THE BRAHMAGUPTA POLYNOMIALS

E. R. Suryanarayan
Department of Mathematics, University of Rhode Island, Kingston, RI 02881
(Submitted May 1994)

1. INTRODUCTION

In this paper we define the Brahmagupta matrix [see (1), below] and show that it generates a class of homogeneous polynomials x_{n} and y_{n} in x and y satisfying a host of relations; the polynomials contain as special cases the well-known Fibonacci, Lucas, and Pell sequences, and the sequences observed by Entringer and Slater [1], while they were investigating the problem of information dissemination through telegraphs; x_{n} and y_{n} also include the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [5], [7], and the Morgan-Voyce polynomials in Ladder Networks and in Electric Line Theory [6], [9]. We also extend some series and convolution properties that hold for the Fibonacci and Lucas sequences and the Pell and Pell-Lucas polynomials to x_{n} and y_{n} [7], [5].

2. THE BRAHMAGUPTA MATRIX

To solve the indeterminate equation $x^{2}=t y^{2} \pm m$ in integers, where t is square free, the Indian astronomer and mathematician Brahmagupta (ca. 598) gave an iterative method of deriving new solutions from the known ones by his samasa-bhavana, the principle of composition: If $\left(x_{1}, y_{1}, m_{1}\right)$ and $\left(x_{2}, y_{2}, m_{2}\right)$ are trial solutions of the indeterminate equation, then the triple $\left(x_{1} x_{2} \pm t y_{1} y_{2}, x_{1} y_{2} \pm y_{1} x_{2}, m_{1} m_{2}\right)$ is also a solution of the indeterminate equation which can be expressed using the multiplication rule for a 2 by 2 matrix. Notice that if we set

$$
B(x, y)=\left[\begin{array}{cc}
x & y \tag{1}\\
\pm t y & \pm x
\end{array}\right]
$$

and $m=\operatorname{det} B$, then the results

$$
\begin{gather*}
B\left(x_{1}, y_{1}\right) B\left(x_{2}, y_{2}\right)=B\left(x_{1} x_{2} \pm y_{1} y_{2}, x_{1} y_{2} \pm y_{1} x_{2}\right) \tag{2}\\
\operatorname{det}\left[B\left(x_{1}, y_{1}\right) B\left(x_{2}, y_{2}\right)\right]=\operatorname{det} B\left(x_{1}, y_{1}\right) \operatorname{det} B\left(x_{2}, y_{2}\right)=m_{1} m_{2} \tag{3}
\end{gather*}
$$

give the Brahmagupta rule. Equation (3) is usually referred to as the Brahmagupta Identity and appears often in the history of number theory [10].

Let \mathbf{M} denote the set of matrices of the form

$$
B=\left[\begin{array}{cc}
x & y \tag{4}\\
t y & x
\end{array}\right]
$$

where t is a fixed real number and x and y are variables. Define B to be the Brahmagupta matrix. M satisfies the following properties:

1. \mathbf{M} is a field for $x, y, t \in R$ and $t<0$; in particular, if $t=-1$, then we have the well-known one-to-one correspondence between the set of matrices and the complex numbers $x+i y$:

$$
\left[\begin{array}{cc}
x & y \\
-y & x
\end{array}\right] \leftrightarrow x+i y
$$

2. The following eigenrelations, in which T denotes the transpose, hold:

$$
B[1, \pm \sqrt{t}]^{T}=(x \pm y \sqrt{t})[1, \pm \sqrt{t}]^{T}
$$

and these relations imply

$$
B^{n}[1, \pm \sqrt{t}]^{T}=(x \pm y \sqrt{t})^{n}[1, \pm \sqrt{t}]^{T}
$$

and

$$
\left[\begin{array}{cc}
x & y \\
t y & x
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{t}{2}} & -\sqrt{\frac{t}{2}}
\end{array}\right]\left[\begin{array}{cc}
x+y \sqrt{t} & 0 \\
0 & x-y \sqrt{t}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2 t}} \\
\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2 t}}
\end{array}\right] .
$$

Define

$$
B^{n}=\left[\begin{array}{cc}
x & y \\
t y & x
\end{array}\right]^{n}=\left[\begin{array}{ll}
x_{n} & y_{n} \\
t y_{n} & x_{n}
\end{array}\right]=B_{n} .
$$

3. Then the following recurrence relations are satisfied:

$$
\begin{equation*}
x_{n+1}=x x_{n}+t y y_{n}, y_{n+1}=x y_{n}+y x_{n}, \tag{5}
\end{equation*}
$$

with $x_{n}=x$ and $y_{n}=y$.
4. Using the above eigenrelations, we derive the following Binet forms for x_{n} and y_{n} :

$$
\begin{align*}
x_{n} & =\frac{1}{2}\left[(x+y \sqrt{t})^{n}+(x-y \sqrt{t})^{n}\right] \tag{6}\\
y_{n} & =\frac{1}{2 \sqrt{t}}\left[(x+y \sqrt{t})^{n}-(x-y \sqrt{t})^{n}\right], \tag{7}
\end{align*}
$$

and $x_{n} \pm \sqrt{t} y_{n}=(x \pm \sqrt{t} y)^{n}$.
5. Let $\xi_{n}=x_{n}+y_{n} \sqrt{t}, \eta_{n}-y_{n} \sqrt{t}$, and $\beta_{n}=x_{n}^{2}-t y_{n}^{2}$, with $\eta_{n}=\eta, \xi_{n}=\xi$, and $\beta_{n}=\beta$; we then have $\xi_{n}=\xi^{n}, \eta_{n}=\eta^{n}$, and $\beta_{n}=\beta^{n}$. To show the last equality, consider $\beta^{n}=\left(x^{2}-t y^{2}\right)^{n}=$ $\xi^{n} \eta^{n}=\xi_{n} \eta_{n}=\left(x_{n}^{2}-t y_{n}^{2}\right)=\beta_{n}$. Notice that $\beta=\operatorname{det} B$.
6. The recurrence relations (5) also imply that x_{n} and y_{n} satisfy the difference equations:

$$
\begin{equation*}
x_{n+1}=2 x x_{n}-\beta x_{n-1}, y_{n+1}=2 x y_{n}-\beta y_{n-1} . \tag{8}
\end{equation*}
$$

Conversely, if $x_{0}=1, x_{1}=x$, and $y_{0}=0, y_{1}=y$, then the solutions of the difference equations (8) are indeed given by the Binet forms (6) and (7).
7. Notice that if we set $x=1 / 2=y$ and $t=5$, then $\beta=-1$ and $2 y_{n}=F_{n}$ is the Fibonacci sequence, while $2 x_{n}=L_{n}$ is the Lucas sequence, where $n>0$. For the number-theoretic properties of F_{n} and L_{n}, the reader is referred to [2] and [3].
8. In particular, if $x=y=1$ and $t=2$, then both x_{n} and y_{n} satisfy $x_{n}^{2}-2 y_{n}^{2}=(-1)^{n}$ and they generate the Pell sequences:

$$
x_{n}=1,1,3,7,17,41,99,239,577, \ldots, y_{n}=0,1,2,5,12,29,70,169,408, \ldots
$$

It is interesting to note that if we set

$$
a=2\left(x_{n}+y_{n}\right) y_{n} \quad b=x_{n}\left(x_{n}+2 y_{n}\right), c=x_{n}^{2}+2 x_{n} y_{n}+2 y_{n}^{2},
$$

we then obtain integral solutions of the Pythagorean relation $a^{2}+b^{2}=c^{2}$, where a and b are consecutive integers [8].
9. If $t=1$, then $x_{n}+y_{n}=(x+y)^{n}$, and if $t=-1$, then $x_{n}+i y_{n}=(x+i y)^{n}$. Also, for every square free integer t, the set of matrices \mathbf{M} is isomorphic to the set $\{x+y \sqrt{t} \mid x, y \in Z\}$, where Z is the set of integers.
10.

$$
e^{B}=\frac{1}{4}\left[\begin{array}{cc}
e^{\xi}+e^{\eta} & \frac{1}{\sqrt{t}}\left(e^{\xi}-e^{\eta}\right) \\
\sqrt{t}\left(e^{\xi}-e^{\eta}\right) & e^{\xi}+e^{\eta}
\end{array}\right], \operatorname{det} e^{B}=e^{2 x}
$$

To show these results, let us write $2 x_{k}=\xi^{k}+\eta^{k}, 2 \sqrt{t} y_{k}=\xi^{k}-\eta^{k}$. Since

$$
e^{B}=\sum_{k=0}^{\infty} \frac{B^{k}}{k!} \quad \text { and } \quad \frac{B^{k}}{k!}=\frac{1}{k!}\left[\begin{array}{cc}
x_{k} & y_{k} \\
y_{k} & x_{k}
\end{array}\right]
$$

we express x_{k} and y_{k} in terms of ξ and η and obtain the desired results.
11. x_{n} and y_{n} can be extended to negative integers by defining $x_{-n}=x_{n} \beta^{-n}$ and $y_{-n}=-y_{n} \beta^{-n}$. We will then have

$$
B^{-n}=\left[\begin{array}{cc}
x & y \\
t y & x
\end{array}\right]^{-n}=\left[\begin{array}{cc}
x_{-n} & y_{-n} \\
t y_{-n} & x_{-n}
\end{array}\right]=B_{-n}
$$

here we have used the property

$$
\left(\left[\begin{array}{cc}
x & y \\
t y & x
\end{array}\right]^{-1}\right)^{n}=\left(\frac{1}{\beta}\left[\begin{array}{cc}
x & -y \\
-t y & x
\end{array}\right]\right)^{n}=\frac{1}{\beta^{n}}\left[\begin{array}{cc}
x_{n} & -y_{n} \\
-t y_{n} & x_{n}
\end{array}\right]
$$

All the recurrence relations extend to the negative integers, also. Notice that $B^{0}=I$, the identity matrix.

3. THE BRAHMAGUPTA POLYNOMIALS

1. Using the Binet forms (6) and (7), we can deduce a number of results. Write x_{n} and y_{n} as polynomials in x and y using the binomial expansion:

$$
\begin{aligned}
& x_{n}=x^{n}+t\binom{n}{2} x^{n-2} y^{2}+t^{2}\binom{n}{4} x^{n-4} y^{4}+\cdots \\
& y_{n}=n x^{n-1} y+t\binom{n}{3} x^{n-3} y^{3}+t^{2}\binom{n}{5} x^{n-5} y^{5}+\cdots
\end{aligned}
$$

Notice that x_{n} and y_{n} are homogeneous in x and y. The first few polynomials are

$$
\begin{aligned}
& x_{0}=1, x_{1}=x, x_{2}=x^{2}+t y^{2}, x_{3}=x^{3}+3 t y x^{2}, x_{4}=x^{4}+6 t x^{2} y^{2}+t^{2} y^{4}, \ldots \\
& y_{0}=0, y_{1}=y, y_{2}=2 x y, y_{3}=3 x^{2} y+t y^{3}, y_{4}=4 x^{3} y+4 t x y^{3}, \ldots
\end{aligned}
$$

2. If $t>0$, then x_{n} and y_{n} satisfy

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\sqrt{t}, \quad \lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}=\lim _{n \rightarrow \infty} \frac{y_{n}}{y_{n-1}}=x+\sqrt{t} y
$$

3.

$$
\begin{aligned}
& \frac{\partial x_{n}}{\partial x}=\frac{\partial y_{n}}{\partial y}=n x_{n-1}, \\
& \frac{\partial x_{n}}{\partial y}=t \frac{\partial y_{n}}{\partial y}=n t y_{n-1} .
\end{aligned}
$$

From the above relations, we infer that x_{n} and y_{n} are the polynomial solutions of the wave equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{t} \frac{\partial^{2}}{\partial y^{2}}\right) U=0 .
$$

4. If $\beta=-1$, then $t y^{2}=x^{2}+1$, then the difference equations (8) become

$$
\begin{equation*}
x_{n+1}=2 x x_{n}+x_{n-1}, \quad y_{n+1}=2 x y_{n}+y_{n-1} . \tag{9}
\end{equation*}
$$

5. If $2 x=\alpha$ and $\beta=1, x_{1}=1, x_{2}=\alpha$, and $y_{1}=1, y_{2}=\alpha-1$, then x_{n} and y_{n} generate MorganVoyce polynomials [6], [9].

4. RECURRENCE RELATIONS

1. From the Binet forms (6) and (7), we can derive the following recurrence relations:

$$
\begin{align*}
& \text { (i) } x_{m+n}=x_{m} x_{n}+t y_{m} y_{n}, \\
& \text { (ii) } y_{m+n}=x_{m} y_{n}+y_{m} x_{n}, \\
& \text { (iii) } \beta^{n} x_{m-n}=x_{m} x_{n}-t y_{m} y_{n}, \\
& \text { (iv) } \beta^{n} y_{m-n}=x_{n} y_{m}-x_{m} y_{n}, \\
& \text { (v) } x_{m+n}+\beta^{n} x_{m-n}=2 x_{m} x_{n}, \\
& \text { (vi) } y_{m+n}+\beta^{n} y_{m-n}=2 x_{n} y_{m}, \\
& \text { (vii) } x_{m+n}-\beta^{n} x_{m-n}=2 t y_{m} y_{n}, \tag{10}\\
& \text { (viii) } y_{m+n}-\beta^{n} y_{m-n}=2 x_{m} y_{n}, \\
& \text { (ix) } 2\left(x_{m}^{2}-x_{m+n} x_{m-n}\right)=\beta^{m-n}\left(\beta^{n}-x_{2 n}\right), \\
& \text { (x) } x_{2 m}-2 t y_{m+n} y_{m-n}=\beta^{m-n} x_{2 n} .
\end{align*}
$$

2. Put $m=n$ in (i) and (ii) above; then we see that

$$
x_{2 n}=x_{n}^{2}+t y_{n}^{2}, \quad y_{2 n}=2 x_{n} y_{n},
$$

and these relationships imply that
(a) $x_{2 n}$ is divisible by $x_{n} \pm i \sqrt{t} y_{n}$, if $t>0$,
(b) $x_{2 n}$ is divisible by $x_{n} \pm i \sqrt{t} y_{n}$, if $t<0$,
(c) $y_{2 n}$ is divisible by x_{n} and y_{n}; also, if r divides s, then $x_{r n}$ and $y_{r n}$ are divisors of $y_{s n}$.
3. Let $\sum_{k=1}^{n}=\Sigma$. Then, using the Binet forms, we can also derive the following relations:

$$
\begin{align*}
& \text { (i) } \sum x_{k}=\frac{\beta x_{n}-x_{n+1}+x-\beta}{\beta-2 x+1}, \\
& \text { (ii) } \sum y_{k}=\frac{\beta y_{n}-y_{n+1}+y}{\beta-2 x+1}, \\
& \text { (iii) } \sum x_{k}^{2}=\frac{\beta^{2} x_{2 n}-x_{2 n+2}+x_{2}-\beta^{2}}{2\left(\beta^{2}-2 x_{2}+1\right)}+\frac{\beta\left(\beta^{n}-1\right)}{2(\beta-1)}, \\
& \text { (iv) } \sum y_{k}^{2}=\frac{\beta^{2} x_{2 n}-x_{2 n+2}+x_{2}-\beta^{2}}{2 t\left(\beta^{2}-2 x_{2}+1\right)}-\frac{\beta\left(\beta^{n}-1\right)}{2 t(\beta-1)}, \\
& \text { (v) } 2 \sum x_{k} x_{n+1-k}=n x_{n+1}+\frac{\beta y_{n}}{y}, \tag{11}\\
& \text { (vi) } 2 t \sum y_{k} y_{n+1-k}=n x_{n+1}-\frac{\beta y_{n}}{y}, \\
& \text { (vii) } 2 \sum x_{k} y_{n-k+1}=2 \sum y_{k} x_{n-k+1}=n y_{n+1} .
\end{align*}
$$

4. Now we show an interesting result which generalizes a property that holds between F_{n} and L_{n}, namely, $e^{L(x)}=F(x)$, where

$$
F(x)=F_{1}+F_{2} x+F_{3} x^{2}+\cdots+F_{n+1} x^{n}+\cdots
$$

and

$$
L(x)=L_{1} x+\frac{L_{2}}{2} x^{2}+\frac{L_{3}}{3} x^{2}+\cdots+\frac{L_{n}}{n} x^{n}+\cdots
$$

(see [4]). Let X and Y be generating functions of x_{n} and y_{n}, respectively; that is,

$$
X=\sum_{1}^{\infty} \frac{x_{n}}{n} s^{n}, \quad Y=\sum_{1}^{\infty} y_{n} s^{n}
$$

then $Y(s)=s y e^{2 X(s)}$. To prove this result, consider $Y(s)=y_{1} s+y_{2} s^{2}+y_{3} s^{3}+\cdots+y_{n} s^{n}+\cdots$.
Then $s Y(s)=y_{1} s^{2}+y_{2} s^{3}+y_{3} s^{4}+\cdots+y_{n} s^{n+1}+\cdots$, and $s^{2} Y(s)=y_{1} s^{3}+y_{2} s^{4}+\cdots+y_{n} s^{n+2}+\cdots$.
Substituting the power series for $Y(s)$ into the expression $Y(x)-2 x s Y(s)+\beta s^{2} Y(s)$, we obtain

$$
\left[1-2 x s+\beta s^{2}\right] Y(s)=y s+\sum_{k=1}^{\infty}\left[y_{k+1}-2 x y_{k}+\beta y_{k-1}\right] s^{k+1}
$$

where we have put $y_{1}=y$. Now, using the property $y_{k+1}-2 x y_{k}+\beta y_{k-1}=0$ in equation (8), we find that the above expression reduces to

$$
\begin{equation*}
\left[1-2 x s+\beta s^{2}\right] Y(s)=y s \tag{12}
\end{equation*}
$$

Now consider the series

$$
X(s)=x_{1} s+\frac{x_{2}}{2} s^{2}+\frac{x_{3}}{3} s^{3}+\cdots+\frac{x_{n}}{n} s^{n}+\cdots
$$

and in it express x_{n} in terms of ξ_{n} and η_{n} to get

$$
X(s)=\frac{1}{2}(\zeta+\eta) s+\frac{1}{2}\left[\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)\right] s^{2}+\frac{1}{3}\left[\frac{1}{2}\left(\xi^{3}+\eta^{3}\right)\right] s^{3}+\cdots+\frac{1}{n}\left[\frac{1}{2}\left(\xi^{n}+\eta^{n}\right)\right] s^{n}+\cdots
$$

which can be rewritten in the form

$$
X(s)=\frac{1}{2}\left[\xi s+\frac{1}{2} \xi^{2} s^{2}+\frac{1}{3} \xi^{3} s^{3}+\cdots\right]+\frac{1}{2}\left[\eta s+\frac{1}{2} \eta^{2} s^{2}+\frac{1}{3} \eta^{3} s^{3}+\cdots\right] .
$$

Therefore,

$$
X(s)=-\frac{1}{2} \ln (1-\xi s)-\frac{1}{2} \ln (1-\eta s)=-\frac{1}{2} \ln [(1-\xi s)(1-\eta s)] .
$$

Since $(1-\xi s)(1-\eta s)=1-2 x s+\beta s^{2}$, we have

$$
\begin{equation*}
2 X(s)=-\ln \left[1-2 x s+\beta s^{2}\right] . \tag{13}
\end{equation*}
$$

Now compare (12) and (13) and obtain the desired result: $Y(s)=s y e^{2 X(s)}$.

5. SERIES SUMMATION INVOLVING RECIPROCALS OF $\boldsymbol{x}_{\boldsymbol{n}}$ AND $\boldsymbol{y}_{\boldsymbol{n}}$

Let us look at some infinite series summations involving x_{n} and y_{n} and extend some of the infinite series results that are known for F_{n} and $L_{n}[4]$ and for $P_{n}(x)$ and $Q_{n}(x)$ [7] to x_{n} and y_{n}. First, we shall show that
1.

$$
\sum_{k=1}^{\infty} \frac{1}{x_{k+1}}\left(\frac{2 x}{x_{k-1}}-\frac{\beta+1}{x_{k}}\right)=\frac{1}{x} .
$$

To show the above result, consider

$$
\begin{aligned}
\frac{1}{x_{k-1} x_{k}}-\frac{1}{x_{k} x_{k+1}} & =\frac{x_{k+1}-x_{k-1}}{x_{k-1} x_{k} x_{k+1}} \\
& =\frac{2 x x_{k}-\beta x_{k-1}-x_{k-1}}{x_{k-1} x_{k} x_{k+1}}=\frac{2 x}{x_{k-1} x_{k+1}}-\frac{\beta+1}{x_{k} x_{k+1}},
\end{aligned}
$$

where we have used the property $x_{k+1}=2 x x_{k}-\beta x_{k-1}$. Therefore,

$$
\sum_{k=1}^{\infty} \frac{1}{x_{k+1}}\left(\frac{2 x}{x_{k-1}}-\frac{\beta+1}{x_{k}}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{x_{k-1} x_{k}}-\frac{1}{x_{k} x_{k+1}}\right)=\frac{1}{x_{0} x_{1}}=\frac{1}{x} .
$$

In particular, if $t y^{2}=1+x^{2}$ and $y=1$, then $\beta=-1$, and the above result reduces to

$$
\sum_{k=1}^{\infty} \frac{1}{x_{k-1} x_{k+1}}=\frac{1}{2 x^{2}},
$$

where x_{k} is given by equation (9). Similarly, we can show that
2.

$$
\sum_{k=r+1}^{\infty}\left(\frac{2 x}{x_{k-1} x_{k+1}}-\frac{\beta+1}{x_{k+1} x_{k}}\right)=\frac{1}{x_{r} x_{r+1}} .
$$

For the special case $t y^{2}=1+x^{2}$ and $y=1$, then $\beta=-1$ and the above result becomes

$$
\sum_{k=r+1}^{\infty} \frac{1}{x_{k-1} x_{k+1}}=\frac{1}{2 x x_{r} x_{r+1}},
$$

where x_{k} is given by equation (9). Following a similar argument, we can show
3.

$$
\sum_{k=r+1}^{\infty}\left(\frac{2 x}{y_{k-1} y_{k+1}}-\frac{\beta+1}{y_{k} y_{k+1}}\right)=\frac{1}{y_{r} y_{r+1}}
$$

Again using $2 x x_{k}=x_{k+1}+\beta x_{k-1}$, we can derive
4.

$$
\sum_{k=r+1}^{\infty} \frac{2 x x_{k}}{x_{k-1} x_{k+1}}=\sum_{k=r+1}^{\infty}\left(\frac{1}{x_{k-1}}+\frac{\beta}{x_{k+1}}\right)
$$

If $t y^{2}=1+x^{2}$ and $y=1$, then we have

$$
\sum_{k=r+1}^{\infty} \frac{x_{k}}{x_{k-1} x_{k+1}}=\frac{1}{2 x}\left(\frac{1}{x_{r}}+\frac{1}{x_{r+1}}\right)
$$

where x_{k} is given by equation (9). Similarly, from the recurrence relation $2 x y_{k}=y_{k+1}+\beta y_{k-1}$, we have
5.

$$
\sum_{k=r+1}^{\infty} \frac{2 x y_{k}}{y_{k-1} y_{k+1}}=\sum_{k=r+1}^{\infty}\left(\frac{1}{y_{k-1}}+\frac{\beta}{y_{k+1}}\right)
$$

In particular, if $t y^{2}=1+x^{2}$ and $y=1$, then $\beta=-1$ and the above result becomes

$$
\sum_{k=r+1}^{\infty} \frac{y_{k}}{y_{k-1} y_{k+1}}=\frac{1}{2 x}\left(\frac{1}{y_{r}}+\frac{1}{y_{r+1}}\right)
$$

where y_{k} is now given by equation (9).
6. Now we generalize the results of items 2 and 3 of this section; we shall show that

$$
\sum_{k=2}^{\infty} \frac{1}{x_{(k+1) r}}\left(\frac{2 x_{r}}{x_{(k-1) r}}-\frac{\beta^{r}+1}{x_{k r}}\right)=\frac{1}{x_{r} x_{2 r}}
$$

To show this, we consider the left-hand side of the above result:

$$
\sum_{k=2}^{\infty} \frac{1}{x_{(k+1) r}}\left(\frac{2 x_{r} x_{k r}-\beta^{r} x_{(k-1) r}-x_{(k-1) r}}{x_{(k-1) r} x_{k r}}\right)
$$

The above result can be simplified by using property (v) of (10), with $m=r k, n=r$, that is, $x_{r k+r}+\beta^{r} x_{r k-r}=2 x_{r k} x_{r}$. Then the above expression becomes

$$
\sum_{k=2}^{\infty} \frac{1}{x_{(k+1) r}}\left(\frac{x_{(k+1) r}-x_{(k-1) r}}{x_{(k-1) r} x_{k r}}\right)
$$

which reduces to

$$
\sum_{k=2}^{\infty}\left(\frac{1}{x_{(k-1) r} x_{k r}}-\frac{1}{x_{k r} x_{(k+1) r}}\right)
$$

which, when summed over k, reduces to $1 /\left(x_{r} x_{2 r}\right)$. Similarly, we show that

$$
\sum_{k=2}^{\infty} \frac{1}{y_{(k+1) r}}\left(\frac{2 x_{r}}{y_{(k-1) r}}-\frac{\beta^{r}+1}{y_{k r}}\right)=\frac{1}{y_{r} y_{2 r}}
$$

7. Let us now generalize a property that holds for Fibonacci series [4]. For $t>0$, consider the series:

$$
S=\sum_{k=2}^{\infty} \frac{\beta^{k^{k-1}-2} y_{2}}{y_{2^{k}}}=\frac{y_{2}}{y_{4}}+\frac{\beta^{2} y_{2}}{y_{8}}+\frac{\beta^{6} y_{2}}{y_{16}}+\cdots .
$$

Denote

$$
S_{n}=\frac{y_{2}}{y_{4}}+\frac{\beta^{2} y_{2}}{y_{8}}+\frac{\beta^{6} y_{2}}{y_{16}}+\cdots+\frac{\beta^{\beta^{n-1}-2} y_{2}}{y_{2^{n}}} .
$$

By induction we shall show that

$$
\begin{equation*}
S_{n}=\frac{y_{2^{n}-2}}{y_{2^{n}}} \tag{14}
\end{equation*}
$$

Note that $y_{2^{n}}=0$ implies that either $x=0$ or $y=0$ from the Binet form for $y_{2^{n}}$. Therefore, we shall assume that $y_{2^{n}} \neq 0$. Observe also that equation (12) is true for $n=2,3$. Consider

$$
S_{n+1}=S_{n}+\frac{\beta^{2^{n}-2} y_{2}}{y_{2^{n+1}}}=\frac{y_{2^{n}-2}}{y_{2^{n}}}+\frac{\beta^{2^{n}-2} y_{2}}{y_{2^{n+1}}}=\frac{y_{2^{n+1}} y_{2^{n}-2}+y_{2^{n}} \beta^{2^{n}-2} y_{2}}{y_{2^{n}} y_{2^{n+1}}} .
$$

Use the property $y_{2 m}=2 x_{m} y_{m}$, with $m=2^{n+1}=2\left(2^{n}\right)$, to get

$$
S_{n+1}=\frac{2 x_{2^{n}} y_{2^{n}} y_{2^{n}-2}+y_{2^{n}} \beta^{2^{n}-2} y_{2}}{y_{2^{n}} y_{2^{n+1}}}=\frac{2 x_{2^{n}} y_{2^{n}-2}+\beta^{2^{n}-2} y_{2}}{y_{2^{n+1}}} .
$$

Now recall property (viii) of equation (10), $y_{m+p}-\beta^{p} y_{m-p}=2 x_{m} y_{p}$, and in it set $m=2^{n}$, $p=2^{n}-2$. We then have

$$
S_{n+1}=\frac{y_{2^{n+1}-2}}{y_{2^{n+1}}},
$$

which completes the induction. Therefore, for $t>0$, we have

$$
S=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{y_{2^{n}-2}}{y_{2^{n}}}=\xi^{-2}=\frac{1}{(x+y \sqrt{t})^{2}} .
$$

6. CONVOLUTIONS FOR $\boldsymbol{x}_{\boldsymbol{n}}$ AND $\boldsymbol{y}_{\boldsymbol{n}}$

Given two homogeneous polynomial sequences $a_{n}(x, y)$ and $b_{n}(x, y)$ in two variables x and y, where n is an integer ≥ 1, their first convolution sequence is defined by

$$
\left(a_{n} * b_{n}\right)^{(1)}=\sum_{j=1}^{n} a_{j} b_{n+1-j}=\sum_{j=1}^{n} b_{j} a_{n+1-j} .
$$

In the above definition, we have written $a_{n}=a_{n}(x, y)$ and $b_{n}=b_{n}(x, y)$. Denote $x_{n} * x_{n}=X_{n}^{(1)}$, $y_{n} * y_{n}=Y_{n}^{(1)}, 2 x_{n} * y_{n}=y_{n}^{(1)}$, and $X_{n}^{(1)}+t Y_{n}^{(1)}=x_{n}^{(1)}$. To determine these convolutions, we use the matrix properties of B, namely,

$$
\left[\begin{array}{cc}
x & y \\
t y & x
\end{array}\right]^{n+1}=\left[\begin{array}{cc}
x_{n+1} & y_{n+1} \\
t y_{n+1} & x_{n+1}
\end{array}\right]=B^{n+1}=B^{j} B^{n+1-j}=\left[\begin{array}{cc}
x_{j} & y_{j} \\
y_{j} & x_{j}
\end{array}\right]\left[\begin{array}{cc}
x_{n+1-j} & y_{n+1-j} \\
y_{n+1-j} & x_{n+1-j}
\end{array}\right] .
$$

Let

$$
B_{n}^{(1)}=\sum_{j=1}^{n} B_{j} B_{n+1-j}=\sum_{j=1}^{n} B^{n+1} .
$$

Note that $B^{n}=B_{n}$. We prefer using the subscript notation. Since $\sum_{j=1}^{n} B_{n+1}=n B_{n+1}$, we have

$$
n B_{n+1}=\sum_{j=1}^{n}\left[\begin{array}{cc}
x_{j} & y_{j} \\
t y_{j} & x_{j}
\end{array}\right]\left[\begin{array}{ll}
x_{n+1-j} & y_{n+1-j} \\
t_{n+1-j} & x_{n+1-j}
\end{array}\right] .
$$

Let $\sum_{j=1}^{n}=\sum$, thein the above result can be written

$$
n B_{n+1}=\left[\begin{array}{cc}
\sum x_{j} x_{n+1-j}+t \sum y_{j} y_{n+1-j} & \sum x_{j} y_{n+1-j}+\sum y_{j} x_{n+1-j} \\
t\left(\sum x_{j} y_{n+1-j}+\sum y_{j} x_{n+1-j}\right) & \sum x_{j} x_{n-j}+t \sum y_{j} y_{n+1-j}
\end{array}\right],
$$

or

$$
n B_{n+1}=\left[\begin{array}{cc}
x_{n} * x_{n}+t y_{n} * y_{n} & 2 x_{n} * y_{n} \\
2 t x_{n} * y_{n} & x_{n} * x_{n}+t y_{n} * y_{n}
\end{array}\right]=\left[\begin{array}{cc}
x_{n}^{(1)} & y_{n}^{(1)} \\
t y_{n}^{(1)} & x_{n}^{(1)}
\end{array}\right]=B_{n}^{(1)} .
$$

Therefore, we have

$$
x_{n}^{(1)}=n x_{n+1}, \quad y_{n}^{(1)}=n y_{n+1} .
$$

The above result can be extended to the $k^{\text {th }}$ convolution by defining

$$
B_{n}^{(k)}=\sum_{j=1}^{n} B_{j}\left(B^{(k-1)}\right)_{n+1-j} .
$$

Now we shall show that

$$
B_{n}^{(k)}=\binom{n+k-1}{k} B_{n+k} .
$$

We shall prove the result by induction on k. Since $B^{(1)}=n B_{n+1}$, the result is true for $k=1$. Now consider

$$
\begin{aligned}
B_{n}^{(k+1)} & =\sum B_{j} B_{n+1-j}^{(k)}=\sum B_{n+1-j}\left(B^{(k)}\right)_{j} \\
& =\sum B_{n+1-j}\binom{j+k-1}{k} B_{j+k}=B_{n+k+1} \Sigma\binom{j+k-1}{k}=\binom{n+k}{k+1} B_{n+k+1},
\end{aligned}
$$

which completes the induction.
From the above results, we write the $k^{\text {th }}$ convolution of x_{n} and y_{n} :

$$
\begin{equation*}
x_{n}^{(k)}=\binom{n+k-1}{k} x_{n+k}, \quad y_{n}^{(k)}=\binom{n+k-1}{k} y_{n+k} . \tag{15}
\end{equation*}
$$

Also, from properties (v) and (vi) of (10), we have

$$
\begin{equation*}
2 X^{(1)}=n x_{n+1}+\frac{\beta y_{n}}{y}, \quad 2 t Y^{(1)}=n x_{n+1}-\frac{\beta y_{n}}{y}, \tag{16}
\end{equation*}
$$

which can be written in the form

$$
2 X^{(1)}=x_{n}^{(1)}+\frac{\beta y_{n}}{y}, \quad 2 t Y^{(1)}=x_{n}^{(1)}-\frac{\beta y_{n}}{y} .
$$

We can also extend the above result to the $k^{\text {th }}$ convolution of x_{n} and y_{n}, namely,

$$
x_{n} * x_{n}^{(k)}, y_{n} * y_{n}^{(k)}, x_{n} * y_{n}^{(k)}, y_{n} * x_{n}^{(k)}
$$

Using the results (10)(v), (15), and (16), and some computation, we obtain

$$
2 x_{n} * x_{n}^{(k)}=\binom{n+k}{k+1} x_{n+k+1}+\sum_{j=1}^{n}\binom{j+k-1}{k} \beta^{j+k} x_{n+1-2 j-k} .
$$

Similarly, we have

$$
\begin{aligned}
& 2 t y_{n} * y_{n}^{(k)}=\binom{n+k}{k+1} x_{n+k+1}-\Sigma\binom{j+k-1}{k} \beta^{j+k} x_{n+1-2 j-k}, \\
& 2 x_{n}^{(k)} * y_{n}=\binom{n+k}{k+1} y_{n+k+1}+\Sigma\binom{j+k-1}{k} \beta^{j+k} y_{n+1-2 j-k}, \\
& 2 x_{n} * y_{n}^{(k)}=\binom{n+k}{k+1} y_{n+k+1}-\Sigma\binom{j+k-1}{k} \beta^{j+k} y_{n+1-2 j-k} .
\end{aligned}
$$

What we have seen here is but a sample of the properties displayed by the versatile matrix B. We are sure there are many more.

REFERENCES

1. R. C. Entringer \& P. J. Slater. "Gossips and Telegraphs." J. Franklin Institute 307.6 (1979): 353.
2. G. H. Hardy and E. M. Wright. An Introduction to Number Theory. Oxford: Oxford University Press, 1960.
3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
4. R. Honsberger. Mathematical Gems, pp. 102-38. New York: The Mathematical Association of America, 1985.
5. A. F. Horadam \& J. M. Mahon. "Convolutions for Pell Polynomials." In Fibonacci Numbers and Their Applications. Dordrecht: D. Reidel, 1986.
6. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line Theory." In Fibonacci Numbers and Their Applications. Dordrecht: D. Reidel, 1986.
7. J. M. Mahon \& A. F. Horadam. "Infinite Series Summation Involving Reciprocals of Pell Polynomials." In Fibonacci Numbers and Their Applications. Dordrecht: D. Reidel, 1986.
8. C. D. Olds. Continued Fractions, p. 118. New York: Random House and the L. W. Singer Company, 1963.
9. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Quarterly 6.2 (1968):167-75.
10. A. Weil. Number Theory: An Approach through History from Hammurapi to Legendre. Boston: Birkhäuser, 1983.
AMS Classification Numbers: 01A32, 11B37, 11B39
