LOCAL MINIMAL POLYNOMIALS OVER FINITE FIELDS

Maria T. Acosta-de-Orozco
Department of Mathematics, Southwest Texas State University, San Marcos, TX 78666

Javier Gomez-Calderon

Department of Mathematics, Penn State University, New Kensington Campus, New Kensington, PA 15068
(Submitted June 1994)

1. INTRODUCTION

Let F_{q} denote the finite field of order $q=p^{e}$, where q is an odd prime. If $f(x)$ is a polynomial of degree $d \geq 1$ over F_{q}, then it is clear that

$$
\left[\frac{q-1}{d}\right]+1 \leq V(f)=\left|\left\{f(x): x \in F_{q}\right\}\right| \leq q,
$$

where [w] denotes the greatest integer less than or equal to w. We say that $f(x)$ permutation polynomial if $V(f)=q$, and $f(x)$ is a minimal value set polynomial if

$$
V(f)=\left[\frac{q-1}{d}\right]+1 .
$$

A polynomial $f(x, y)$ with coefficients in F_{q} is a local permutation (minimal value set) polynomial over F_{q} if $f(a, x)$ and $f(x, b)$ are permutation (minimal value set) polynomials in x for all a and b in F_{q}. Local permutation polynomials have been studied by Mullen in [5] and [6].

In this note we will consider local minimal polynomials of small degree $(<\sqrt{q})$ on both x and y. We will show that there are only five classes of local minimal polynomials. Namely,
(a) $f(x, y)=a X^{m} Y^{n}+b X^{m}+c Y^{n}+d, m, n \mid(q-1)$,
(b) $f(x, y)=(a X+b Y+c)^{m}+d, m \mid(q-1)$,
(c) $f(x, y)=a X^{2} Y^{n}+b X^{2}+c X+d Y^{n}+e, n \mid(q-1)$,
(d) $f(x, y)=a X^{m} Y^{2}+b Y^{2}+c Y+d X^{m}+e, m \mid(q-1)$, and
(e) $f(x, y)=a X^{2} Y^{2}+b X^{2}+c Y^{2}+d X+e Y+g X Y+h$.
where $X=\left(x-x_{0}\right)$ and $Y=\left(y-y_{0}\right)$ with x_{0}, y_{0} in F_{q}.

2. THEOREM AND PROOF

Minimal value set polynomials have been studied by several authors. L. Carlitz, D. J. Lewis, W. H. Mills, and E. Strauss [2] showed that, when q is a prime and $d=\operatorname{deg}(f)<q$, all minimal value set polynomials with $V(f) \geq 3$ have the form $f(x)=a(x+b)^{d}+c$ with d dividing $q-1$. Later, W. H. Mills [4] gave a complete characterization of minimal value set polynomials over arbitrary finite fields with $d<\sqrt{q}$. A weakened form of Mills's results can be stated as follows:

Lemma 1 (Mills): If F_{q} is a finite field with q elements and $f(x)$ is a monic polynomial over F_{q} of degree d prime to q, then

$$
d<\sqrt{q} \text { and } V(f)=\left[\frac{q-1}{d}\right]+1
$$

imply

$$
d \mid(q-1) \text { and } f(x)=(x+b)^{d}+c .
$$

For other related results, see [1] and [3]. We are now ready for our result.
Theorem 2: Let F_{q} denote a finite field of order $q=p^{e}$, where p is an odd prime. Let

$$
f(x, y)=\sum_{i=0}^{n} a_{i}(x) y^{i}=\sum_{j=0}^{m} b_{j}(y) x^{j}
$$

denote a polynomial with coefficients in F_{q}. Assume that $m, n, n-1$, and $m-1$ are relatively prime to q and $1<m, n<\sqrt{q}$. Assume $a_{n}(x) b_{m}(y) \neq 0$ for all x, y in F_{q}. Then $f(x, y)$ is a local minimal polynomial if and only if $f(x, y)$ has one of the following forms:
(a) $f(x, y)=a X^{m} Y^{n}+b X^{m}+c Y^{n}+d, m, n \mid(q-1)$,
(b) $f(x, y)=(a X+b Y+c)^{m}+d, m \mid(q-1)$,
(c) $f(x, y)=a X^{2} Y^{n}+b X^{2}+c X+d Y^{n}+e, n \mid(q-1)$,
(d) $f(x, y)=a X^{m} Y^{2}+b Y^{2}+c Y+d X^{m}+e, m \mid(q-1)$, and
(e) $f(x, y)=a X^{2} Y^{2}+b X^{2}+c Y^{2}+d X+e Y+g X Y+h$.
where $X=\left(x-x_{0}\right)$ and $Y=\left(y-y_{0}\right)$ with x_{0}, y_{0} in F_{q}.
Proof: If $f(x, y)$ is one of the forms (a)-(e), then it is easy to see that $f(x, y)$ is a local minimal value set polynomial. Now, let

$$
f(x, y)=\sum_{i=0}^{n} a_{i}(x) y^{i}=\sum_{j=0}^{m} b_{j}(y) x^{j}
$$

denote a local minimal value set polynomial over F_{q} satisfying:
(i) $1<m, n<\sqrt{q}$,
(ii) $(m n(m-1)(n-1), q)=1$,
(iii) $a_{n}(x) b_{m}(y) \neq 0$ for all x, y in F_{q}.

Also, and without loss of generality, assume that $m \leq n$ and $n \geq 3$ [$n=2$ gives form (e)]. Then, by Lemma 1,

$$
\begin{align*}
f(x, y) & =a_{n}(x)\left(y+\frac{a_{n-1}(x)}{n a_{n}(x)}\right)^{n}+a_{0}(x)-\frac{a_{n-1}^{n}(x)}{n^{n} a_{n}^{n-1}(x)} \tag{1}\\
& =b_{m}(y)\left(x+\frac{b_{m-1}(y)}{m b_{m}(y)}\right)^{m}+b_{0}(y)-\frac{b_{m-1}^{m}(y)}{m^{m} b_{m}^{m-1}(y)} \tag{2}
\end{align*}
$$

for all x, y in F_{q} and $m, n \mid(q-1)$. Hence,

$$
\begin{align*}
& b_{m}^{m-1}(y)\left[\left(a_{n}(x) y+\frac{a_{n-1}(x)}{n}\right)^{n}+a_{0}(x) a_{n}^{n-1}(x)-\frac{a_{n-1}^{n}(x)}{n^{n}}\right] \\
& =a_{n}^{n-1}(x)\left[\left(b_{m}(y) x+\frac{b_{m-1}(y)}{m}\right)^{m}+b_{0}(y) b_{m}^{m-1}(y)-\frac{b_{m-1}^{m}(y)}{m^{m}}\right] \tag{3}
\end{align*}
$$

for all x, y in F_{q}. Further, since $1<m \leq n<\sqrt{q}$, equation (3) also establishes the equality of the polynomials. Therefore,

$$
\begin{aligned}
& b_{m}^{m-2}(y)\left[a_{n}^{n-1}(x) y^{n}+a_{n}^{n-2}(x) a_{n-1}(x) y^{n-1}+\cdots+\frac{a_{n-1}^{n-1}(x)}{n^{n-2}} y+a_{0}(x) a_{n}^{n-2}(x)\right] \\
& =a_{n}^{n-2}(x)\left[b_{m}^{m-1}(y) x^{m}+b_{m}^{m-2}(y) b_{m-1}(y) x^{m-1}+\cdots+\frac{b_{m-1}^{m-1}(y)}{m^{m-2}} x+b_{0}(y) b_{m}^{m-2}(y)\right]
\end{aligned}
$$

Hence,

$$
a_{n}^{n-2}(x) \text { divides }\binom{n}{2} \frac{a_{n}^{n-3}(x) a_{n-1}^{2}(x)}{n^{2}} y^{n-3}+\cdots+\frac{a_{n-1}^{n-1}(x)}{n^{n-2}}
$$

and, consequently, $a_{n}^{n-2}(x)$ divides $a_{n-1}^{n-1}(x)$. Now, if $g(x)$ is an irreducible factor of $a_{n}(x)$ so that $g^{c}(x) \mid a_{n}(x)$ but $g^{c+1}(x) \nmid a_{n}(x)$, then $g^{e}(x)$ divides $a_{n-1}(x)$ for some integer e such that $1<c(n-2) \leq(n-1) e$. Therefore, since $\operatorname{deg}(g(x)) \geq 2, e \leq c-1$ implies $c(n-2) \leq(n-1)(c-1)$ or $n-1 \leq c \leq \frac{m}{2} \leq \frac{n}{2}$, a contradiction. Thus, $a_{n}(x)$ divides $a_{n-1}(x)$.

Case 1. $a_{n-1}(x)=0$. Then, by (1),

$$
\begin{aligned}
f(x, y) & =a_{n}(x) y^{n}+a_{0}(x)=\left(\sum_{i=0}^{m} a_{n i} x^{i}\right) y^{n}+\sum_{i=0}^{m} a_{0 i} x^{i}=\sum_{i=0}^{m}\left(a_{n i} y^{n}+a_{0 i}\right) x^{i} \\
& =\left(a_{n m} y^{n}+a_{0 m}\right)\left(x+\frac{a_{n m-1} y^{n}+a_{0 m-1}}{m\left(a_{n m} y^{n}+a_{0 m}\right)}\right)^{m}+a_{n 0} y^{n}+a_{00}-\frac{\left(a_{n m-1} y^{n}+a_{0 m-1}\right)^{m}}{m^{m}\left(a_{n m} y^{n}+a_{0 m}\right)^{m-1}}
\end{aligned}
$$

Hence, $f(x, y)$ has the form (c) or $m \geq 3$ and

$$
\left(a_{n m} y^{n}+a_{0 m}\right)\binom{m}{i}\left(\frac{a_{n m-1} y^{n}+a_{0 m-1}}{m\left(a_{n m} y^{n}+a_{0 m}\right)}\right)^{m-i}=a_{n i} y^{n}+a_{0 i}
$$

or

$$
\begin{equation*}
\binom{m}{i}\left(\frac{a_{n m-1} y^{n}+a_{0 m-1}}{m}\right)^{m-i}=\left(a_{n m} y^{n}+a_{0 m}\right)^{m-i-1}\left(a_{n i} y^{n}+a_{0 i}\right) \tag{4}
\end{equation*}
$$

for all y in F_{q} and $i=1,2, \ldots, m$. So, if $a_{n m}=0$, then $a_{n m-1}=0$ and we obtain

$$
f(x, y)=a_{0 m}\left(x+\frac{a_{0 m-1}}{m a_{0 m}}\right)^{m}+a_{n 0} y^{n}+a_{00}-\left(\frac{a_{0 m-1}}{m a_{0 m}}\right)^{m} a_{0 m}
$$

where $a_{0 m} a_{n 0} \neq 0$. On the other hand, if $a_{n m} \neq 0$, then, again by (4),

$$
\frac{a_{0 m}}{a_{n m}}=\frac{a_{0 m-1}}{a_{n m-1}}
$$

Therefore, either $f(x, y)$ has the form (c) or

$$
\begin{aligned}
f(x, y) & =\left(a_{n m} y^{n}+a_{0 m}\right)\left(x+\frac{a_{n m-1} y^{n}+a_{0 m-1}}{m\left(a_{n m} y^{n}+a_{o m}\right)}\right)^{m}+a_{n 0} y^{n}+a_{00}-\frac{\left(a_{n m-1} y^{n}+a_{0 m-1}\right)^{m}}{m^{m}\left(a_{n m} y^{n}+a_{0 m}\right)^{m-1}} \\
& =\left(a_{n m} y^{n}+a_{0 m}\right)\left(x+\frac{a_{n m-1}}{m a_{n m}}\right)^{m}+a_{n 0} y^{n}+a_{00}-\left(\frac{a_{n m-1}}{m a_{n m}}\right)^{m}\left(a_{n m} y^{n}+a_{0 m}\right)
\end{aligned}
$$

and $f(x, y)$ has the form (a).
Case 2. $a_{n}(x) \mid a_{n-1}(x) \neq 0$. Then, by (1),

$$
\operatorname{deg}\left(a_{n}(x)\right)+(n-1) \operatorname{deg}\left(\frac{a_{n-1}(x)}{a_{n}(x)}\right) \leq m
$$

Hence, either $\operatorname{deg}\left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=0$ or $\operatorname{deg}\left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=1$ and $\operatorname{deg}\left(a_{n}(x)\right)=0$. First, we assume that $\operatorname{deg}\left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=1$ and $\operatorname{deg}\left(a_{n}(x)\right)=0$. Thus, $n-1 \leq m \leq n$ and

$$
f(x, y)=A_{1}\left(y+a_{1} x+c_{1}\right)^{n}+\dot{g}(x)
$$

where $A_{1} a_{1} \neq 0$ and $g(x)$ denotes a polynomial of degree less than or equal to n. Now, $m=n-1$ gives $b_{m}(y)=b_{n-1}(y)=n a_{1}^{n-1}\left(y+c_{1}\right)+c_{2}$, a contradiction to (iii). Thus, $b_{m}(y)=b_{n}(y)$ is a constant polynomial, $\operatorname{deg}\left(\frac{b_{m-1}(y)}{b_{m}(y)}\right)=1$ and

$$
f(x, y)=A_{2}\left(x+a_{2} y+c_{2}\right)^{m}+h(y)
$$

where $A_{2} a_{2} \neq 0$ and $h(y)$ denotes a polynomial of degree less than or equal to $n=m$. Therefore, there exist constants A_{3}, a_{3}, and c_{3} such that

$$
\begin{equation*}
A_{3}\left(x+a_{3} y+c_{3}\right)^{n}+\sum_{i=0}^{n} r_{i} x^{i}=A_{2}\left(x+a_{2} y+c_{2}\right)^{n}+\sum_{i=0}^{n} s_{i} y^{i} \tag{5}
\end{equation*}
$$

where $g(x)=\sum_{i=0}^{n} r_{i} x^{i}$ and $h(y)=\sum_{i=0}^{n} s_{i} y^{i}$. Now we compare the coefficients of $x^{n-i} y^{i}$ in (5) to obtain

$$
A_{3}\binom{n}{i} a_{3}^{i}=A_{2}\binom{n}{i} a_{2}^{i}
$$

for $i=1, \ldots, n-1$. Since $(n-1, q)=1$, it follows that $A_{2}=A_{3}$ and $a_{2}=a_{3}$. Thus, comparing the coefficients of $x^{n-2} y, c_{2}=c_{3}$. Therefore, $g(x)=h(y)=d$ for some constant d, and

$$
f(x, y)=A(x+a y+c)^{n}+d
$$

which has the form (b).
Now we assume that $\operatorname{deg}\left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=0$. Then

$$
f(x, y)=a_{n}(x)(y+\alpha)^{n}+g(x)
$$

for some $\alpha \in F_{q}$. Therefore, $f(x, y-\alpha)=a_{n}(x) y^{n}+g(x)$, which is a polynomial already considered in Case 1. This completes Case 2 and the proof for $m \leq n$. If $n<m$, then a similar argument will provide form (d).

The next example illustrates the necessity of the condition $(n-1, q)=1$.
Example: For a in F_{81}, let $f(x, y)$ denote the polynomial

$$
f(x, y)=2 x^{4}+x^{3} y+x y^{3}+y^{4}+2 a x^{3}+a y^{3}+2 a^{3} x+a^{3} y .
$$

Then

$$
\begin{aligned}
f(x, y) & =(x+y+a)^{4}+x^{4}+a x^{3}+a^{3} x+2 a^{4} \\
& =2(x+2 y+a)^{4}+2 y^{4}+a^{4} .
\end{aligned}
$$

Therefore, since $4 \mid 80, f(x, y)$ is a local minimal polynomial that is not in the list (a)-(e).

REFERENCES

1. M. Acosta-de-Orozco \& J. Gomez-Calderon. "Polynomials with Minimal Value Set over Galois Rings." International Journal of Mathematics and Mathematical Science 14 (1991): 471-74.
2. L. Carlitz, D. J. Lewis, W. H. Mills, \& E. G. Strauss. "Polynomials Over Finite Fields with Minimal Value Set." Mathematika 8 (1961):121-30.
3. J. Gomez-Calderon. "A Note on Polynomials with Minimal Value Set Over Finite Fields." Mathematika 35 (1988):144-48.
4. W. H. Mills. "Polynomials with Minimal Value Sets." Pacific Journal of Mathematics 14 (1964):225-41.
5. G. L. Mullen. "Local Permutation Polynomials Over Z_{p}." The Fibonacci Quarterly 18.2 (1980):104-08.
6. G. L. Mullen. "Local Permutation Polynomials in Three Variables Over Z_{p}." The Fibonacci Quarterly 18.3 (1980):208-14.
AMS Classification Numbers: 11T06, 12E10

