r, that is, $x_{rk+r} + \beta^r x_{rk-r} = 2x_{rk}x_r$. Then the above expression becomes

$$\sum_{k=2}^{\infty} \frac{1}{x_{(k+1)r}} \left(\frac{x_{(k+1)r} - x_{(k-1)r}}{x_{(k-1)r} x_{kr}} \right),$$

which reduces to

$$\sum_{k=2}^{\infty} \left(\frac{1}{x_{(k-1)r} x_{kr}} - \frac{1}{x_{kr} x_{(k+1)r}} \right),$$

which, when summed over k, reduces to $1/(x_r x_{2r})$. Similarly, we show that

$$\sum_{k=2}^{\infty} \frac{1}{y_{(k+1)r}} \left(\frac{2x_r}{y_{(k-1)r}} - \frac{\beta^r + 1}{y_{kr}} \right) = \frac{1}{y_r y_{2r}}.$$

[FEB.

36

7. Let us now generalize a property that holds for Fibonacci series [4]. For t > 0, consider the series:

$$S = \sum_{k=2}^{\infty} \frac{\beta^{2^{k-1}-2}y_2}{y_{2^k}} = \frac{y_2}{y_4} + \frac{\beta^2 y_2}{y_8} + \frac{\beta^6 y_2}{y_{16}} + \cdots$$

Denote

$$S_n = \frac{y_2}{y_4} + \frac{\beta^2 y_2}{y_8} + \frac{\beta^6 y_2}{y_{16}} + \dots + \frac{\beta^{2^{n-1}-2} y_2}{y_{2^n}}.$$

By induction we shall show that

$$S_n = \frac{y_{2^n - 2}}{y_{2^n}}.$$
 (14)

Note that $y_{2^n} = 0$ implies that either x = 0 or y = 0 from the Binet form for y_{2^n} . Therefore, we shall assume that $y_{2^n} \neq 0$. Observe also that equation (12) is true for n = 2, 3. Consider

$$S_{n+1} = S_n + \frac{\beta^{2^n - 2} y_2}{y_{2^{n+1}}} = \frac{y_{2^n - 2}}{y_{2^n}} + \frac{\beta^{2^n - 2} y_2}{y_{2^{n+1}}} = \frac{y_{2^{n+1}} y_{2^n - 2} + y_{2^n} \beta^{2^n - 2} y_2}{y_{2^n} y_{2^{n+1}}}.$$

Use the property $y_{2m} = 2x_m y_m$, with $m = 2^{n+1} = 2(2^n)$, to get

$$S_{n+1} = \frac{2x_{2^n}y_{2^n}y_{2^{n-2}} + y_{2^n}\beta^{2^n-2}y_2}{y_{2^n}y_{2^{n+1}}} = \frac{2x_{2^n}y_{2^{n-2}} + \beta^{2^n-2}y_2}{y_{2^{n+1}}}.$$

Now recall property (viii) of equation (10), $y_{m+p} - \beta^p y_{m-p} = 2x_m y_p$, and in it set $m = 2^n$, $p = 2^n - 2$. We then have

$$S_{n+1} = \frac{y_{2^{n+1}-2}}{y_{2^{n+1}}},$$

which completes the induction. Therefore, for t > 0, we have

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{y_{2^n - 2}}{y_{2^n}} = \xi^{-2} = \frac{1}{(x + y\sqrt{t})^2}$$

6. CONVOLUTIONS FOR x_n AND y_n

Given two homogeneous polynomial sequences $a_n(x, y)$ and $b_n(x, y)$ in two variables x and y, where n is an integer ≥ 1 , their first convolution sequence is defined by

$$(a_n * b_n)^{(1)} = \sum_{j=1}^n a_j b_{n+1-j} = \sum_{j=1}^n b_j a_{n+1-j}.$$

In the above definition, we have written $a_n = a_n(x, y)$ and $b_n = b_n(x, y)$. Denote $x_n * x_n = X_n^{(1)}$, $y_n * y_n = Y_n^{(1)}$, $2x_n * y_n = y_n^{(1)}$, and $X_n^{(1)} + tY_n^{(1)} = x_n^{(1)}$. To determine these convolutions, we use the matrix properties of *B*, namely,

$$\begin{bmatrix} x & y \\ ty & x \end{bmatrix}^{n+1} = \begin{bmatrix} x_{n+1} & y_{n+1} \\ ty_{n+1} & x_{n+1} \end{bmatrix} = B^{n+1} = B^j B^{n+1-j} = \begin{bmatrix} x_j & y_j \\ ty_j & x_j \end{bmatrix} \begin{bmatrix} x_{n+1-j} & y_{n+1-j} \\ ty_{n+1-j} & x_{n+1-j} \end{bmatrix}$$

1996]

37

Let

$$B_n^{(1)} = \sum_{j=1}^n B_j B_{n+1-j} = \sum_{j=1}^n B^{n+1}.$$

Note that $B^n = B_n$. We prefer using the subscript notation. Since $\sum_{j=1}^n B_{n+1} = nB_{n+1}$, we have

$$nB_{n+1} = \sum_{j=1}^{n} \begin{bmatrix} x_j & y_j \\ ty_j & x_j \end{bmatrix} \begin{bmatrix} x_{n+1-j} & y_{n+1-j} \\ ty_{n+1-j} & x_{n+1-j} \end{bmatrix}.$$

Let $\sum_{j=1}^{n} = \sum_{j=1}^{n}$, then the above result can be written

$$nB_{n+1} = \begin{bmatrix} \sum x_j x_{n+1-j} + t \sum y_j y_{n+1-j} & \sum x_j y_{n+1-j} + \sum y_j x_{n+1-j} \\ t (\sum x_j y_{n+1-j} + \sum y_j x_{n+1-j}) & \sum x_j x_{n-j} + t \sum y_j y_{n+1-j} \end{bmatrix},$$

or

$$nB_{n+1} = \begin{bmatrix} x_n * x_n + ty_n * y_n & 2x_n * y_n \\ 2tx_n * y_n & x_n * x_n + ty_n * y_n \end{bmatrix} = \begin{bmatrix} x_n^{(1)} & y_n^{(1)} \\ ty_n^{(1)} & x_n^{(1)} \end{bmatrix} = B_n^{(1)}.$$

Therefore, we have

$$x_n^{(1)} = nx_{n+1}, \quad y_n^{(1)} = ny_{n+1}$$

The above result can be extended to the k^{th} convolution by defining

$$B_n^{(k)} = \sum_{j=1}^n B_j (B^{(k-1)})_{n+1-j}.$$

Now we shall show that

$$B_n^{(k)} = \binom{n+k-1}{k} B_{n+k}.$$

We shall prove the result by induction on k. Since $B^{(1)} = nB_{n+1}$, the result is true for k = 1. Now consider

$$B_{n}^{(k+1)} = \sum B_{j} B_{n+1-j}^{(k)} = \sum B_{n+1-j} (B^{(k)})_{j}$$

= $\sum B_{n+1-j} {j + k - 1 \choose k} B_{j+k} = B_{n+k+1} \sum {j + k - 1 \choose k} = {n+k \choose k+1} B_{n+k+1}$

which completes the induction.

From the above results, we write the k^{th} convolution of x_n and y_n :

$$x_{n}^{(k)} = \binom{n+k-1}{k} x_{n+k}, \quad y_{n}^{(k)} = \binom{n+k-1}{k} y_{n+k}.$$
 (15)

Also, from properties (v) and (vi) of (10), we have

$$2X^{(1)} = nx_{n+1} + \frac{\beta y_n}{y}, \quad 2tY^{(1)} = nx_{n+1} - \frac{\beta y_n}{y}, \tag{16}$$

which can be written in the form

$$2X^{(1)} = x_n^{(1)} + \frac{\beta y_n}{y}, \quad 2tY^{(1)} = x_n^{(1)} - \frac{\beta y_n}{y}.$$

[FEB.

We can also extend the above result to the k^{th} convolution of x_n and y_n , namely,

$$x_n * x_n^{(k)}, y_n * y_n^{(k)}, x_n * y_n^{(k)}, y_n * x_n^{(k)}.$$

Using the results (10)(v), (15), and (16), and some computation, we obtain

$$2x_n * x_n^{(k)} = \binom{n+k}{k+1} x_{n+k+1} + \sum_{j=1}^n \binom{j+k-1}{k} \beta^{j+k} x_{n+1-2j-k}.$$

Similarly, we have

$$2ty_{n}*y_{n}^{(k)} = \binom{n+k}{k+1}x_{n+k+1} - \Sigma\binom{j+k-1}{k}\beta^{j+k}x_{n+1-2j-k},$$

$$2x_{n}^{(k)}*y_{n} = \binom{n+k}{k+1}y_{n+k+1} + \Sigma\binom{j+k-1}{k}\beta^{j+k}y_{n+1-2j-k},$$

$$2x_{n}*y_{n}^{(k)} = \binom{n+k}{k+1}y_{n+k+1} - \Sigma\binom{j+k-1}{k}\beta^{j+k}y_{n+1-2j-k}.$$

What we have seen here is but a sample of the properties displayed by the versatile matrix B. We are sure there are many more.

REFERENCES

- 1. R. C. Entringer & P. J. Slater. "Gossips and Telegraphs." J. Franklin Institute 307.6 (1979): 353.
- 2. G. H. Hardy and E. M. Wright. An Introduction to Number Theory. Oxford: Oxford University Press, 1960.
- 3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
- 4. R. Honsberger. *Mathematical Gems*, pp. 102-38. New York: The Mathematical Association of America, 1985.
- 5. A. F. Horadam & J. M. Mahon. "Convolutions for Pell Polynomials." In *Fibonacci Num*bers and Their Applications. Dordrecht: D. Reidel, 1986.
- J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line Theory." In *Fibonacci Numbers and Their Applications*. Dordrecht: D. Reidel, 1986.
- 7. J. M. Mahon & A. F. Horadam. "Infinite Series Summation Involving Reciprocals of Pell Polynomials." In *Fibonacci Numbers and Their Applications*. Dordrecht: D. Reidel, 1986.
- 8. C. D. Olds. *Continued Fractions*, p. 118. New York: Random House and the L. W. Singer Company, 1963.
- 9. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." *The Fibonacci Quarterly* 6.2 (1968):167-75.
- 10. A. Weil. Number Theory: An Approach through History from Hammurapi to Legendre. Boston: Birkhäuser, 1983.

AMS Classification Numbers: 01A32, 11B37, 11B39

*** *** ***