ON THE LEAST SIGNIFICANT DIGIT OF ZECKENDORF EXPANSIONS

P. J. Grabner and R. F. Tichy

Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010 Graz, Austria

I. Nemes

RISC Linz, Johannes Kepler University, A-4040 Linz, Austria

A. Pethö

Laboratory of Informatics, University Medical School, Nagyerdei krt. 98, H-4032 Debrecen, Hungary (Submitted July 1994)

1. INTRODUCTION

A well-known digital expansion is the so-called Zeckendorf number system [7], where every positive integer n can be written as

$$n = \sum_{k=0}^{L} \varepsilon_k F_k, \tag{1.1}$$

where F_k denotes the sequence of Fibonacci numbers given by $F_{k+2} = F_{k+1} + F_k$, $F_0 = 1$, and $F_1 = 2$ (cf. [5]). The digits ε_k are 0 or 1, and $\varepsilon_k \varepsilon_{k+1} = 0$. Using the same recurrence relation but the initial values $L_0 = 3$ and $L_1 = 4$, the sequence L_k of Lucas numbers is defined. In a recent volume of *The Fibonacci Quarterly*, P. Filipponi proposed the following conjectures (Advanced Problem H-457, cf. [2]).

Conjecture 1: Let f(N) denote the number of 1's in the Zeckendorf decomposition of N. For given positive integers k and n, there exists a minimal positive integer R(k) (depending on k) such that $f(kF_n)$ has a constant value for $n \ge R(k)$.

Conjecture 2: For $k \ge 6$, let us define

(i) μ , the subscript of the smallest odd-subscripted Lucas number such that $k \leq L_{\mu}$,

(ii) v, the subscript of the largest Fibonacci number such that $k > F_{\nu} + F_{\nu-6}$.

Then $R(k) = \max(\mu, \nu) + 2$.

We note that we have chosen different initial values compared to [5] and [2] (the so-called "canonical" initial values, cf. [4]) which seem to be more suitable for defining digital expansions and yield an index translation by 2. In [3] we have proved that the first conjecture is true in a much more general situation, i.e., for digital expansions with respect to linear recurrences with nonincreasing coefficients. As in [3], let U(k) be the smallest index u such that

$$kF_u = \sum_{\ell=0}^{L(k)} \varepsilon_\ell F_\ell$$
 and $kF_n = \sum_{\ell=0}^{L(k)} \varepsilon_\ell F_{\ell+n-u} \quad \forall n \ge u.$ (1.2)

We prove an explicit formula for U(k) in terms of Lucas numbers that is an improved version of Conjecture 1. Note that Filipponi's Conjecture 1 has been proved by Bruckman in [1] and for the more general case of digital expansions with respect to linear recurrences in [3]. We have also

1996]

147

obtained a weak formulation of Conjecture 2 which only yields an upper bound for U(k). However, Bruckman's proof of a modification of Filipponi's Conjecture 2 is false because his proof does not guarantee the minimality of R(k); this was pointed out in a personal communication by Piero Filipponi. We apologize here for referring in [3] to this erroneous proof instead of presenting our own proof of the original Conjecture 2. It is the aim of this note to provide a compiete proof of Conjecture 2.

2. PROOF OF CONJECTURE 2

In the following, let V(k) = L(k) - U(k) be the largest power of the golden ratio $\beta = \frac{1+\sqrt{5}}{2}$ in Parry's β -expansion of k, see [6]. Obviously, $V(k) = \lfloor \log_{\beta} k \rfloor$. For proving Conjecture 2, let us intro-duce some special notation. By Zeckendorf's theorem, every nonnegative integer n can be written uniquely as

$$n = F_{k_{x}} + \dots + F_{k_{2}} + F_{k_{1}}, \ k_{r} \gg \dots \gg k_{2} \gg k_{1}, \ r \ge 0,$$
(2.2)

where $k' \ge k''$ means that $k' \ge k'' + 2$ [compare to (1.1)].

It will be convenient to have the sequences of Fibonacci and Lucas numbers extended for negative indices. Let $F_{-2} = 0$, $F_{-1} = 1$, $F_{-n-2} = (-1)^{n+1}F_{n-2}$ and $L_{-2} = 2$, $L_{-1} = 1$, $L_{-n-2} = (-1)^n L_{n-2}$ for positive integers *n*. In this way, the definitions of μ and ν hold for all integers. We need the following well-known lemmas which can be shown by induction.

Lemma 1: For integers *m* and *n*, we have $L_m F_n = (-1)^m F_{n-m} + F_{n+m}$.

Lemma 2: Let *m* and *n* be integers, n > m and $m \equiv n \mod 2$. Then

$$F_n - F_m = \sum_{i=1}^{\frac{n-m}{2}} F_{m+2i-1}.$$

Theorem 1: For all positive integers k there exist uniquely determined integers $c_1, ..., c_t$ such that, for all integers n,

$$kF_n = \sum_{i=1}^{l} F_{n+c_i}$$
(2.3)

with

$$-U(k) = c_1 \ll c_2 \ll \dots \ll c_{t-1} \ll c_t = V(k),$$
(2.4)

where $U(k) \ge 2$ are even numbers defined by $L_{U(k)-3} < k \le L_{U(k)-1}$.

Proof: We consider the following partition of the set of natural numbers $\mathbb{N} = \bigcup_{j=-1}^{\infty} \mathbb{L}_j$, where $\mathbb{L}_{-1} = \{1\}$ and $\mathbb{L}_j = \{n \in \mathbb{N} | L_{2j-1} < n \leq L_{2j+1}\}$ for $j \geq 0$. The proof will proceed by induction on j.

If j = -1, i.e., k = 1, then the assertion is satisfied with t = 1 and $c_1 = 0$. Suppose that (2.3) and (2.4) hold for $j \ge 0$ for each *i* with $-1 \le i \le j-1$ and all $k \in \mathbb{L}_i$. Then we have to show (2.3) and (2.4) hold for all $k \in \mathbb{L}_i$. Three cases will be distinguished.

Case 1: $L_{2i-1} < k < L_{2i}$

From Lemma 2 with m = 2j + 1 and by $-F_{n-2j+1} = F_{n-2j} - F_{n-2j+2}$, we have

[MAY

$$kF_n = F_{n-2j} - F_{n-2j+2} + (k - L_{2j-1})F_n + F_{n+2j-1}.$$
(2.5)

Since $1 \le k - L_{2j-1} < L_{2j-2}$, by the induction hypothesis we obtain from (2.5),

$$kF_n = F_{n-2j} - F_{n-2j+2} + \sum_{i=1}^{t} F_{n+\overline{c_i}} + F_{n+2j-1}$$
(2.6)

with $\overline{c_1} \ge -2(j-1)$, $\overline{c_i} \le 2(j-1)-1$, and $\overline{c_1} \ll \cdots \ll \overline{c_i}$. Write (2.6) in the form

$$kF_n = F_{n-2j} + F_{n+\overline{c_i}} - F_{n-2j+2} + \sum_{i=1}^{\bar{t}} F_{n+\overline{c_i}} + F_{n+2j-1}.$$
(2.7)

If $\overline{c_1} = -2j+2$, then by $\overline{c_1} \ll \overline{c_2}$ we have $-2j+4 \le \overline{c_2}$. Letting $t = \overline{t} + 1$, $c_1 = -2j$, and $c_2 = \overline{c_2}$, ..., $c_{t-1} = \overline{c_t}$, then $c_1 \le c_2 - 4$. Thus, $c_1 \ll c_2$ and, by the induction hypothesis, $c_2 \ll \cdots \ll c_{t-1}$. If $\overline{c_1} > -2(j-1)$, then Lemma 2 applies for $F_{n+\overline{c_1}} - F_{n-2j+2}$ since, by the induction hypothesis, $\overline{c_1}$ is a value of the even-valued function U. Hence, we get

$$kF_n = F_{n-2j} + \sum_{\ell=1}^{\hat{i}} F_{n-2j+2\ell+1} + \sum_{i=1}^{\hat{i}} F_{n+\overline{c_i}} + F_{n+2j-1}$$
(2.8)

with $\hat{t} = (\overline{c_i} - 2(j-1))/2$. Representation (2.8) is already in the form (2.3). Letting $t = \overline{t} + \hat{t} + 2$ and $c_1 = -2j$, $c_2 = -2j + 3$, ..., $c_{\hat{t}+1} = \overline{c_1} - 1$, $c_{\hat{t}+2} = \overline{c_2}$, ..., $c_{\hat{t}+\hat{t}+1} = \overline{c_t}$, and using $c_2 = c_1 + 3$, $c_{i+1} \ge c_i + 2$ ($i = 2, ..., \hat{t}$), we get $c_1 \ll c_2 \ll \cdots \ll c_{\hat{t}+1}$. Applying the induction hypothesis yields $c_{\hat{t}+2} \ll \cdots \ll c_{t-1}$. Taking $c_t = 2j - 1$, (2.4) is established.

Case 2: $L_{2i} < k < L_{2i+1}$

From Lemma 1 with m = 2j we derive

$$kF_n = F_{n-2j} + (k - L_{2j})F_n + F_{n+2j}.$$
(2.9)

Since $1 \le k - L_{2i} < L_{2i-1}$, the induction hypothesis yields a representation of the form (2.3),

$$kF_n = F_{n-2j} + \sum_{i=1}^t F_{n+\overline{c_i}} + F_{n+2j}, \qquad (2.10)$$

with $\overline{c_1} \ge -2(j-1)$, $\overline{c_i} \ge 2(j-1)$, and $\overline{c_1} \ll \cdots \ll \overline{c_t}$. Letting $t = \overline{t} + 2$, $c_1 = -2j$, $c_t = 2j$, and $c_{i+1} = \overline{c_i}$ $(i = 1, \dots, \hat{t})$, we obtain (2.4).

Case 3: $k = L_{2i}$

By Lemma 2 we have $L_{2j}F_n = F_{n-2j} + F_{n+2j}$. Thus, we can proceed without using the induction hypothesis, obtaining (2.3) and (2.4) with t = 2, $c_1 = -2j$, and $c_2 = 2j$.

Uniqueness of c_1, \ldots, c_t is implied by the uniqueness of the Zeckendorf representation. \Box

Corollary 1: As an immediate consequence of Theorem 1, we get $R(k) \le U(k)$.

To prove Conjecture 2, we need an additional lemma.

Lemma 3: Let c_1 and c_2 be as in Theorem 1. Then $c_2 = c_1 + 2$ if and only if

$$k > 2L_{-c_1-1}$$
 (2.11)

1996]

149

Proof: By Theorem 1, we have $4F_n = F_{n-2} + F_n + F_{n+2}$; thus, $c_2 = c_1 + 2$. Also by Theorem 1, for $k \ge 5$, we obtain $c_2 \ge c_1 + 2$ and $c_1 = -2j$ for some integer $j \ge 1$. From the proof of that theorem, it is clear that $L_{2j-1} < k \ge L_{2j+1}$. If $L_{2j-1} < k < L_{2j}$, then $c_2 > c_1 + 2$. If $k = L_{2j}$, then t = 2 and $c_2 - c_1 = 4j > 2$. If $L_{2j} < k \le L_{2j+1}$, then $0 < k - L_{2j} < L_{2j-1}$. Observing that (2.11) is equivalent to $k - L_{2j} > L_{2j-3}$, Theorem 1 yields $U(k - L_{2j}) > -2(j-1)$ if $0 < k - L_{2j} \le L_{2(j-1)-1}$ and $U(k - L_{2j}) = -2(j-1)$ if $L_{2(j-1)-1} < k - L_{2j} \le L_{2(j-1)+1}$. Thus, we conclude that $c_2 = -2j + 2$ if and only if (2.11) holds. \Box

Theorem 2: R(1) = 0, R(2) = R(3) = 1, and for $k \ge 4$ we have

$$R(k) = \begin{cases} 2j-1 & \text{if } L_{2j-3} < k \le 2L_{2j-3}, \\ 2j & \text{if } 2L_{2j-3} < k \le L_{2j-1}. \end{cases}$$

Proof: R(1) = 0 is immediate from the definitions. By the identities $2F_n = F_{n-2} + F_{n+1}$, $3F_n = F_{n-2} + F_{n+2}$ for integral *n*, and $2F_1 = F_0 + F_2$, $3F_1 = F_0 + F_3$ we obtain $R(2) \ge 1$ and $R(3) \ge 1$. Since $2F_0 = F_1$ and $3F_0 = F_2$, we get R(2) = R(3) = 1. Let $k \ge 4$. By Corollary 1, we have $R(k) \le U(k)$ and $f(kF_n) = t$ for $n \ge U(k)$.

In the following, we distinguish two cases.

Case 1: $2L_{2j-3} < k \le L_{2j-1}$

Let n = U(k) - 1. We show that in this case $f(kF_n) < t$; hence, R(k) = U(k). Theorem 1 and Lemma 3 yield

$$kF_n = F_{-1} + F_1 + \sum_{i=3}^t F_{n+c_i} = F_2 + \sum_{i=3}^t F_{n+c_i}.$$
(2.12)

If $n + c_3 > 3$, then the right-hand side of (2.12) is a Zeckendorf representation and $f(kF_n) = t - 1$. If $n + c_3 = 3$, then let i_0 be the largest $i \ge 2$ such that $c_i = c_{i-2} + 2$; let $i_0 = 1$ if such *i* does not exist. Then the right-hand side of (2.12) can be written in the form of a Zeckendorf representation as

$$F_{n+c_{i_0}+1} + \sum_{i>i_0}^{t} F_{n+c_i}.$$
(2.13)

Thus, $f(kF_n) = t - i_0 + 1$.

Case 2: $L_{2j-3} < k \le 2L_{2j-3}$

We show $f(kF_n) = t$ provided that n = U(k) - 1; however, $f(kF_n) = t - 1$ for n = U(k) - 2. Hence, we have R(k) = U(k) - 1. Let n = U(k) - 1. As a consequence of Theorem 1, we get

$$kF_n = F_{-1} + \sum_{i=2}^t F_{n+c_i} = F_0 + \sum_{i=2}^t F_{n+c_i}$$

Applying Lemma 3, we derive $n+c_2 \ge 2$. Thus, the right-hand side is the Zeckendorf representation of kF_n and we obtain $f(kF_n) = t$. Let n = U(k) - 2. Theorem 1 yields

$$kF_n = F_{-2} + \sum_{i=2}^t F_{n+c_i} = \sum_{i=2}^t F_{n+c_i}.$$
(2.14)

150

[MAY

The right-hand side of (2.14) is the Zeckendorf representation of kF_n ; hence, $f(kF_n) = t - 1$ and the proof is complete. \Box

Remark: To see that R(k) is the same as in Filipponi's Conjecture 2, note that $\mu = 2j-1$ if $L_{2j-1} < k \le L_{2j+1}$ and if $F_{\nu} + F_{\nu-6}$ (in the definition of ν) can be replaced by $2L_{\nu-3}$.

ACKNOWLEDGMENTS

The authors are grateful to the Austrian-Hungarian Scientific Cooperation Programme, Project Nr. 10U3, the Austrian Science Foundation, Project Nr. P10223-PHY, the Hungarian National Foundation for Scientific Research, Grant Nr. 1631, and the Schrödinger Scholarship Nr. J00936-PHY for their support of this project.

REFERENCES

- 1. P. S. Bruckman. Solution of Problem H-457. The Fibonacci Quarterly 31.1 (1993):93-96.
- 2. P. Filipponi. Problem H-457. The Fibonacci Quarterly 29.3 (1991):284.
- 3. P. J. Grabner, I. Nemes, A. Pethö, & R. F. Tichy. "Generalized Zeckendorf Expansions." *Appl. Math. Letters* 7 (1994):25-28.
- 4. P. J. Grabner & R. F. Tichy. "Contributions to Digit Expansions with Respect to Linear Recurrences." J. Number Theory 36 (1990):160-69.
- 5. R. L. Graham, D. Knuth, & O. Patashnik. *Concrete Mathematics*. Reading, Mass.: Addison-Wesley, 1989.
- 6. W. Parry. "On the β -Expansions of Real Numbers." Acta Math. Acad. Sci. Hung. 11 (1960): 401-16.
- 7. E. Zeckendorf. "Répresentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas." *Bull. Soc. Roy. Sci. Liège* **41** (1972):179-82.

AMS Classification Number: 11A63

 $\sim \sim \sim$