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PROBLEMS PROPOSED IN THIS ISSUE 

H-509 Proposed by Paul S. Bruckman, Salmiya, Kuwait 

The continued fractions (base k) are defined as follows: 
k k k [ul9u2,...9un]k=ul+ ——-—> " = 1,2,..., (1) 

where k is an integer ^ 0 and (w,-)*! is an arbitrary sequence of real numbers. 
Given a primep with {=£-) - 1 (Legendre symbol) and k ^ 0 (mod/?), let h be the solution of 

the congruence 
h2 = -k (modp), with 0<h<±p. (2) 

Suppose a symmetric continued fraction (base k) exists, such that 

j = [al,a2,...,ari+l,an+l,...,al\k, (3) 

where the ai 's are integers, ^ is even, and k \at,, i = 2,4,..., n. Show that the integers x and y exist, 
with gx,d.(x, y) = l, given by 

y = K+1,...,a1]A: (4) 

which satisfy 

x2+ky2=p. (5) 

H-510 .Proposed by H.-J. Seijfert, Berlin, Germany 
Define the Pell numbers by P0 = 0, /> = 1, Pn = 2P^x + Pn_2 for w>2. Show that, for 

/i = l,2,..., 
P = V ( - n[(3*-2»-l)/4 2[3/:/2] f « + k ^ 

keAn ^ y 

where [ ] denotes the greatest integer function and 
An = {k e {0,1,..., n- l}\3k # 2w (mod4)} 
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H-511 Proposed by M N. Deshpande, Aurangabad, India 
Find all possible pairs of positive integers m and n such that m(m +1) = n(m + n). [Two such 

pairs are: m-\n-\ and m - 9, n - 6.] 

H-512 Proposed by Paul S. Bruckman, Salmiya, Kuwait 

The Fibonacci pseudoprimes (or FPP's) are those composite n with g.c.d.(/?, 10) = 1 such that 
n\Fn_£ where sn is the Jacobi symbol (-|). Suppose n-p(p + 2), where/? and p + 2 are "twin 
primes." Prove that n is a FPP if and only if p = 7 (mod 10). 

H-508 (Corrected) Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, Fx(x) = 1, F„(x) = xF„_1(x) + F„_2(x), for 
?? > 2. Show that, for all complex numbers x and y and all positive integers «, 

As special cases of (1), obtain the following identities: 

k=0 
F„(x)F„(x + l) = nZ ^^[2k + \)F^x2 + x + 4* (2) 

F „ W F , ( 4 / ^ „ | _ L _ ( ^ V+4^* 
V x J 

x±0; (3) 

"-i (-l)"-*+Y/i + * 

«-l i / , r \ v2fc+2 / >i\fc+l 
Z 7 / \ 2 V l f f t + ^ 1 ^ ~ ( - 4 ) 

F«(x) ^ S I T T U + I J ,2 + 4
 ; (5) 

F2w_1(x) = (2ft-1)2£2 ^ ( ^ ^ 1 ) x ^ + 1 ( 4 / x ) . (6) 

SOLUTIONS 

Probably 

H-493 Proposed by Stefano Mascella and Piero Filipponi, Rome, Italy 
(Vol 33, no. 1, February 1995) 

Let Pk(d) denote the probability that the kih digit (from left) of an £ digit (£>k) Fibonacci 
number Fn (expressed in base 10) whose subscript is randomly chosen within a large interval 

That the sequence {Fn} obeys Benford's law is a well-known fact (e.g., see [1] and [2]). In 
other words, it is well known that Px(d) = log10(l + \ld). 

Find an expression for P2(d). 
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References 
1. P. Filipponi. "Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers." 

The Fibonacci Quarterly (to appear). 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981): 175-77. 

Solution by Norbert Jensen, Kiel, Germany 

Let d G{0, 1,..., 9}. For each / GN, let 4 ^ be the set of those n GN for which Fn > 107"1 

and the ith digit (from the left) of Fn equals d. For all nx, n^ GN with nx < r^, let I(nx, r^) denote 
the set of all integers n with nx < n < r^. Let p: = log10((l +1 / (1 + <M0_1))(1 +1 / (2 4- d • 10"1)) ... 
(l + l/(9 + rf.l0~1))). 

Let nx GN. We show that 

—^ L l —> p as ru tends to infinity. 
1/(̂ ,̂ )1 

This proves that P2(d) is approximately equal top for a given interval I(nl7 r^), provided that 
2̂ is large enough. 

[Note that, in general, it is not true that P2(d) = p for all d G{0, 1,..., 9} for a finite interval 
I(nv Wj) with a certain minimum of members. If we had one, we could add /^ +1 to it. Suppose, 
without loss of generality, that the second digit of Fn +1 is ^ d. Then 

I 4>.tf n (̂wl> 2̂ + 1) I < PV(nV n2 + 1) I-
A similar argument applies to Px{d) and log10(l+ lid).] 

Proof: Step (0). log10(a) is irrational. 

Proof: Suppose it is rational. Then we find a GZ,b GN such that log10(a) -alb. Hence, 
log10(a6) = &-log10(a) -a and Fba + Fb_x = ab = 10a, whence V5 G Q , a contradiction. Q.E.D. 
Step (0). 

Step (1). log10(F„) = n•log10(a) + log10(l-(-l)"/?2") -log10(V5) for all/ieN. 

Fn = (an - ^ 1 S = a\\-WI a)n)l S=a\\-(rP)n)l S^ 
Q.E.D. Step (1). 

For any x GR, let (x) denote the purely fractional part of x, i.e., (x) = x- [x] . 

Step (2). The sequence ((log^^))) is uniformly distributed modulo 1. 
Proof: By (0) and according to Example 2.1 on page 8 of [1], the sequence «wlog10(a)» is 

uniformly distributed modulo 1. Since log10(l-(-l)"/?2") converges (to zero), the sequence 
«^log10(a) + log1 0( l-(- l)^2")- log1 0 V5» is uniformly distributed (see [1], Theorem 1.2, p. 3). 
Thus, (<log10(F„)>) is uniformly distributed modulo 1 by Step (1). Q.E.D. Step (2). 

Step (3). Let ^ G{1, 2,..., 9}, Z2 G{0, 1,..., 9}. Le t^G^ . Let t = [log10(Fn)]. We have the 
following equivalences: 

1996] 189 



ADVANCED PROBLEMS AND SOLUTIONS 

<=> There is an ReN0 with R<10'~1 such that F„ ^Z^ltf+Z2-\0f-1+R. 
<=> There is an R &NQ with R < 10r_1 such that 

<log10(JF„)> = log10(iv,)-[log10(F„)] = log10(ZI+Z2.10-1
 + JR.10-'). 

o <log10(F„)) e[logI0(Z; + Z2 • lO"1), l o g ^ + (Z2 +1)• KT1)]. 

So, by the definition of "uniform distribution" ([1], p. 1), we have that 

m,"2)\ 
converges to the length of the interval [\og10(Zl+Z2 -lO-1), log10(Z1 + (Z2 + 1)-10"1)], namely, to 
log10(l +1 / (Zj + Z2 • 1CT1)), when r^ tends to infinity. Since the intervals are disjoint for different 
pairs of digits (Z1? Z2), it is clear that we can fix Z2=d and take the sum over Zx = 1, 2,..., 9. 
Q.E.D. 

Remarks: 
1. The above proof can be abridged by using Washington's theorem [2] for the base b = 102. 
2. We even have the following more general result: For each s > 0, there is an« 0 eN such that, 
for all n1 eN and all r^ GM with n^ > nY +n0, we have 

I 1/(̂ )1 H ' 
In other words: We have uniform convergence. The quality of the approximation depends only 
on the cardinality of | I(nh n^ ) |, not on the choice of J\ . 

Proof of Remark 2: By Weyl's criterion, the sequence ((«log10(a)» is well distributed mod-
ulo 1 (see [1], p. 40, p. 42, Example 5.2). This implies that ((log10(i^)» is well distributed (see 
[1], Theorem 5.4, p. 43). Modifying the arguments of (3) with respect to nl9 we obtain the 
assertion. Q.E.D. 

References 
1. L. Kuipers & H. Niederreiter. Uniform Distribution of Sequences. New York, 1974. 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981). 
Also solved by P. Bruckman. 

Apparently 

H-494 Proposed by David M. Bloom, Brooklyn College, New York, NY 
(Vol 33, no. 1, February 1995) 

It is well known that if P(p) is the Fibonacci entry point ("rank of apparition") of the odd 
prime p*5, then P(p) divides p + e where e-±\. In [1] it is stated without proof [Theorem 
5(b)] that the integer (p + e)/ P(p) has the same parity as (p-1)/2. Give a proof. 

Reference 
1. D. Bloom. "On Periodicity in Generalized Fibonacci Sequences." Amer. Math. Monthly 72 

(1965):856-61. 
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Solution by H.-J. Seiffert, Berlin, Germany 
It is well known that 8 = -(51 p), where (51 p) denotes Legendre's symbol. In 1930, D. H. 

Lehmer (see [1], p. 325, Lemma 5) proved that 

P\F(P+e)/2 i f a n d onlY if P = l (mod 4). (1) 

Let k = (p + e)/P(p). If * is even, then p\F{m)P{p) = F{p+s)/2, since P(p)\(k12)P(p) and 
p\FP(p). Thus, we have p = l (mod 4), by (1), so that k = 0 = (p-T)/2 (mod 2). Now, suppose 
that k is odd. Assuming that p = l (mod 4), we would have p\F^p+£)/2 = F^ y2, again by (1). 
This would imply that P(p) is even, that &>3, and that p\LP{p)l2, since p divides FP(p) = 
Fp(p)/2Lp(p)/2> but does not divide FP^py2. Now, from 

F]cP(p)/2 - ^P{p)l2F{k-\)P{p)l2 ~ ( V F(k_z)P(py2> 

it then would follow that p\F^k_2^py2. Repeating this argument, we would arrive at the contra-
diction that p\FP(py2. Thus, we must have p = 3 (mod 4), so that k = l = (p-l)/2 (mod 2). 
This completes the solution. 
Reference 
1. Lawrence Somer. "The Divisibility Properties of Primary Lucas Recurrences with Respect to 

Primes."' The Fibonacci Quarterly 18.4 (1980):316-34. 
Also solved by P. Bruckman, A. Dujella, N. Jensen, and the proposer. 

Achieve Parity 

H-495 Proposed by Paul S. Bruckman, Salmiya, Kuwait 
(Vol 33, no. 1, February 1995) 

Let/? be a prime ^ 2,5 and let Z(p) denote the Fibonacci entry-point ofp (i.e., the smallest 
positive integer m such that p\Fm). Prove the following "Parity Theorem" for the Fibonacci 
entry-point: 

A. If p s 11 or 19 (mod 20), then Z(p) = 2 (mod 4); 
B. If p == 13 or 17 (mod 20), then Z(jp) is odd; 
C. Ifp = 3 or 7 (mod 20), then 4\Z(p). 

Solution by the proposer 
We employ two well-known results, stated as lemmas without proof 

Lemma 1: If p * 2,5 and p' = \[p - (Jr)), then (i) p\Fp,ifp = l (mod 4), or (ii) p\Lp, if p = -1 
(mod 4). 

An equivalent formulation of Lemma 1 is restated as 
Lemma V: lip *2,5 and q = ±(p-l), then (i) p\Fq if p = 1 or 9 (mod 20); (ii) p\Lq i fp = 11 
or 19 (mod 20); (hi) p\Fq+l if p s 13 or 17 (mod 20); (w)p\Lq+l if p = 3 or 7 (mod 20). 

Lemma 2: Z(p) is even for all primes p > 2 if and only if p\Ln for some ??. 
Lemma 2 implies that if p > 2 and /? \Ln, then Z(/?) -2nlr for some odd integer r dividing n. 
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Proof of A: By Lemma l'(ii), p\L . Then Z{p)\2q and Z(p) must be even, by Lemma 2. Since 
2q - p - 1 = 2 (mod 4) in this case, it follows that Z(p) = 2 (mod 4). 
Proof ofB: By Lemma 1 '(iii), p\Fq+l. Then Z(p)\(q +1). In this case, q + l = j(p + l) = 7 or 9 
(mod 10), an odd integer. Therefore, Z(p) must be odd. 
Proof of C: By Lemma 1 '(iv), p \ Lq+l. Then Z(p) = 2(q + l)/r = (p + l)/r, where r is odd, and 
r | (/? +1). Since /? +1 = 0 (mod 4) in this case, we see that 4 \Z(p). 
Note: No inference may be made about the parity of Z(p) if p = 1 or 9 (mod 20). 

v4&o solved by D. Bloom, A. Dujella, N. Jensen, andH.-J. Seiffert. 

FLUPPS and ELUPPS 

H-496 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 33, no. 2, May 1995) 

Let n be a positive integer > 1 with g.c.d.(n, 10) = 1, and S = (5/ri), a Jacobi symbol. Con-
sider the following congruences: 
0 ) Fn_s^0 (mod /i), Zw ss 1 (mod n); 
(2) F1(n_S) = 0 (mod w) if/? == 1 (mod 4), Zi(/7_^ = 0 (mod n)ifn = 3 (mod 4). 

Composite n which satisfy (1) are called Fibonacci-Lucaspseudoprimes, abbreviated "FLUPPS." 
Composite n which satisfy (2) are called Euler-Lucas pseudoprimes with parameters (1,-1), 
abbreviated "ELUPPS." Prove that FLUPPS and ELUPPS are equivalent. 

Solution by Andrej Dujella, University of Zagreb, Croatia 
(1) => (2): It is easy to check that, for 8 e{-l, 1}, it holds: 2Ln-5Fn_s = 8Ln_s. Considering 
that, from (1), it follows that Ln_s = 28 (modn). From the identity L2n+2-(-l)n = L2

n [see S. 
Vajda, Fibonacci & Lucas Numbers, and the Golden Section (Chichester: Halsted, 1989), (17c)], 
we have L\{n_S) = Ln_5-^2-{-lf{n~5) =-2^ + 2 - ( - l )^"^ (mod/i). 

If n s 3 (mod 4), then 28 + 2 • (-l)<*-*>/2 = 2£ + 2• (-l)(1+*)/2 = 0; therefore, L1{n_S) = 0 (mod w). 

If / i s 1 (mod 4), then 28 + 2-{-lfn-5)n =28 + 2-{-lf+S)'2 =48, and using g . c . d . ^ Z J <2 
and Z ^ = F(n_S)/2L(n_m = 0 (mod #i), we have ZI(w_^ s 0 (mod ri). 

(2) => (1): From Fn_8 = F(n-s)iil\n-8)i2 a n d (2)> ll follows that Fn_s = 0 (mod n). Now, from 
2Z„ - SFn_d = 8Ln_5 it may be concluded that 28Ln = Ln_§ (mod ri). 

If 7i = 3 (mod 4), we have 2£Z„ = Z i ( ^ } - 2 • (-1)"(1+^ = 2 . (-1)"(1+^ = 28 (mod TI); therefore, 
Ln = 1 (mod n). 

If /i EE 1 (mod 4), we have 2JZW EE 5Z?(W_^ + 2 • (-i)*(1-*> = 2 • (-l)^1"^ = 28 (mod w), and again 
Ln = 1 (mod ri). 

Also solved by A. G. Dresel, H.-J. Seiffert, and the proposer. 

Editorial Note: The editor will appreciate it if all proposals and solutions are submitted in 
typedformat. 

• > • > • > 
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