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1. INTRODUCTION 

Let n be an integer. A set of positive integers {al9 -..,am} is said to have the property of 
Diophantus of order n, symbolically D(n) if, for all i,j-\...ym, i^j, the following holds: 
apj +n = b?, where btj is an integer. The set {a1,...,am} is called aDiophantine m-tuple. 

In this paper we construct several Diophantine quadruples whose elements are represented 
using generalized Fibonacci numbers. It is a generalization of the following statements (see [8], 
[12], [6]): The sets 

{F2n, F2n^ F2n+4,4F2n+lF2n+2F2n+3} and {n, n + 2,4n + 4,4(/i + l)(2/i + l)(2n + 3)} 

have the property D(l); the set 

{2-^-i ? 2Fn+1, 2Fn Fn+lFn+2, 2Frl+lPn+2rrl+3 (2rn+l - / ' „ )} 

has the property D(F2) for all positive integers n. 
These results are applied to the Pell numbers and are used to obtain explicit formulas for 

quadruples with the property D{£2), where £ is an integer. 

2. PRELIMINARIES 

2.1 The Problem of Diophantus 

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x + 2, 4x + 4, 
and 9x + 6, where x = l/l6, have the following property: the product of any two of them 
increased by 1 is a square of a rational number (see [3]). The French mathematician Pierre de 
Fermat first found a set with the property D(l), and it was {1, 3,8,120}. Later, Davenport and 
Baker [2] showed that if there is a set {1, 3,8, d) with the property D(l), then d has to be 120. 

In [5], the problem of the existence of Diophantine quadruples with the property D(ri) was 
considered for an arbitrary integer n. The following result was proved: if an integer n is not of the 
form 4& + 2 and n <£ {3,5, 8,12,20, - 1 , - 3, - 4}, then there exists a quadruple with the property 
D(n). 

Nonexistence of Diophantine quadruples with the property D(4k + 2) was proved in [1] and 
[5]-

The sets with the property D(f) were particularly discussed in [5]. It was proved that for 
any integer t and any set {a, b) with the property D(£2), where ab is not a perfect square, there 
exists an infinite number of sets of the form {a, b, c^d) with the property D(£2). We would like to 
describe the construction of those sets. 
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Let ab + £2 = k2 and let s and t be positive integers satisfying the Pellian equation 
S2 -abT1 = 1 (s and t exist since ah is not a perfect square). Two double sequences y„tM and 
zn,m, n>m G%, c a n u e defined as follows (see [5]): 

yo,o = A 0̂,0 = A Ji,o = * + <*, *i,o = k + *, 
J-i,o = £ - ^ , z_l0 = k-b, 

>Wl,0 = ~y?i,0 ~ yn-l,0> Zn+10 ~ ~ zn,0 ~ Zn-1,0, M €Z, 

y?i,m+i - 2^yw>w — ^w>OT_i, £„,/w+i = 2szn^m -z^m_h n,rn eZ. 

Let us write 

**,m = 0£«,-^)/". (1) 
According to Theorem 2 of [5], if xnjn and x„+1 m are positive integers, then the set {a, b, xn m, 
xn+\,m) has the property D(£2). It is also proved that the sets {a, b, xQmy xlm}, m e Z \ { - 2 , - 1 , 0}, 
and {a, 5, x_lm, xQm), m e Z \ { - l , 0,1}, have the property D{£2). So, it is sufficient to find one 
positive integer solution of the Pellian equation S2 -abT2 = 1 to extend a set {a, b} with the 
property D(^2) to a set {a, &, c, d) with the same property. 

2.2 Generalized Fibonacci Numbers 

In [9], the generalized Fibonacci sequence of numbers (wn) was defined by Horadam as 
follows: wn - wn(a,b; p,q), w0 =a, wx= b, wn - pwn_x - qwn_2 (n>2), where a, b, p, and q are 
integers. The properties of that sequence were discussed in detail in [10], [11], and [13]. The 
following identities have been proved: 

^n^n+2r-eqnUr^w2
+r, (2) 

4wnw2
+lwn+2 + {eqnf = (w„wn+2 + w2

+l)2
7 (3) 

WnWn+lWn+JWn+4 = WLl + ^ i f + <j)WLl + e2q2n+lp2, ( 4 ) 

4w»w„+lw„+2wn+4wn+5wn+6 + e2q2n(wnU4U5 - wn+lU2U6 - wnUxU%)2 . 
= (wn+lwn+2wn+6 +wnw„+4wn+5)2. 

Here e = pab-qa2 -b2 and Un = wn(0,l; p,q). Identity (5) is due to Morgado [13]. 
Our purpose is to apply the above identities to constructing Diophantine quadruples. Con-

sidering the construction described in §2.1, we will restrict our attention to two special cases. For 
simplicity of notation, these are 

w« = "w(p) = ww(0,l;/?,-l), p>\ 
gn = gn<J>) = »>Mp,l), P*2-

The Fibonacci sequence F„ = u„(T), the Pell sequence Pn - un(2), the Fibonacci numbers of even 
subscript F2n = gn(3), and gn(2) = n are important special cases of the above sequences. 

Apart from the sequences (un) and (g„), we also wish to investigate joined sequences 
(vw) and (hn), which are defined by vn =un_l + un+u 1% - gn+\~ gn-\- It ^s easY to check that 
v„ = w„(2, p; p, -1) and hn = w„(2, p\ p, 1). 
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3. QUADRUPLES WITH PROPERTIES D(p2ul) AND D(tfi) 

For every positive integer n, 

4unun+2 + (pun+l)2=v2
+l. (6) 

Indeed, v2
+l - (pun+i)2 = (un + un+2)2 - (un+2 - un)2 = 4unun+2. From the above, it follows that the 

sets {2un, 2un+2}, {un,4un+2}, and {4un,un+2} have the property D(/?X+1). In order to extend 
these sets to the quadruples with the property D(p2u2

+l) by applying the construction described in 
§2.1, it is necessary to find a solution to the Pellian equation S2 -4unun+2T2 = 1. One solution of 
this equation can be obtained from the identity 

which is the direct consequence of (2). Therefore, we will set s - u2
+l + unun+2, t = un+l. Now, 

applying the construction from §2.1, we obtain an infinite number of sets with the property 
D(p2u2

+l). In particular, we have 

Theorem 1: Let n and/? be positive integers. Then the six sets 

{2un, 2un+2,2p2u3„+l(un+l - un)(un+2 - un\ 2p2ul+l(un + un+l)(un+l + un+2)}, 

{2un, 2un+2,2p2u3
n+1(u„+un+1)(un+1 +un+2)9 

2(Un + "iH-lX^+l + Un+2)(Un + 2Un+l + "n+lXWn+l + 2UnUn+2 + Un+lUn+l)}^ 

iUn> 4un+2> (Un+l ~ * O 0 * + 2 ~ U„+l)(2u„+2 -U„- Un+l)(2u„+1U„+2 - U„U„+l ~ UJi^), 

P2ul+l(Un + 2un+l)(Un+l + 2 ^ + 2 ) } , 

K > 4un+2> P2U3
n+i(u„ + 2Un+l)(un+l + 2Un+2), 

0 « + O K + 1 + Un+2)(Un + 3un+l + 2un+l)(UnUn+l + 3 * V „ + 2 + 2 ^ + l ^ + 2 ) } , 

and 

{4^„, un+2, (un+l - u„)(u„+l + un+2 - 2u„)(unu„+2 + un+lun+2 - 2unun+l\ 
P2*Ll(2un + * W ) O K + 1 + Unrt)}> 

{4un, un+2, p2u3
n+l(2u„+u„+l)(2u„+l+un+2l 

(Un + ^ H - l X ^ + l + ^ X 2 ^ + X + l + M « + 2 ) ( 2 ¥ « + l + 3un Un+2 + * W n + 2 ) } 

have the property D(p2u2
+l). 

Proof: The main idea of the proof is to show that the six sets in Theorem 1 are of the 
form {a, b, x0l, xl{} or {a, b, x_lh x0l}. Combining (6) with (7), we obtain £ = pun+l, k = vw+1, 
s = ut+i + unun+2> t = un+i- T o simplify notation, we write un+2 = ^ , ww+1 =B. Hence, according 
to (2), A2-pAB-B2 = (-iy+\ and that gives 

(A2-pAB-B2)2 = l. (8) 

We arrange the proof in three parts, each part relating to two of the six sets. 
Part 1. a - 2un3 b = 2un+2 

Using the notation of §2.1, we have 
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JO.O = Z0,0 = PK+l, J l ,0 = 3 " » +M„+2> Z1,0 = Un +3un+2> 

y-1,0 = PUn+U Z-l,0 = -Pun+V 

From this, we obtain 

y^ = PB[A2 + {2-p)AB- (2p - l)B2], 

yil = 4A3 + (8-7p)A2B + (3p2-l0p + 4)AB2+p(2p-3)B3, 
y_xl = pB[A2 -(p + 2)AB + (2p + V)B2]. 

Relation (8) will be used to represent expressions of xiX, i = -1,0,1, obtained by putting ytl in 
(1), as homogeneous polynomials in two variables A and B. When those polynomials are factored, 
we have 

x01 = 2p2B3{A - (p - \)B}(A + B) = 2p2u3
n+l(u„ + w„+i)(«„+i + un+2), 

xu = 2[A-(p-1)5] A + B)[2A-(p-2)B][2A2 -Tip-\)AB-pB2] 
= 2(Un + M»+l)(M«+l + M„+2)("» + 2"»+l + U

n+l)(U
n

U
n+l + 2 M „ M „ + 2 + M«+lM«+2)v 

x_u = 2p2B\(p +1)5 - A](A -B) = 2p2u3
n+l(u„+1 - u„)(un+2 - w„+1). 

Part 2. a = un, b = 4un+2 

We now have 

^0,0 = 20,0 = PU
n+l> yi,Q = 1Un +"»+2> Zl,0 = Un + 5 "H+2> 

.V-LO = Mn+2> 2-l ,0 = M« - 3Mn+2-

Hence 

y0A = PB[A2 -(p- \)AB -(p- \)B2], 
yu = 3A3 -(5p-6)A2B + (2p2 -7p + 3)AB2 +p(p-2)B\ 

y_u = A3-(p + 2)A2B + {p + \)AB2 + pB3, 

and, from (1) and (8), 
x0J = p2B3(A + 2B)[2A -(p-1)5] = p2u3

n+l(u„ + 2un+l)(un+i + 2un+2), 

xu =[A-(p- \)B](A + B)[3A -(p- 3)B][3A2 - 3{p - \)AB - pB2} 

x_u =[A-(p- \)B][A -<j> + l)B](A - B)[A2 -(j> + \)AB - pB2] 
= ( 2 « „ + 2 - U„ - Un+1)(ti„+l - U„)(Un+2 - «„+ i ) (2«„+l"„+2 - "«" n + l - UnUn+l)-

Part 3. a = 4un, b = un+2 

In this case, 

^0,0 = Z0,0 = PUn+\> yi,0 = 5U» + M«+2' Z1,0 = "« + 2 M « + 2 > 

Accordingly, 
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y0l = pB[A2-(p-4)AB-(4p-l)B2l 
y1A = 6 A3-(Up-\2)A2B + {5p2 -I6p + 6)AB2 +p(4p-5)B3, 

y_u = -2 A3 + (5p + 4)A2B - (3p2 + Sp + 2)AB2 + p(4p + 3)B3, 

and, finally, 

*o,i = P2B\A + 2B)[2A - (2p - l)B] = p2u3
+l(2un+l + u„+2)(2un + u„+1), 

Xll=[A-(p- \)B]{A + B)[3A - (2p - 3)B][3A2 - 3(p - X)AB - 2pB2] 
= ("« + M„+l)(M„+l + M « + 2 ) 0 « + 3M»+1 + Mn+2)(2"«"«+l + 3M«M»+2 + W»+lM»+2). 

*-u = [A-(p + l)B][A - (2p + \)B](A - B)[A2 -(p + \)AB + 2pB2] 
= ("«+l - «Ofa,+2 - MH+l)(M»+l + M«+2 - 2«„)(«„«„+2 + W„+l«„+2 " 2 M « « » + I ) - • 

Using the identities 4g„gn+2 +h2
+1 = p2gl+l and 4gng2

n+lgn+2 +1 = (g2
n+l + g„gn+2)2, we find the 

following theorem may be proved in much the same way as Theorem 1. 

Theorem 2: Let n > 1 and p > 2 be integers. Then the six sets 

i2gn, 2gn+2> 2gn+lhLl(Sr,+l-gn)(gn+2 - &+l)» 2&H-A2
+l(S» + &H-l)(&H-l +«H.2)}» 

{2&, 2g-„+2,2#„+1/?„2
+i(&, + &,+1)te„+1 + £„+2), 

2(p + 2)gn+1(g„ + g„+1)fe+1 + gn+2)(g„gn+i + 2g„gn+2 + £„+1&,+2)}, 

\£n> ^Sn+U \&n+l ~~ Sn)\£n+2 ~~ 8n+l)\^Sn+2 ~ Sn~ Sn+l)\^Sn+\8n+2 ~ Sn&n+l ~ Sn§n+2)? 
gn+lhlMn +2^n+l)(g-„+l +2g-„+2)}, 

{g«> 4S»+2> gn+lrf+l(gn+2gn+l)(gr,+l+gn+2), 
(gn +gn+l)(gn+l +gn+2)(gn + 3gn+l+2gn+2)(g„gn+l+3gng»+2 + 2&,+l&,+2)} 

{4gn, gn+2, (RH-1 - gn)(gn+2 ~ gn+l)(gn+l + &+2 ~ 2£„)(£„&,+2 + gn+lgn+2 ~ 2gngr,+l\ 
g„+irf+1(2g„ + g„+1+g„+2)}, 

and 
(4«.» S»+2, ^+A2+i(2g-„ +^+i)(2^„+i +g-„+2), 

(ft, +&,+i)(S»+i + « f f 2 ) ( 2 « , + 3&+1 +^+2)(2g-„g-„+i + 3g-„g-„+2 + £„+ig„+ 2)} 

have the property D(h2
+1). 

4. THE MORGADO IDENTITY 

We are now going to use the Morgado identity (5). It is easy to check that 

wnU4U5 - wn+1U2U6 - wnUxU% = U2U3(w„+4 - qwn+2), 
Wr,+lW

n+2W
n+6 + Wr,Wn+4W

n+5 = W„+iWUp3 + 2w„+2Wn+4) . 

If we restrict the discussion to the sequences (un) and (gn), the Morgado identity can be used as a 
base for constructing quadruples with the properties -D((«2«3Vn+3)2) and D((g2g3hn+J)2). 
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We are again going to use the construction described in §2.1. This time it is not necessary to 
use the solutions of the Pellian equation. We will try to choose the numbers a and h in the 
manner that the solution of the problem can be obtained using only the sequence (xn 0 ) . Accord-
ing to §2.1, if x 2 0 eNorx_X0 GN, then, respectively, {a,f t ,xl 0 ,x2 0} and {a,b, x_L0, x_20} are 
Diophantine quadruples. 

Since j2,o = ^f (* + a) ~ A X-2,0 = 2j-(k-a)-l,we have 

yl0-l2 4k(k + a)(k+b) _ 4/c 
X 2 , 0 - ' 

a e 
- 2 (kxlQ £ ) , 

_y-2,o-t2 _-4k(k-a)(k-b)_4k 2 
-2,0 - - - ^ ~ ^ \KX-\,o - * • * ; • 

Theorem 3: Let n and /? be positive integers and & = ww+3[2w„+2ww+4 - (-l)np2(p2 + !)]• Then the 
three sets 

2ku, 22+3 2unun+1u„+2,2w„+4w„+5w„+6,2(p2 + l)2w„+3«2
+3,4*1 ^ 

12w„w„+iW„+4, 2w„+2w„+5wn+6> 2p2
W„+3v2

+3,4k\ ?n+\ +1 

1 

w+iy 
and 

) 2UnUn+2Un+5> ^Un+lUn+4Un+6^ ^Un+3Vn+3^ ^ \ 
2ku, n+3 

w+iy 
have the property D(p2(p2 + l)2v2

+3). 

Proof: The proof is by applying the construction from §2.1 to identity (5) for wn = un. 
Three cases need to be considered. 

Case 1. a = 2unu„+lun+2, b = 2H„+ 4H„+ 5H„+ 6 

Hence, a + b = 2{p2 + 2)un+3[(p2 + 1)(M2
+2 + u2

n+4) + (p2- l)u„+2un+4]. This gives 

x10 = a +b + 2k = 2(p2 + l)2w„+30„+2 +«„+4)2 = 2(p2 + l)2"„+3v2
+3, 

X2'°-4*l />V+l)\2
+3 

= 4k 2ku 
V P 

ln+3 i 
,2 

Case 2. a = 2unun+1un+4, b = 2un+2un+5un+6 

Now we have a + b = 2^w+3[(p2 + l)<Cp2 + 4)w„+2iiw+4 - i/J+2 ~ ^+4] a n d 

/" 1- ^-~2„. „2 A 
X _ 2 Q T"/C 

k-2pun+3v„+3 

/>v+l)2v„2
+3 . 

= 4 * ' 2fan+3 . ^ 
v ^ 2 + D2 j 

Case 3. a = 2unun+2un+s, b = 2un+Mn+iut n+\Kn+4Tn+6 

We have a + b = 2(p2+ 2)un+3[u2
+2 + w2

+4 - ( / + \)un+2un+4] and 
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xi ,o ~ 2un+3vn+3, 

v - AjA 2kU"+3 1 

It remains to prove that all elements of the sets from this theorem are integers. It is sufficient 
to prove that the number %k2unAr31 p2(p2 +1)2 is an integer for all positive integers n. That is the 
direct consequence of the relation 

M\+3 = Su3„+3[p4(p2 +1)2 - (-1) V ( p 2 + l)un+2un+4 + 4u2
+2u2

+4] 
p2(p2 + lf u\ul 

and the fact that u2 \u2m and ^ \u3m for all m e N, which is easy to prove by induction. D 

The following theorem can be proved in much the same way as Theorem 3. 

Theorem 4: Let n > 1 and/? > 2 be integers and k = gn+3[^gn+2gn+4 ~p2(p2 ™ 1)]. Then the three 
sets 

"K̂ H}-
Ugngn+lgn+4, 2gn+2g„+5gr,+6, 2P2gn+^+3, 4 * ,T"*,l2 ~ * IS 

and 

2&ftH-2«H-s. 2 g n + 1 g n + 4 & 1 + 6 , 2 g n + 3 h n + 3 , 4 k \ 2 %"+3 + 1 2%,+3 

/>V~1)2 

have the property D(p2(p2 -1)2/^+3). 

We now want to show that the sequence (#„) possesses another interesting property based 
on the identity 

gngn+ign+3gn+4+[(P±i)g„+2? = (d+2±P)2- (9) 
Now, the construction described in §2.1 can be applied on the relation (9). We have a = g„g„+1, 
b = gn+3gn+4, k = g2+2±P> which gives 

xTU0=a+b + 2k = (p3-3p + 2)g2„+2 = (p±l)2(p + 2)g2
+2, 

= 4(^+2 ±P)(gn+l + &X&-4 + gn+3)-

Thus, we have proved 

Theorem 5: Let n > 1 and/? > 2 be integers. Then the set 

ta+l> &H-3&M. O + 02(P - 2)^+ 2 , 4(^„2
+2 + /?)(&,+1 - g„)(gn+4 ~ g„+3)} 

has the property D((p + l)2g^+2), and the set 

{gngn+i> «H.3«H4. (^ - 0 2 O + 2)^+ 2 ,4(^+ 2 - />)(&,+1 + g„)(gn+3 + g„+4)} 

has the property D((p -1)2^+2). 
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5. GENERALIZATION OF A RESULT OF BERGUM 

Hoggatt and Bergum [8] have proved that the set 

has the property D(l) for every positive integer n. It has been proved in [4] that the set 

V^w> ^ » + 4 ? ^ 2 w + 2 ? ^^2n+V2n+2^2n+3S 0 V 

also has the property D(l). In [5], quadruples with the properties £>(4), i?(9), and D(64) have 
been found using Fibonacci numbers. We now want to extend these results to the sequences (u„) 
and (gn) starting from identity (2). Applying (2) to the sequence (un), we get 

U2n'U2n+2r+u2r = Uln+r • 0 2 ) 

Therefore, the sets {u2n, u2n+2] and {u2n, u2n+4} have, respectively, the properties D(l) and D(p2) 
for every positive integer n. It was shown in §4 that, if a, b, k, and I are the positive integers 
such that ab + £2 -k2 and if the number ±4k(k ± a){k ± b) I £2 is a positive integer, then the set 
{a, b, a + b ± 2k, ± 4k(k ± a)(k ± b) 112} has the property D(£2). According to this, we have 

Theorem 6: Let n and/? be positive integers. Then the sets 

{U2n> U2n+2> lu2n + (P ' 2>2n+l> 4u2n+li(P ~ 2>ln+l + 2 ^ 2 A + l + *1} 

and 
{u2n, U2n+2, lU2n - { p - 2 ) ^ 2 w + l ? ^U2n+V2u2n+]U2n+2 ~ 

(p-2)u2
2n+1-l]} 

have the property D(l) and the set 
{u2n, u2n+4, p u2n+2,4u2n+lu2n+2u2n+3} 

has the property D(p2). 
For the sequence (gn), we can prove an even stronger result, namely, from (2) we have 

gn'gn+2r+g2r=gl+r ( 1 3 ) 

for every (not just even) positive integer n. Starting from the sets {gn, gn+2) and {gn9 gn+4} with 
the properties D(l) andD(/?2), respectively, we find that the following result may be proved in 
much the same way as Theorem 6. 

Theorem 7: Let n > 1 andp > 2 be integers. Then the sets 

{gn, gn+2> (P ~ 2)gn+l> *gn+l\(P ~ 2)gn+l + 1] } 

and 
{&,> gn+2> (P + 2)gn+1,4gn+l[(p + 2)g2

+l -1]} 

have the property D(l), and the set 

{gn, gn+4> P2gn+2> 4g„+lg„+2g„+3} 

has the property D(9). 
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6. APPLICATION TO THE PELL NUMBERS AND POLYNOMIALS 

In this section we apply the results discussed in the previous sections to some special cases of 
the sequences (un) and (gn). The case of the Fibonacci sequence Fn = un(l) and the case of the 
joined Lucas sequence Ln = vn(l) are studied in detail in [6]. 

Let us first examine the Pell sequence Pn -un(2) and the Pell-Lucas sequence Qn -vn{2). 
All elements of the sequence (Q )̂ are even numbers, so we can write Qn = 2Qn. The numbers Pn 

and Qn are the solutions of the Pellian equation x2 - 2y2 = ±1. Namely, it is true that 

GJ-2# = (-iy. 
The sequences (Pn) and (Qn) are related by relation Pn +Pn+l - Qn+1. Applying this relation to 
Theorem 1, we get 

Corollary 1: For every positive integer n, the sets 

and 
\*n> K+2> 4Ki+lQn+lQn+2> ^^n+lQn+lQn+ll^n+l^n+l ~ \ V J J 

have the property D(P2
+l). 

In [6], quadruples with the property D(I?n+2) are constructed using the following identities: 

4 ^ ^ 4 + 4 . 2 = 9 ^ 2 , (14) 

4 ^ 2 ^ , 4 +1 = (F„+2 +FnFn+d2- (15) 
For the sequences (un), the following analogs of the above identities are valid: 

4KA+4 + ( n + 2 ) 2 = l(P2 + 2)^+2]2, (16) 
4^+A2

+2^+4 +P4 = 0*+2 +^A+4)2- (17) 
Unfortunately, existence of the term p4 in (17) makes it impossible to apply the construction for 
finding quadruples with the property D(p2v2

+2) from §2.1. But in the case p = 2, the solution of 
the equation S2 -abT2 = 4 can be obtained from relation (17). Thus, we can apply the modified 
construction described in Remark 1 of [5]. 

Theorem 8: For every positive integer n, the sets 

and 
\Pm Pn+4> 4Pn+2Qn+iQn+2Qn+3> 1 6 i ^ + 2 g w + 1 < 2 w + 3 ( 2 i ^ + 2 - P„+iP„+3)} 

have the property D(4Q2
+2). 

Proof: The sets from Theorem 8 are easily seen to be of the forms {a,*, x'_x h XQJ and 
{tf,A,*6,i>*u}> respectively, where the sequence (x^m) is constructed as described in Remark 1 
of [5], that is, by setting a = Pn,b = i>„+4, s> = P2

+2 + PnPn+4, v = P„+2. D 
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In distinction from the identities (16) and (17), the construction from §2.1 can be applied 
directly to the following identities: 

o,a+2+a2
+1=4P„2

+1, (is) 
a&iS»2+i=4/£i. (19) 

We have thus proved 

Theorem 9: For every positive integer n, the sets 

and 
\Qn> Qn+2? 4P„+iPn+2Q„+i, ^Pn+\K+2Qn+2\^n+Vn+3 ~~ *n°n+2j} 

have the property D((£+l). 

Obviously, Theorems 3 and 6 can also be applied to the sequence (Pn). However, applying 
Theorem 6, as it is done for Fibonacci numbers in Theorem 3 of [5], gives us more. 

Corollary 2: For every positive integer n, the sets 

V*2w> ^2«+2> 2^2„> ^Pln+lQlnQln+V 

and 
l^2»> ^2«+2> 2^«+2? ^Pln+lQln+lQln+l) 

have the property D(l), the sets 

V2«> p2n+4> ^p2n+2> ^^2»+1^2«+2^2«+3/ 

and 

have the property D(4)y and the set 

V*2«> ^2«+8 ' -^"^2/7+4? *2n+2*2n+4*2n+6) 

has the property 15(144). 

In this paper only the quadruples with the property D(n), where n is a perfect square, have 
been examined. However, let us mention that the set 

{1, ̂ + i ( 3 i W i " 2), 3i£+1 - 1 , P2n+l(3P2n+l + 2)} 

has the property D(-Qln+l) for every positive integer n. 

Since g„(2) = n, the results from this paper can be used to obtain the sets with the property 
of Diophantus whose elements are polynomials. For example, from Theorem 7, we get the Jones 
result that the set {w,w + 2,4(« + l),4(« + l)(2« + l)(2« + 3)} has the property D(l) for every 
positive integer n (see [12]). 

The following interesting property of the binomial coefficients can be obtained as a conse-
quence of the results from §4 above. 

For every positive integer n > 4, the sets 
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[(n-i) (n + A 6n 2n(n2-7)(n2-3n + l)(n2+3n-l)} 

and 
j(n-l) (n + 3\ 2n(n2+2) 2n(n2-7)(n3-3n2 + 2n-3)(n3 + 3n2 + In + 3) | 
[I 3 ) \ 3 y 3 ' 27 J 

have the property D(l). Note that ^(2) = 2. 
Finally, let us mention that, using these results, the explicit formulas for quadruples with the 

property D(£2), for a given integer £, can be obtained. Of course, only the sets with at least one 
element that is not divisible by £ are of any interest to us here. 

Corollary 3: Let £ be an integer. The sets 

{(£ -1)(£ - 2), {£ +1)(£ + 2), 4£2,2(2/ - 3)(2* + 3)(72 - 2)}, for £ > 3, (20) 
and 

ft £4 - 3£2, £2(£2 -1), 4£2(£2 -1){£2 - 2)}, for £ > 2, (21) 

have the property D(£2). 

Proof: We can get set (20) by putting p = 2 and n + 2 = £ in the second set of Theorem 5. 
Since ft(p) = l, &(/>) =/>2-l , ftO7) -P4~^P2 •+!> s e t (21) c a n be obtained by putting w = l 
and /? = ̂  in the third set of Theorem 7. D 

Remark 1: One question still unanswered is whether any of the Diophantine quadruples from this 
paper can be extended to the Diophantine quintuple with the same property. In this connection, 
let us mention that it is proved in [7] that, for every integer £ and every set {a, Z>, c, d) with the 
property D(£2), where abcd*£4, there exists a rational number r, r ^ O , such that the set 
{a, b, c, d, r) has the property that the product of any two of its elements increased by £2 is a 
square of a rational number. 

For example, if the method from [7] is applied to the second set in Corollary 3, we get 

= 81(1 - l)(l +1)(£2 - 2)(2l2 - 3)(2l4 - 4£2 + l)(2l4 - 6£2 + 3) 
[4(£ -1)2(£ +1)2(£2 - 2)(£2 -£-1)(£2 + £ -1) - if 

From this, for £ = 2, we have the set {89760,128881,644405,1546572,12372576} with the 
property D(4-3594). 

REFERENCES 

1. E. Brown. "Sets in Which xy + k is Always a Square." Mathematics of Computation 45 
(1985):613-20. 

2. H. Davenport A. Baker. "The Equations 3x2 - 2 = y2 and Sx2 - 7 = z2." gz/art. / . Mtf/*., 
Oxford Ser. (2), 20 (1969): 129-37. 

3. Diofant Aleksandriiskii. Arifmetika i kniga o mnogougol'nyh chislakh. Moscow: Nauka, 
1974. 

4. A. Dujella. "One Problem of Diophantus and Fibonacci Numbers." Matematika 19 (1990): 
45-52 (in Croatian). 

5. A. Dujella "Generalization of aProblem of Diophantus." Acta Arithmetica 65 (1993):15-27. 

174 [MAY 



GENERALIZED FIBONACCI NUMBERS AND THE PROBLEM OF DIOPHANTUS 

6. A. Dujella. "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." 
Portugaliae Mathematica 52 (1995):305-18. 

7. A. Dujella. "On the Diophantine Quintuples." In preparation. 
8. V. E. Hoggatt, Jr., & G. E. Bergum. "A Problem of Fermat and the Fibonacci Sequence." 

The Fibonacci Quarterly 15.4 (1977):323-30. 
9. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized Sequence of 

Numbers." Duke Math J. 32 (1965):437-46. 
10. A. F. Horadam. "Generalization of a Result of Morgado." Portugaliae Mathematica 44 

(1987): 131-36. 
11. A. F. Horadam & A. G. Shannon. "Generalization of Identities of Catalan and Others." Por-

tugaliae Mathematica 44 (1987): 137-48. 
12. B. W. Jones. "A Variation on a Problem of Davenport and Diophantus." Quart. J. Math, 

Oxford Ser. (2), 27 (1976):349-53. 
13. J. Morgado. "Note on Some Results of A. F. Horadam and A. G. Shannon Concerning a 

Catalan's Identity on Fibonacci Numbers." Portugaliae Mathemetica 44 (1987):243-52. 
AMS Classification Numbers: 11B37, 11B39, 11D09 

Professor Steven Vajda 
Steven Vajda, well known to readers of The Fibonacci Quarterly as the author of 
Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood, 1989, died on 
December 10, 1995, at the age of 94. He was born in Budapest on August 20, 
1901. He was Professor of Operational Research at the University of Birmingham, 
England, from 1965 to 1968 and subsequently a sensor research fellow at the Uni-
versity of Sussex, England. Steven Vajda was best known for his work in commu-
nicating the early developments in the field of linear programming, as in his book 
Readings in Linear Programming, Pitman, 1958. 
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