ON *k***-SELF-NUMBERS AND UNIVERSAL GENERATED NUMBERS***

Tianxin Cai

Department of Mathematics, Hangzhou University, Hangzhou 310028, P. R. China (Submitted June 1994)

1. INTRODUCTION

In 1963, D. R. Kaprekar [1] introduced the concept of self-numbers. Let k > 1 be an arbitrary integer. A natural number *m* is said to be a *k*-self-number iff the equation

 $m = n + d_k(n)$

has no solution in an integer n > 0, where $d_k(n)$ denotes the sum of digits of n while represented in the base k. Otherwise, we say that m is a k-generated number. And m is said to be a universal generated number if it is generated in every base. For example, 2, 10, 14, 22, 38, etc. are universal generated numbers. The number 12 is 4-generated by 9, but it is a 6-self-number.

In 1973, V. S. Joshi [2] proved that "if k is odd, then m is a k-self-number iff m is odd," i.e., every even number in an odd base is a generated number.

In 1991, R. B. Patel ([3], M.R. 93b:11011) tested for self-numbers in an even base k. What he proved is: 2ki, 4k+2, k^2+2k+1 are k-self-numbers in every even base $k \ge 4$.

In the present paper, we first prove some new results on self-numbers in an even base k.

Theorem 1: Suppose

$$m = b_0 + b_1 k$$
, $0 \le b_0 < k$, $0 < b_1 < k$, $2 | k$, $k \ge 4$.

Then *m* is a *k*-self-number iff $b_0 - b_1 = -2$.

In particular, 2k, 3k + 1, 4k + 2, 5k + 3, etc. are k-self-numbers.

Theorem 2: Suppose

$$m = b_0 + b_1 k + b_2 k^2$$
, $0 \le b_0 < k$, $0 \le b_1 < k$, $0 < b_2 < k$, $2 \mid k, k \ge 4$.

Then *m* is a *k*-self-number iff b_0 , b_1 , and b_2 satisfy one of the following conditions: $b_1 = 0$, $b_0 - b_1 - b_2 = -4$ or k - 3; $b_1 = 1$, $b_0 - b_1 - b_2 = -2$ or -4; $b_1 = 2$ or 3, $b_0 - b_1 - b_2 = -2$; $b_1 \ge 4$, $b_0 - b_1 - b_2 = -2$ or -k - 3.

In particular, $k^2 + k$, $k^2 + 2k + 1$, $k^2 + 3k + 2$, $2k^2 + k + 1$, $2k^2 + 2k + 2$, $3k^2 + k + 2$, $5k^2 + 1$ ($k \ge 6$), $4k^2 + k + 1$ ($k \ge 6$), $5k^2 - k$ ($k \ge 6$), $k^3 - k^2 + 4k$, etc. are k self-numbers.

Secondly, we study the number G(x) of universal generated numbers $m \le x$. It is not known if $G(x) \to \infty$ but, as an ingenious application of Theorem 1, we prove that $G(x) \le 2\sqrt{x}$. As a matter of fact, we obtain

Theorem 3: Every universal generated number can be represented in only one way, in the form $2^{s}n+2^{s-1}-2$, with $s \ge 3$, $n \le 2^{s-2}$. Moreover, for all x > 1, one has $G(x) \le 2\sqrt{x}$.

[MAY

^{*} Project supported by NNSFC and NSF of Zhejiang Province.

2. PROOF OF THEOREM 1

If possible, let *m* be *k*-generated by some *n*, where

$$n = \sum_{i=0}^{t} a_i k^i, \quad 0 \le a_i < k, \ 0 \le i \le t.$$

Then

$$d_k(n) = \sum_{i=0}^t a_i$$
 and $m = n + d_k(n) = \sum_{i=0}^t a_i(k_i + 1)$.

Since $m = b_0 + b_1 k < k + (k-1)k = k^2$, we have $a_i = 0$ for $i \ge 2$, i.e.,

$$b_0 + b_1 k = 2a_0 + a_1(k+1), \quad 0 \le a_0, \ a_1 < k \,. \tag{1}$$

Here $a_1 > b_1$ or $a_1 < b_1 - 2$ is impossible, so that $a_1 = b_1 - i$, $0 \le i \le 2$.

- (A) If i = 0, then (1) holds iff $b_0 b_1 \ge 0$ is even;
- **(B)** If i = 1, then (1) holds iff $b_0 b_1 \le k 3$ is odd;
- (C) If i = 2, then (1) holds iff $b_0 b_1 \le -4$ is even.

Hence, *m* is a *k*-self-number iff $b_0 - b_1 = -2$ or k - 1. The latter is impossible because $b_0 \le k - 1$. This completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

If possible, let *m* be *k*-generated by some *n*. As in the proof of Theorem 1, we have

$$b_0 + b_1 k + b_2 k^2 = 2a_0 + a_1(k+1) + a_2(k^2+1),$$
(2)

with $b_2 - 1 \le a_2 \le b_2$.

Case I. $a_2 = b_2$. From (2), we see that $a_1 \le b_1$. Taking $a_1 = b_1 - j$, $j \ge 0$, we have

$$b_0 - b_1 - b_2 + j(k+1) = 2a_0.$$
(3)

Noting that $0 \le a_0 < k$, one has:

- (A) If j = 0, then (3) holds iff $b_0 b_1 b_2 \ge 0$ is even;
- **(B)** If j = 1, then (3) holds iff $b_0 b_1 b_2 \ge -k 1$ is odd and $b_1 \ge 1$;
- (C) If j = 2, then (3) holds iff $b_0 b_1 b_2 \le -4$ is even and $b_1 \ge 2$;
- (D) If j = 3, then (3) holds iff $b_0 b_1 b_2 \le k 5$ is odd and $b_1 \ge 3$;
- (E) If $j \ge 4$, then (3) never holds.

Case II. $a_2 = b_2 - 1$. Taking $a_1 = k - j$, $j \ge 1$, it follows from (2) that

$$(b_1 + j - 1)k = 2a_0 - j - 1 + b_2 - b_0$$

or

$$b_0 - b_2 + (b_1 + j - 1)k + j - 1 = 2a_0.$$
(4)

Since $2a_0 - j - 1 + b_2 - b_0 \le 3(k - 1)$, one has $b_1 + j - 1 \le 2$. Noting that $0 \le a_0 \le k - 1$, one has:

(A)' If $b_1 = 0$, j = 1, then (4) holds iff $b_0 - b_2 \ge -2$ is even;

(B)' if $b_1 = 0$, j = 2, then (4) holds iff $b_0 - b_2 \le k - 5$ is odd;

1996]

145

(C)' If $b_1 = 0$, j = 3, then (4) holds iff $b_0 - b_2 \le -6$ is even;

(D)' If $b_1 = 1$, j = 1, then (4) holds iff $b_0 - b_2 \le k - 4$ is even;

(E)' If $b_1 = 1$, j = 2, then (4) holds iff $b_0 - b_2 \le -5$ is odd;

(F) If $b_1 = 2$, j = 1, then (4) holds iff $b_0 - b_2 \le -4$ is even;

(G) If $b_1 \ge 3$, then (4) never holds.

Thus, (A)', (B)', and (C)' together imply that if $b_1 = 0$, (4) does not hold iff $b_0 - b_2 = -4$ or k - 3, i.e., $b_0 - b_1 - b_2 = -4$ or k - 3. According to Case I, (2) has no solution iff $b_0 - b_1 - b_2 = -4$ or k - 3.

If $b_1 = 1$, (D)' and (E)' together imply that (4) does not hold iff $b_0 - b_2 > k - 4$ or $k - 4 > b_0 - b_2 > -5$ is odd, i.e., $b_0 - b_1 - b_2 > k$ or $k - 5 > b_0 - b_1 - b_2 > -6$ is even. According to Case I, (2) has no solution iff $b_0 - b_1 - b_2 = -2$ or -4.

If $b_1 = 2$, then from (F) (4) does not hold iff $b_0 - b_2 > -4$ or is odd, i.e., $b_0 - b_1 - b_2 > -6$ or is odd. According to Case I, (2) has no solution iff $b_0 - b_1 - b_2 = -2$.

If $b_1 \ge 3$, (4) never holds. According to Case I, (2) has no solution iff $b_0 - b_1 - b_2 = -2$ or -k - 3. For the latter, $b_1 \ge 4$. This completes the proof of Theorem 2.

4. PROOF OF THEOREM 3

Let $f_s(n)$ denote $2^s n + 2^{s-1} - 2$, where $s \ge 1$ and $n \ge 1$. Then $f_1(n) = 2n - 1$, $f_2(n) = 4n$, $f_3(n) = 8n + 2$, $f_4(n) = 16n + 6$, ... Noting that $f_s(n) = f_{s_1}(n_1)$ iff $n - n_1$, $s = s_1$, one has from the fundamental theorem of arithmetic: every positive integer can be represented in only one way, in the form $2^s n + 2^{s-1} - 2$. If s = 1, $n \ge 2$, it is clear that $f_1(n) = 2n - 1$ is not generated by 2n. If $s \ge 2$, taking $b_0 = 2^{s-1} - 2$, $b_1 = 2^{s-1}$, k = 2n, and applying Theorem 1 we see that $f_s(n)$ is a k-self-number, i.e., it is not a universal generated number if $n > 2^{s-2}$. Moreover,

$$G(x) \leq \sum_{\substack{1 \leq 2^{s}n+2^{s-1}-2 \leq x \\ s \geq 1}} 1 \leq \sum_{s \geq 1} \min\{2^{s-2}, x/2^{s}\} \leq \sum_{s \leq (1/2)\log_{2} x+1} 2^{s-2} + \sum_{s > (1/2)\log_{2} x+1} x/2^{s} \leq 2\sqrt{x}.$$

This completes the proof of Theorem 3.

ACKNOWLEDGMENT

The author is grateful to the referee for many useful comments and valuable suggestions.

REFERENCES

- 1. D. R. Kaprekar. The Mathematics of New Self-Number, pp. 19-20. Devaiali, 1963.
- 2. V. S. Joshi. Ph.D. Dissertation, Gujarat University, Ahmedadad, October 1973.
- 3. R. B. Patel. "Some Tests for k-Self-Numbers." The Mathematics Student 56.1-4 (1991): 206-10 (M.R.93b:11011).

AMS Classification Number: 11A63

 $\diamond \diamond \diamond$

[MAY