# ON $\boldsymbol{k}$-SELF-NUMBERS AND UNIVERSAL GENERATED NUMBERS* 

Tianxin Cai<br>Department of Mathematics, Hangzhou University, Hangzhou 310028, P. R. China<br>(Submitted June 1994)

## 1. INTRODUCTION

In 1963 , D. R. Kaprekar [1] introduced the concept of self-numbers. Let $k>1$ be an arbitrary integer. A natural number $m$ is said to be a $k$-self-number iff the equation

$$
m=n+d_{k}(n)
$$

has no solution in an integer $n>0$, where $d_{k}(n)$ denotes the sum of digits of $n$ while represented in the base $k$. Otherwise, we say that $m$ is a $k$-generated number. And $m$ is said to be a universal generated number if it is generated in every base. For example, 2, 10, 14, 22, 38, etc. are universal generated numbers. The number 12 is 4 -generated by 9 , but it is a 6 -self-number.

In 1973, V. S. Joshi [2] proved that "if $k$ is odd, then $m$ is a $k$-self-number iff $m$ is odd," i.e., every even number in an odd base is a generated number.

In 1991, R. B. Patel ([3], M.R. 93b:11011) tested for self-numbers in an even base $k$. What he proved is: $2 k i, 4 k+2, k^{2}+2 k+1$ are $k$-self-numbers in every even base $k \geq 4$.

In the present paper, we first prove some new results on self-numbers in an even base $k$.
Theorem 1: Suppose

$$
m=b_{0}+b_{1} k, 0 \leq b_{0}<k, 0<b_{1}<k, 2 \mid k, k \geq 4
$$

Then $m$ is a $k$-self-number iff $b_{0}-b_{1}=-2$.
In particular, $2 k, 3 k+1,4 k+2,5 k+3$, etc. are $k$-self-numbers.
Theorem 2: Suppose

$$
m=b_{0}+b_{1} k+b_{2} k^{2}, 0 \leq b_{0}<k, 0 \leq b_{1}<k, 0<b_{2}<k, 2 \mid k, k \geq 4
$$

Then $m$ is a $k$-self-number iff $b_{0}, b_{1}$, and $b_{2}$ satisfy one of the following conditions: $b_{1}=0, b_{0}-b_{1}-$ $b_{2}=-4$ or $k-3 ; b_{1}=1, b_{0}-b_{1}-b_{2}=-2$ or $-4 ; b_{1}=2$ or $3, b_{0}-b_{1}-b_{2}=-2 ; b_{1} \geq 4, b_{0}-b_{1}-b_{2}=$ -2 or $-k-3$.

In particular, $k^{2}+k, k^{2}+2 k+1, k^{2}+3 k+2,2 k^{2}+k+1,2 k^{2}+2 k+2,3 k^{2}+k+2,5 k^{2}+1$ $(k \geq 6), 4 k^{2}+k+1(k \geq 6), 5 k^{2}-k(k \geq 6), k^{3}-k^{2}+4 k$, etc. are $k$ self-numbers.

Secondly, we study the number $G(x)$ of universal generated numbers $m \leq x$. It is not known if $G(x) \rightarrow \infty$ but, as an ingenious application of Theorem 1 , we prove that $G(x) \leq 2 \sqrt{x}$. As a matter of fact, we obtain

Theorem 3: Every universal generated number can be represented in only one way, in the form $2^{s} n+2^{s-1}-2$, with $s \geq 3, n \leq 2^{s-2}$. Moreover, for all $x>1$, one has $G(x) \leq 2 \sqrt{x}$.

[^0]
## 2. PROOF OF THEOREM 1

If possible, let $m$ be $k$-generated by some $n$, where

$$
n=\sum_{i=0}^{t} a_{i} k^{i}, \quad 0 \leq a_{i}<k, 0 \leq i \leq t .
$$

Then

$$
d_{k}(n)=\sum_{i=0}^{t} a_{i} \quad \text { and } \quad m=n+d_{k}(n)=\sum_{i=0}^{t} a_{i}\left(k_{i}+1\right)
$$

Since $m=b_{0}+b_{1} k<k+(k-1) k=k^{2}$, we have $a_{i}=0$ for $i \geq 2$, i.e.,

$$
\begin{equation*}
b_{0}+b_{1} k=2 a_{0}+a_{1}(k+1), \quad 0 \leq a_{0}, a_{1}<k . \tag{1}
\end{equation*}
$$

Here $a_{1}>b_{1}$ or $a_{1}<b_{1}-2$ is impossible, so that $a_{1}=b_{1}-i, 0 \leq i \leq 2$.
(A) If $i=0$, then (1) holds iff $b_{0}-b_{1} \geq 0$ is even;
(B) If $i=1$, then (1) holds iff $b_{0}-b_{1} \leq k-3$ is odd;
(C) If $i=2$, then (1) holds iff $b_{0}-b_{1} \leq-4$ is even.

Hence, $m$ is a $k$-self-number iff $b_{0}-b_{1}=-2$ or $k-1$. The latter is impossible because $b_{0} \leq k-1$. This completes the proof of Theorem 1.

## 3. PROOF OF THEOREM 2

If possible, let $m$ be $k$-generated by some $n$. As in the proof of Theorem 1 , we have

$$
\begin{equation*}
b_{0}+b_{1} k+b_{2} k^{2}=2 a_{0}+a_{1}(k+1)+a_{2}\left(k^{2}+1\right), \tag{2}
\end{equation*}
$$

with $b_{2}-1 \leq a_{2} \leq b_{2}$.
Case I. $a_{2}=b_{2}$. From (2), we see that $a_{1} \leq b_{1}$. Taking $a_{1}=b_{1}-j, j \geq 0$, we have

$$
\begin{equation*}
b_{0}-b_{1}-b_{2}+j(k+1)=2 a_{0} . \tag{3}
\end{equation*}
$$

Noting that $0 \leq a_{0}<k$, one has:
(A) If $j=0$, then (3) holds iff $b_{0}-b_{1}-b_{2} \geq 0$ is even;
(B) If $j=1$, then (3) holds iff $b_{0}-b_{1}-b_{2} \geq-k-1$ is odd and $b_{1} \geq 1$;
(C) If $j=2$, then (3) holds iff $b_{0}-b_{1}-b_{2} \leq-4$ is even and $b_{1} \geq 2$;
(D) If $j=3$, then (3) holds iff $b_{0}-b_{1}-b_{2} \leq k-5$ is odd and $b_{1} \geq 3$;
(E) If $j \geq 4$, then (3) never holds.

Case II. $a_{2}=b_{2}-1$. Taking $a_{1}=k-j, j \geq 1$, it follows from (2) that

$$
\left(b_{1}+j-1\right) k=2 a_{0}-j-1+b_{2}-b_{0}
$$

or

$$
\begin{equation*}
b_{0}-b_{2}+\left(b_{1}+j-1\right) k+j-1=2 a_{0} . \tag{4}
\end{equation*}
$$

Since $2 a_{0}-j-1+b_{2}-b_{0} \leq 3(k-1)$, one has $b_{1}+j-1 \leq 2$. Noting that $0 \leq a_{0} \leq k-1$, one has:
(A)' If $b_{1}=0, j=1$, then (4) holds iff $b_{0}-b_{2} \geq-2$ is even;
(B)' if $b_{1}=0, j=2$, then (4) holds iff $b_{0}-b_{2} \leq k-5$ is odd;
(C)' If $b_{1}=0, j=3$, then (4) holds iff $b_{0}-b_{2} \leq-6$ is even;
(D)' If $b_{1}=1, j=1$, then (4) holds iff $b_{0}-b_{2} \leq k-4$ is even;
(E)' If $b_{1}=1, j=2$, then (4) holds iff $b_{0}-b_{2} \leq-5$ is odd;
(F) If $b_{1}=2, j=1$, then (4) holds iff $b_{0}-b_{2} \leq-4$ is even;
(G) If $b_{1} \geq 3$, then (4) never holds.

Thus, (A)', (B)', and (C)' together imply that if $b_{1}=0$, (4) does not hold iff $b_{0}-b_{2}=-4$ or $k-3$, i.e., $b_{0}-b_{1}-b_{2}=-4$ or $k-3$. According to Case I, (2) has no solution iff $b_{0}-b_{1}-b_{2}=-4$ or $k-3$.

If $b_{1}=1,(\mathrm{D})^{\prime}$ and ( E$)^{\prime}$ together imply that (4) does not hold iff $b_{0}-b_{2}>k-4$ or $k-4>$ $b_{0}-b_{2}>-5$ is odd, i.e., $b_{0}-b_{1}-b_{2}>k$ or $k-5>b_{0}-b_{1}-b_{2}>-6$ is even. According to Case I, (2) has no solution iff $b_{0}-b_{1}-b_{2}=-2$ or -4 .

If $b_{1}=2$, then from ( F ) (4) does not hold iff $b_{0}-b_{2}>-4$ or is odd, i.e., $b_{0}-b_{1}-b_{2}>-6$ or is odd. According to Case I, (2) has no solution iff $b_{0}-b_{1}-b_{2}=-2$.

If $b_{1} \geq 3$, (4) never holds. According to Case I, (2) has no solution iff $b_{0}-b_{1}-b_{2}=-2$ or $-k-3$. For the latter, $b_{1} \geq 4$. This completes the proof of Theorem 2.

## 4. PROOF OF THEOREM 3

Let $f_{s}(n)$ denote $2^{s} n+2^{s-1}-2$, where $s \geq 1$ and $n \geq 1$. Then $f_{1}(n)=2 n-1, f_{2}(n)=4 n$, $f_{3}(n)=8 n+2, f_{4}(n)=16 n+6, \ldots$. Noting that $f_{s}(n)=f_{s_{1}}\left(n_{1}\right)$ iff $n-n_{1}, s=s_{1}$, one has from the fundamental theorem of arithmetic: every positive integer can be represented in only one way, in the form $2^{s} n+2^{s-1}-2$. If $s=1, n \geq 2$, it is clear that $f_{1}(n)=2 n-1$ is not generated by $2 n$. If $s \geq 2$, taking $b_{0}=2^{s-1}-2, b_{1}=2^{s-1}, k=2 n$, and applying Theorem 1 we see that $f_{s}(n)$ is a $k$-selfnumber, i.e., it is not a universal generated number if $n>2^{s-2}$. Moreover,

$$
G(x) \leq \sum_{\substack{1 \leq 2^{s} n+2^{s-1}-2 \leq x \\ s \geq 1, n \leq 2^{s-2}}} 1 \leq \sum_{s \geq 1} \min \left\{2^{s-2}, x / 2^{s}\right\} \leq \sum_{s \leq(1 / 2) \log _{2} x+1} 2^{s-2}+\sum_{s>(1 / 2) \log _{2} x+1} x / 2^{s} \leq 2 \sqrt{x}
$$

This completes the proof of Theorem 3.

## ACKNOWLEDGMENT

The author is grateful to the referee for many useful comments and valuable suggestions.

## REFERENCES

1. D. R. Kaprekar. The Mathematics of New Self-Number, pp. 19-20. Devaiali, 1963.
2. V. S. Joshi. Ph.D. Dissertation, Gujarat University, Ahmedadad, October 1973.
3. R. B. Patel. "Some Tests for $k$-Self-Numbers." The Mathematics Student 56.1-4 (1991): 206-10 (M.R.93b:11011).
AMS Classification Number: 11A63

[^0]:    * Project supported by NNSFC and NSF of Zhejiang Province.

