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1. INTRODUCTION

Let n be an integer. A set of positive integers {a;,...,a,} is said to have the property of
Diophantus of order n, symbolically D(n) if, for all 7, j=1,...,m, i # j, the following holds:
aa,+n= b,j2 , where b; is an integer. The set {ay, ..., a,} is called a Diophantine m-tuple.

In this paper we construct several Diophantine quadruples whose elements are represented
using generalized Fibonacci numbers. It is a generalization of the following statements (see [8],

[12], [6]): The sets
{Fim ‘F2n+2’ En+4’ 4Fén+1ﬁ%n+2ﬁin+3} and {n, n+ 25 4n+ 4: 4(” + 1)(2”! + 1)(272 + 3)}
have the property D(1); the set

QF

n-1>

2F

n+l>

QRS F, By, 2By Fo FousF2 — F2))

has the property D(F?) for all positive integers 7.
These results are applied to the Pell numbers and are used to obtain explicit formulas for
quadruples with the property D(¢*), where £ is an integer.

2. PRELIMINARIES

2.1 The Problem of Diophantus

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x+2, 4x+4,
and 9x+6, where x=1/16, have the following property: the product of any two of them
increased by 1 is a square of a rational number (see [3]). The French mathematician Pierre de
Fermat first found a set with the property D(1), and it was {1,3,8,120}. Later, Davenport and
Baker [2] showed that if there is a set {1, 3, 8, d} with the property D(1), then d has to be 120.

In [5], the problem of the existence of Diophantine quadruples with the property D(n) was
considered for an arbitrary integer n. The following result was proved: if an integer » is not of the
form 4k +2 and n ¢{3,5,8,12,20, -1, -3, — 4}, then there exists a quadruple with the property
D(n).

Nonexistence of Diophantine quadruples with the property D(4k +2) was proved in [1] and
[5].

The sets with the property D(¢%) were particularly discussed in [S]. It was proved that for
any integer £ and any set {a, b} with the property D(¢?), where ab is not a perfect square, there
exists an infinite number of sets of the form {a, b, c,d} with the property D(¢?). We would like to
describe the construction of those sets.
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Let ab+(*>=k? and let s and 7 be positive integers satisfying the Pellian equation
8% —abT* =1 (s and 1 exist since ab is not a perfect square). Two double sequences Yn.m and
Zym, B,m € Z, can be defined as follows (see [5]):
Yoo=4, 200=4, yo=k+a, zip=k+b,
Yao=k-a, z0=k-b,

— 2k — — 2k _
Ynil,0 =5 Vn0 ~ Yn-1,00 Zn+1,0 = 5 2Zn0 — Zn-1,00 N EZ,

.yn,l = ‘Syn,O +atzn,0: zn,l = btyn,O +Szn,0> n EZ,
yn,m+1 = 2‘Syn,m —yn,m—la Zn,m+1 = 2szn,m ~ Zn,m-1> n,m eZ

Let us write
xn,m :(yg,m_fz)/a- (1)

According to Theorem 2 of [5], if x,, and x,,, , are positive integers, then the set {a,b, x,, ,,,
Xn41,m} has the property D(£?). It is also proved that the sets {a, b, Xo , X1}, m € Z\{~2, 1,0},
and {a, b, X_; ,,, Xom}, m€Z\{-1,0,1}, have the property D(¢?). So, it is sufficient to find one
positive integer solution of the Pellian equation S*?—abT? =1 to extend a set {a,b} with the
property D(£?) to a set {a, b, c,d} with the same property.

2.2 Generalized Fibonacci Numbers

In [9], the generalized Fibonacci sequence of numbers (w,) was defined by Horadam as
follows: w, =w,(a,b; p,q), wy=a, wy,=b, w,=pw,_,—qw,_, (n=2), where a,b, p,and q are
integers. The properties of that sequence were discussed in detail in [10], [11], and [13]. The
following identities have been proved:

WWpior — eanr = w3+r: (2)
AW, WE Wi+ (eq") = (WWg + WEY)P, 3)
WoWy s Wni3Wnia = w:+2 + eqn(p 2+ q)w3+2 + 62q2n+1p 2, (4)

AW, W Wi aWns Wi Wi +€2q7 W,UUs = W, UUs — w,U Us)?
= (Wor1Wns2Wnis + WiWnsaWnis) -
Here e = pab—qa*—b? and U, =w,(0,1; p,q). Identity (5) is due to Morgado [13].
Our purpose is to apply the above identities to constructing Diophantine quadruples. Con-
sidering the construction described in §2.1, we will restrict our attention to two special cases. For
simplicity of notation, these are
u, =u,(p)=w,(0,1;, p,-1), p=1,
8 =&(P)=w,(OL p,l), p22.
The Fibonacci sequence F, =u,(1), the Pell sequence P, = u,(2), the Fibonacci numbers of even
subscript £, = g,(3), and g,(2) =n are important special cases of the above sequences.
Apart from the sequences (u,) and (g,), we also wish to investigate joined sequences
(v,) and (h,), which are defined by v, =u, |+ 4, A, = gy1—gu-1- It is easy to check that
v, =w,(2,p; p,—1) and h,=w,(2, p; p,)).

®)
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3. QUADRUPLES WITH PROPERTIES D(p*u2) AND D(h2)
For every positive integer »,

4unun+2 + (p un—t-l)2 = v3+1 . (6)

Indeed, v2,, — (pu,,))* = (u, +u,,,)* — (4,,, —u,)* =4uu,,, From the above, it follows that the
sets {2u,, 2u,,,}, {u,,4u,,,}, and {4u, u,,,} have the property D(p*u?,;). In order to extend
these sets to the quadruples with the property D(p*u2,,) by applying the construction described in
§2.1, it is necessary to find a solution to the Pellian equation S*>—4u u_,,7% =1. One solution of
this equation can be obtained from the identity

2 2 2
4unun+1un+2 +1= (un+1 + unun+2) ’ (7)

which is the direct consequence of (2). Therefore, we will set s=u?,, +uu,,,, {=u,,. Now,
applying the construction from §2.1, we obtain an infinite number of sets with the property

D(p*u?,,). In particular, we have

n+l
Theorem 1: Let n and p be positive integers. Then the six sets
3 3 .
{zun’ 2un+2’ 2p2un+l(un+l - un)(un+2 - un)’ 2pzun+1 (un + un+1)(un+1 + un+2)} >

{2un> 2un+2; 2p2u3+1(un +un+1)(un+l + un+2),
2(un + un+1)(un+1 + un+2)(un + 2un+1 + un+2)(unun+l + 2unun+2 + un+1un+2)} >

{um 4un+2’ (un+1 - un)(un+2 - un+1)(2un+2 —u,- un+l)(2un+lun+2 — Ul — unun+2)’
2.3
p un+1(un + 2un+1)(un+l + 2un+2)}’

2,3
{un, 4un+2’ p un+1(un + 2un+l)(un+1 + 2un+2 )a

(un + un+1)(un+l + un+2)(un + 3un+1 + 2un+2)(unun+l + 3unun+2 + 2un+1un+2)}a

{4un’ Upias (un+l - un)(un+l U,y — 2un)(unun+2 Uy Uy — 2unun+1):

p2u3+1(2un + un+1)(2un+l + un+2) } >
and

2.3
{4un’ Upyas D Uy (2un + un+1)(2un+l + un+2)>

(un + un+l)(un+l + un+2)(2un + 3un+1 + un+2)(2unun+l + 3unun+2 + un+lun+2) }

have the property D(pu?,,).
Proof: The main idea of the proof is to show that the six sets in Theorem 1 are of the

form {a,b, xy;, % ;} or {a,b,x_;,%,;}. Combining (6) with (7), we obtain £ = pu,,,, k=v,,,,

S=ul, +uu,,,, 1=u,,. To simplify notation, we write u,,, = 4, u,,, = B. Hence, according
to (2), 4> — pAB— B? = (-1)"*!, and that gives
(4% - pAB-B**=1. ®)
We arrange the proof in three parts, each part relating to two of the six sets.
Partl. a=2u,, b=2u,,,
Using the notation of §2.1, we have
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Y0,0 = 20,0 = Plhyyy, V1o = 3y Flyin, 2y = U, +3U,,,,
Yor,0= PUpsys 21,0 = ~DPlUpyy-
From this, we obtain
Yo = PBlA* +(2-p)AB-(2p-1)B’],
=44’ +(8-Tp)A’B+(3p* —10p+4)AB* + p(2p-3)B’,
You= pB[A2 —(p+2)AB+(2p+ 1)B2].
Relation (8) will be used to represent expressions of x;,, 7 =—1,0,1, obtained by putting y,, in
(1), as homogeneous polynomials in two variables A and B. When those polynomials are factored,
we have
X1 = 2p* B3 A~ (p-1)BI(A+B) = 2p"u)\(u, + )Wy + 10,),
x,;=2[A-(p-1D)B]A+ B)[24A-(p-2)B][24* - 2(p—1)AB - pB’]
= z(un + un+1)(un+l + un+2)(un + 2un+1 + un+2)(unun+l + 2unun+2 + un+1un+2)’

X 11~ 217233[(17 +1)B—- Al(A-B)= 2P2”3+1(un+1 = U, )Wy = Upyy)-

Part2. a=u,, b=4u,,,
We now have

Yo.0 = 20,0 = Plhysys V1o = 2y +lhyyn, 2y o= U, +5U, 5,
V10 = Upsns 2oy = Uy = Uy,
Hence
Yo1= PB[AZ -(p-DAB-(p- I)Bz],
Y1 =342~ (p-6)A*B+(2p* ~Tp+3)AB* + p(p-2)B’,
yoa = A~ (p+2)A’B+(p+)AB* + pB’,
and, from (1) and (8),
Xo1 = P BY(A+2B)[2A~(p—~ DBl = Pty (4, + 20y)) Wy +20,,5),
X, =[4- (p—1)BI(A+B)[34-(p- 3)B][3A2 -3(p-1)A4B- sz]
= (un + un+1)(un+l + un+2)(un + 3un+1 + 2un+2 )(unun+l + 3unurl+2 + 2un+1un+2)’
., =[4-(p-DBIA-(p+DBl(A-B)[4* - (p+1)AB - pB?]
= (2un+2 —U, - un+l)(un+l - un)(un+2 - un+1)(2un+1un+2 —U Uy unun+2)'
Part3. a=4u,, b=u,,,
In this case,
Vo0 = 20,0 = Plhys1> V0o = Sy +lhyyg, 2y = Uy + 20,4,
Vor,0 = Upyy = 3U,, Z_y o =1U,

Accordingly,
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Yo = PBlA* - (p-4)AB-(4p-1)B?],
Vi1 =64>—(11p—12)A*B+(5p* ~16p+6)AB> + p(4p—5)B’,
Vo =24 +(p+4)A’B-(3p* +8p+ 2)AB* + p(4p+3)B°,
and, finally,
X1 = P'B(A+2B)[24~(2p—1)B]= Dty (21441 +1045) (200, + h,,1),
x,; =[A-(p-1)BJ(4+B)[34-(2p-3)BI[34* -3(p-1)AB-2pB’]
= (un + un+1)(un+1 + un+2)(2un + 3un+1 + un+2)(2unun+l + 3unun+2 + un+1un+2)’
%4, =[A-(p+DBI[A-(2p+1)BIA-B)[A* - (p+1)AB+2pB’]
= (un+l - un)(un+2 - un+1)(un+l + Uppr — 2un)(unurHZ T U Uyy — 2unun+l)' O
2

Using the identities 4g,8,.; + 11 = P’gr and 48,8718,z +1= (811 + 818nin)’, We find the
following theorem may be proved in much the same way as Theorem 1.

Theorem 2: Let n>1 and p > 2 be integers. Then the six sets

{28, 28012 281 (8rir = 80) &rsz — &) 281 Pt (8 + i) (st + 8s2) )

{Zgn’ 2gn+2: 2gn+lh3+l(gn + gn+l)(gn+l + gn+2)>
2(P+2)8,1(8, + &r11) (&t + &r42)(81&ns1 +28,8ns2 + &r18ne2) >

{gn’ 4gn+1’ (gn+l - gn)(gn+2 - gn+1)(2gn+2 —& gn+1)(2gn+lgn+2 —&n8n+1— gngn+2)a
gn+lh.3+l(gn + 2gn+1)(gn+l + 2gn+2)}:

{gn’ 4gn+2’ gn+lhr%+l(gn + 2gn+1)(gn+l + gn+2)7
(8 + &ni1)( &1+ 8r12)(8n +38ms1 +28,42)(8,8n1 + 38842 +281118m2) }

{4gn7 En+2> (gn+l - gn)(gn+2 - gn+1)(gn+1 + &2~ 2gn)(gngn+2 + &ni1&n2 — 2gngn+1)’
gn+1h3+l(2gn + gn+l + gn+2)}:

and

{4gm gn+27 gh+1h3+1(2gn + gn+1)(2gn+l + gn+2)a
(gn +gn+l)(gn+l +gn+2)(2gn + 3gn+1 +gn+2 )(2gngn+1 + 34gngn+2 +gn+1gn+2)}

have the property D(/2,,).

4. THE MORGADO IDENTITY
We are now going to use the Morgado identity (5). It is easy to check that
WU Us =W, UUg = w,UUs = UyUs(W,p0 = qW,12),
Wi Wi Wnis + Wl aWoss = Woaa(eqUTUs +2w,0w,,.)

If we restrict the discussion to the sequences (#,) and (g,), the Morgado identity can be used as a
base for constructing quadruples with the properties D((#,143v,,5)*) and D((£,85%,.5)°)-
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We are again going to use the construction described in §2.1. This time it is not necessary to
use the solutions of the Pellian equation. We will try to choose the numbers a and b in the
manner that the solution of the problem can be obtained using only the sequence (x,,). Accord-
ing to §2.1, if x, o e Norx_,, € N, then, respectively, {a,b,x,,x,,} and {a,b,x_ ,x_,,} are
Diophantine quadruples.

Since y, g =2 (k+a)— £, y_, =2 (k—a)—{, we have

7 o =),

Voo~ _ ak(k+a)(k +b) _ 4k
a 2
Yao— O _ —ak(k-a)(k~b) _ 4k

X 0= 7 yasa o+ 07).

Theorem 3: Let n and p be positive integers and k = u,5[2u, 1, , — (~1)" p*(p* +1)]. Then the
three sets

2ku,,
{zunun+lun+2’ 2u n+aln+ U6 2(p + 1) n+3, 4k( p 1}})

[ 2ku,
{21! Uni1Untas 2un+2 516 2p2un+3vr21+3’ 4kLE;2__;il—;7 + 1]}’

2ku
{2unun+2 Uptss 2u UpraUnres 2un+3vn+3: 4k( 2 2n+3 2 —1)}

and

@+
have the property D(p*(p* +1)*v2,,

Proof: The proof is by applying the construction from §2.1 to identity (5) for w, =u,.
Three cases need to be considered.

Casel. a=2uu, b, 5, b=2u, M, s,
Hence, a+b =2(p* +2)u, [(p* + )Wy, +u2,) +(p* — Du,,,u,,,]. This gives
X0 =a+b+2k=2(p" + D2 thy 5ty +18,14)° = 2007 + 1) th,,307,5,

x20:4k(k 200* + )%y s Vi J 4k(2ku 1)_
’ PP+ 1)V p

Case2. a=2u,u, U, 4, b=2u,,u, 4, ¢

Now we have a+b =2u, ,[(p* + D)(P* + 4ttty — Uy — u?,,] and

—a+b 2k = Zpun+3 3

X 2.0 =4k %}%&ﬁlﬁ.+lj:4k( 2kun+3 +1]
(p +1 n+3 ( 1)
Case3. a= 2unun+2un+5’ b= 2un+1un+4un+6

We have a+b = 2(p2 +2)un+3[ n+2 +un+4 (P +1u,,,1,,4] and
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2
X1,0 = 2Uyy3Vn435
X, 0= 4k( 22k1;n+3 - IJ'
p(p°+)

It remains to prove that all elements of the sets from this theorem are integers. It is sufficient
to prove that the number 84%u,,, / p?(p* +1)* is an integer for all positive integers n. That is the
direct consequence of the relation

8K20yy BB A[P (0P + 1 — (AP0 + Dty + 42 g2 ]
2,2 N2 2,2
i+ uyu;

and the fact that u, |u,, and u;|u,, for all m € N, which is easy to prove by induction. O

The following theorem can be proved in much the same way as Theorem 3.

Theorem 4: Let n>1and p >2 be integers and k = g,,,[28,,,8,.4 — P*(?* —1)]. Then the three
sets

2Ug,
{2gngn+1gn+2> 2gn+4gn+5gn+6a 2(p2 - l)zgn+3h3+3> 4k(§ﬂ + 1)})

2kg,
{zgngn+lgn+4> 2gn+2gn+5gn+6> 2p2gn+3h3+3’ 4k(ﬁ - l)}’

and

2kg,
{Zgngn+2gn+5’ 2gn+1gn+4gn+6> 2gn+3h3+3, 4k(ﬁi + 1]}

have the property D(p*(p* - 1*/2,3).

We now want to show that the sequence (g,) possesses another interesting property based
on the identity

818ne18ns38mia TP DG, = (g2 £ ). ©)

Now, the construction described in §2.1 can be applied on the relation (9). We have a=g,g,.,,
b= 8n+38n+4> k= g3+2 ip, which gives

Xz 0=a+bF2k = P’ -3p7F 2)g,2,+2 =(px)(p ¢Z)gr?n,
X520 = 4(g,f+2 ) &ni1 F € )(&es F &ri3)-

Thus, we have proved

Theorem 5: Let n>1and p > 2 be integers. Then the set

{gngn+l’ En+38n+4> (p + 1)2 (p - 2)gr21+2’ 4(g3+2 +p)(gn+l - gn)(gn+4 - gn+3)}
has the property D((p+1)*g2,,), and the set

{818n11> &ne38nras (P =D’ (P + )00, 4812 = P)(&rir + 8,) (&3 + Erea))
has the property D((p - 1)*g2,,).
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5. GENERALJZATION OF A RESULT OF BERGUM

Hoggatt and Bergum [8] have proved that the set

{]:2;1’ Fén+2’ ‘F%n+4’ 4Fén+1}2n+2}gn+3} (10)
has the property D(1) for every positive integer #. It has been proved in [4] that the set
{]:2n’ ‘Fén+4’ 51‘72n+2’ 4L2n+1Fén+2LZn+3} (l 1)

also has the property D(1). In [5], quadruples with the properties D(4), D(9), and D(64) have
been found using Fibonacci numbers. We now want to extend these results to the sequences (u,)
and (g,) starting from identity (2). Applying (2) to the sequence (u,), we get

u2n ’ u2n+2r + uf = u22n+r' (12)

Therefore, the sets {u,,,u,,,,} and {u,,, u,,,,} have, respectively, the properties D(1) and D(p?)
for every positive integer n. It was shown in §4 that, if @, b, k, and £ are the positive integers
such that ab+¢* = k* and if the number +4k(k +a)(k £b)/¢* is a positive integer, then the set
{a,b,a+b+2k, +4k(k +a)(k +£b)/ 4} has the property D(£*). According to this, we have

Theorem €: Let n and p be positive integers. Then the sets

(U, s, 203+ (P = 2hyy1, Wby [(P = 20183 41+ 20031031 + 11}
and
{12, Uy 215 = (P = 2Yhyin, 4ty [ 200300047 — (P = 23,1 —11}
have the property D(1) and the set
{35 Uyt Pthypas 4thy il iy stnss}
has the property D(p?).
For the sequence (g,), we can prove an even stronger result, namely, from (2) we have
&n &niar t ng = gf:+r (13)

for every (not just even) positive integer n. Starting from the sets {g,, g,.,} and {g,, g,,4} With
the properties D(1) and D(p?), respectively, we find that the following result may be proved in
much the same way as Theorem 6.

Theorem 7: Let n>1and p > 2 be integers. Then the sets
{gn: 8n+2> (p - 2)gn+1’ 4gn+1[(p - 2)g3+1 + 1]}

and
{gn’ gn+23 (p +2)gn+1> 4gn+l[(.p + 2)g:+l - 1]}

have the property D(1), and the set

{gn’ En+as ngn+2a 4gn+1gn+2gn+3}
has the property D(9).
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6. APPLICATION TO THE PELL NUMBERS AND POLYNOMIALS

In this section we apply the results discussed in the previous sections to some special cases of
the sequences (u,) and (g,). The case of the Fibonacci sequence F, =u,(1) and the case of the
joined Lucas sequence L, =v,(1) are studied in detail in [6].

Let us first examine the Pell sequence P, =u,(2) and the Pell-Lucas sequence O, =v,(2).
All elements of the sequence (Q!) are even numbers, so we can write O, =2(,. The numbers P,
and Q, are the solutions of the Pellian equation x* —2)* = +1. Namely, it is true that

02 -2p2=(-1)"

The sequences (P,) and (Q,) are related by relation P, +P,,, =0,,,. Applying this relation to
Theorem 1, we get

Corollary 1: For every positive integer n, the sets

{R‘n Pn+2’ 41)ni-lQnQn+1’ 4Pn3+1 n+1 n+2}
and

{Pn’ Pn+2> 4]:;134-1 n+13<n+2> 4Pn+2 n+1 n+2[Pn+1Pn+2 - (— l)n]}
have the property D(P2)).
In [6], quadruples with the property D(I2,,) are constructed using the following identities:

AFF,  + L}, =9F",, (14)
AF FrgFrs +1= (Fly + B F ) (15)
For the sequences (u,), the following analogs of the above identities are valid:
Aty 4+ (DY)’ = (P + 2t T (16)
At ygthypg + D = (Ul ut,,0) , 17

Unfortunately, existence of the term p* in (17) makes it impossibie to apply the construction for
finding quadruples with the property D(p*v2,,) from §2.1. But in the case p =2, the solution of
the equation S* —abT” = 4 can be obtained from relation (17). Thus, we can apply the modified
construction described in Remark 1 of [5].

Theorem 8: For every positive integer n, the sets

{P,P.,, 4P PP 0O, 4P 2

> Lneas T lnialnstnre, FhnaCnildninldnis
and
(B Prvts 4P11200110420043 165,100,103 By = B Bras)}
have the property D(402,,).
Proof: The sets from Theorem 8 are easily seen to be of the forms {a,b,x’,,, x4} and
{a,b, x;,, x{ 1}, respectively, where the sequence (x;,,,) is constructed as described in Remark 1
of [5], that is, by setting a=P,, b=P,,,, s'=P~,+ PP, t'=P,,. O

n+2 n+4> — tn42
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In distinction from the identities (16) and (17), the construction from §2.1 can be applied
directly to the following identities:

Qner+2 + 3+1 = 4Pnz+1> (18)

QnQ;fﬂ 2 H1= 4Pn‘§-l' (19)
We have thus proved

Theorem 9: For every positive integer n, the sets

{Qn; Qn+2’ 4R1Pn+l 3+l’ 4Pn+lR1+2Q3+l}
and

{Qn’ Qn+2’ 4Bx+1Pn+2 3+1v 4Pn+IE1+2 n+2(Pn+lBI+3 - PnPn+2)}

have the property D(Q%,)).

Obviously, Theorems 3 and 6 can also be applied to the sequence (£,). However, applying
Theorem 6, as it is done for Fibonacci numbers in Theorem 3 of [5], gives us more.

Corollary 2: For every positive integer n, the sets
{Pva PZn+27 2PZn’ 41)2n+1Q2nQ2n+1}

and
{Pln’ ])2n+27 2})2n+2’ 4P2n+lQ2n+lQ2n+2}

have the property D(1), the sets

{}32 ‘p2n+4’ 4P2n+2’ 4PZn+1PZn+2PZn+3}

n»

and
{})Zna P2n+4> 8P2n+27 4gn+2Q2n+lQ2n+3}

have the property D(4), and the set
{])Zrl’ P2n+8’ 361)2n+47 ]:;n+2P2n+4P2n+6}
has the property D(144).

In this paper only the quadruples with the property D(n), where n is a perfect square, have
been examined. However, let us mention that the set

{1: P2n+1(3PZn+1 - 2)a 3P22n+1 - 1, PZn+1(3PZn+1 + 2)}

has the property D(~Q% ,,) for every positive integer n.

Since g,(2) = n, the results from this paper can be used to obtain the sets with the property
of Diophantus whose elements are polynomials. For example, from Theorem 7, we get the Jones
result that the set {n,n+2 4(n+1),4n+1)2n+1)(2n+3)} has the property D(1) for every
positive integer 7 (see [12]).

The following interesting property of the binomial coefficients can be obtained as a conse-
quence of the results from §4 above.

For every positive integer n > 4, the sets
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{(n; 1)’ (n ;r 3) 6n, 2n(n* - T)(n* - 3;1 +1)(n* +3n- 1)}

and

{(n - I) (n + 3) 2n(n* +2) 2n(m* - T7)(m® - 3n* +2n-3)(n* +3n* +2n+ 3)}
3 > 3 > 3 ’ 27

have the property D(1). Note that 4,(2) =2.

Finally, let us mention that, using these results, the explicit formulas for quadruples with the
property D(£%), for a given integer £, can be obtained. Of course, only the sets with at least one
element that is not divisible by £ are of any interest to us here.

Corollary 3: Let £ be an integer. The sets

(L= =2), (£+1D)(L+2),402, 220 -3) 2L +3) (> ~2)}, for £ >3, (20)
and
(1, 04 =302 20> =1), 402 (2 - 1) (12 -2)}, for £ =2, 21)

have the property D(¢%).

Proof: We can get set (20) by putting p =2 and n+2 = £ in the second set of Theorem 5.
Since g,(p)=1, g&(»)=p* -1, gs(p) = p* —3p* +1, set (21) can be obtained by putting n=1
and p = £ in the third set of Theorem 7. O

Remark 1: One question still unanswered is whether any of the Diophantine quadruples from this
paper can be extended to the Diophantine quintuple with the same property. In this connection,
let us mention that it is proved in [7] that, for every integer £ and every set {a, b, ¢, d} with the
property D(¢%), where abcd # (*, there exists a rational number 7, r#0, such that the set
{a,b,c,d,r} has the property that the product of any two of its elements increased by £ is a
square of a rational number.

For example, if the method from [7] is applied to the second set in Corollary 3, we get

G G (€% - 2)(202 - 3)(20* - 40 +1)(20* - 60% +3)
O BU-DAE+ DA -2 - - +e-D)-1F

From this, for /=2, we have the set {89760, 128881, 644405,1546572,12372576} with the
property D(4-359%).
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Professor Steven Vajda

Steven Vajda, well known to readers of The Fibonacci Quarterly as the author of
Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood, 1989, died on
December 10, 1995, at the age of 94. He was born in Budapest on August 20,
1901. He was Professor of Operational Research at the University of Birmingham,
England, from 1965 to 1968 and subsequently a senior research fellow at the Uni-
versity of Sussex, England. Steven Vajda was best known for his work in commu-
nicating the early developments in the field of linear programming, as in his book
Readings in Linear Programming, Pitman, 1958.
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