ON THE LEAST SIGNIFICANT DIGIT OF ZECKENDORF EXPANSIONS

P. J. Grabner and R. F. Tichy
Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010 Graz, Austria

I. Nemes

RISC Linz, Johannes Kepler University, A-4040 Linz, Austria

A. Pethö

Laboratory of Informatics, University Medical School, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
(Submitted July 1994)

1. INTRODUCTION

A well-known digital expansion is the so-called Zeckendorf number system [7], where every positive integer n can be written as

$$
\begin{equation*}
n=\sum_{k=0}^{L} \varepsilon_{k} F_{k}, \tag{1.1}
\end{equation*}
$$

where F_{k} denotes the sequence of Fibonacci numbers given by $F_{k+2}=F_{k+1}+F_{k}, F_{0}=1$, and $F_{1}=2$ (cf. [5]). The digits ε_{k} are 0 or 1 , and $\varepsilon_{k} \varepsilon_{k+1}=0$. Using the same recurrence relation but the initial values $L_{0}=3$ and $L_{1}=4$, the sequence L_{k} of Lucas numbers is defined. In a recent volume of The Fibonacci Quarterly, P. Filipponi proposed the following conjectures (Advanced Problem H-457, cf. [2]).

Conjecture 1: Let $f(N)$ denote the number of 1's in the Zeckendorf decomposition of N. For given positive integers k and n, there exists a minimal positive integer $R(k)$ (depending on k) such that $f\left(k F_{n}\right)$ has a constant value for $n \geq R(k)$.

Conjecture 2: For $k \geq 6$, let us define
(i) μ, the subscript of the smallest odd-subscripted Lucas number such that $k \leq L_{\mu}$,
(ii) v, the subscript of the largest Fibonacci number such that $k>F_{v}+F_{v-6}$.

Then $R(k)=\max (\mu, v)+2$.
We note that we have chosen different initial values compared to [5] and [2] (the so-called "canonical" initial values, cf. [4]) which seem to be more suitable for defining digital expansions and yield an index translation by 2 . In [3] we have proved that the first conjecture is true in a much more general situation, i.e., for digital expansions with respect to linear recurrences with nonincreasing coefficients. As in [3], let $U(k)$ be the smallest index u such that

$$
\begin{equation*}
k F_{u}=\sum_{\ell=0}^{L(k)} \varepsilon_{\ell} F_{\ell} \text { and } k F_{n}=\sum_{\ell=0}^{L(k)} \varepsilon_{\ell} F_{\ell+n-u} \forall n \geq u . \tag{1.2}
\end{equation*}
$$

We prove an explicit formula for $U(k)$ in terms of Lucas numbers that is an improved version of Conjecture 1. Note that Filipponi's Conjecture 1 has been proved by Bruckman in [1] and for the more general case of digital expansions with respect to linear recurrences in [3]. We have also
obtained a weak formulation of Conjecture 2 which only yields an upper bound for $U(k)$. However, Bruckman's proof of a modification of Filipponi's Conjecture 2 is false because his proof does not guarantee the minimality of $R(k)$; this was pointed out in a personal communication by Piero Filipponi. We apologize here for referring in [3] to this erroneous proof instead of presenting our own proof of the original Conjecture 2. It is the aim of this note to provide a compiete proof of Conjecture 2 .

2. PROOF OF CONJECTURE 2

In the following, let $V(k)=L(k)-U(k)$ be the largest power of the golden ratio $\beta=\frac{1+\sqrt{5}}{2}$ in Parry's β-expansion of k, see [6]. Obviously, $V(k)=\left\lfloor\log _{\beta} k\right\rfloor$. For proving Conjecture 2, let us intro-duce some special notation. By Zeckendorf's theorem, every nonnegative integer n can be written uniquely as

$$
\begin{equation*}
n=F_{k_{r}}+\cdots+F_{k_{2}}+F_{k_{1}}, \quad k_{r} \gg \cdots \gg k_{2} \gg k_{1}, r \geq 0 \tag{2.2}
\end{equation*}
$$

where $k^{\prime} \gg k^{\prime \prime}$ means that $k^{\prime} \geq k^{\prime \prime}+2$ [compare to (1.1)].
It will be convenient to have the sequences of Fibonacci and Lucas numbers extended for negative indices. Let $F_{-2}=0, F_{-1}=1, F_{-n-2}=(-1)^{n+1} F_{n-2}$ and $L_{-2}=2, L_{-1}=1, L_{-n-2}=(-1)^{n} L_{n-2}$ for positive integers n. In this way, the definitions of μ and v hold for all integers. We need the following well-known lemmas which can be shown by induction.

Lemma 1: For integers m and n, we have $L_{m} F_{n}=(-1)^{m} F_{n-m}+F_{n+m}$.
Lemma 2: Let m and n be integers, $n>m$ and $m \equiv n \bmod 2$. Then

$$
F_{n}-F_{m}=\sum_{i=1}^{\frac{n-m}{2}} F_{m+2 i-1}
$$

Theorem 1: For all positive integers k there exist uniquely determined integers c_{1}, \ldots, c_{t} such that, for all integers n,

$$
\begin{equation*}
k F_{n}=\sum_{i=1}^{t} F_{n+c_{i}} \tag{2.3}
\end{equation*}
$$

with

$$
\begin{equation*}
-U(k)=c_{1} \ll c_{2} \ll \cdots \ll c_{t-1} \ll c_{t}=V(k) \tag{2.4}
\end{equation*}
$$

where $U(k) \geq 2$ are even numbers defined by $L_{U(k)-3}<k \leq L_{U(k)-1}$.
Proof: We consider the following partition of the set of natural numbers $\mathbb{N}=\bigcup_{j=-1}^{\infty} \mathbb{L}_{j}$, where $\mathbb{L}_{-1}=\{1\}$ and $\mathbb{R}_{j}=\left\{n \in \mathbb{N} \mid L_{2 j-1}<n \leq L_{2 j+1}\right\}$ for $j \geq 0$. The proof will proceed by induction on j.

If $j=-1$, i.e., $k=1$, then the assertion is satisfied with $t=1$ and $c_{1}=0$. Suppose that (2.3) and (2.4) hold for $j \geq 0$ for each i with $-1 \leq i \leq j-1$ and all $k \in \mathbb{L}_{i}$. Then we have to show (2.3) and (2.4) hold for all $k \in \mathbb{L}_{j}$. Three cases will be distinguished.

Case 1: $L_{2 j-1}<k<L_{2 j}$
From Lemma 2 with $m=2 j+1$ and by $-F_{n-2 j+1}=F_{n-2 j}-F_{n-2 j+2}$, we have

$$
\begin{equation*}
k F_{n}=F_{n-2 j}-F_{n-2 j+2}+\left(k-L_{2 j-1}\right) F_{n}+F_{n+2 j-1} \tag{2.5}
\end{equation*}
$$

Since $1 \leq k-L_{2 j-1}<L_{2 j-2}$, by the induction hypothesis we obtain from (2.5),

$$
\begin{equation*}
k F_{n}=F_{n-2 j}-F_{n-2 j+2}+\sum_{i=1}^{\bar{i}} F_{n+\bar{c}_{i}}+F_{n+2 j-1} \tag{2.6}
\end{equation*}
$$

with $\overline{c_{1}} \geq-2(j-1), \overline{c_{\bar{i}}} \leq 2(j-1)-1$, and $\overline{c_{1}} \ll \cdots<\overline{c_{\bar{i}}}$. Write (2.6) in the form

$$
\begin{equation*}
k F_{n}=F_{n-2 j}+F_{n+\bar{c}_{i}}-F_{n-2 j+2}+\sum_{i=1}^{\bar{T}} F_{n+\bar{c}_{i}}+F_{n+2 j-1} . \tag{2.7}
\end{equation*}
$$

If $\overline{c_{1}}=-2 j+2$, then by $\overline{c_{1}} \ll \overline{c_{2}}$ we have $-2 j+4 \leq \overline{c_{2}}$. Letting $t=\bar{t}+1, c_{1}=-2 j$, and $c_{2}=\overline{c_{2}}, \ldots$, $c_{t-1}=\overline{c_{i}}$, then $c_{1} \leq c_{2}-4$. Thus, $c_{1} \ll c_{2}$ and, by the induction hypothesis, $c_{2} \ll \cdots \ll c_{t-1}$. If $\bar{c}_{1}>-2(j-1)$, then Lemma 2 applies for $F_{n+\bar{c}_{1}}-F_{n-2 j+2}$ since, by the induction hypothesis, $\overline{c_{1}}$ is a value of the even-valued function U. Hence, we get

$$
\begin{equation*}
k F_{n}=F_{n-2 j}+\sum_{\ell=1}^{\hat{t}} F_{n-2 j+2 \ell+1}+\sum_{i=1}^{\bar{i}} F_{n+\bar{c}_{i}}+F_{n+2 j-1} \tag{2.8}
\end{equation*}
$$

with $\hat{t}=\left(\overline{c_{i}}-2(j-1)\right) / 2$. Representation (2.8) is already in the form (2.3). Letting $t=\bar{t}+\hat{t}+2$ and $c_{1}=-2 j, c_{2}=-2 j+3, \ldots, c_{\hat{i}+1}=\overline{c_{1}}-1, c_{\hat{i}+2}=\overline{c_{2}}, \ldots, c_{\hat{i}+\bar{i}+1}=\overline{c_{i}}$, and using $c_{2}=c_{1}+3, c_{i+1} \geq$ $c_{i}+2(i=2, \ldots, \hat{t})$, we get $c_{1} \ll c_{2}<\cdots \ll c_{\hat{i}+1}$. Applying the induction hypothesis yields $c_{\hat{i}+2}<\cdots$ $\ll c_{t-1}$. Taking $c_{t}=2 j-1,(2.4)$ is established.
Case 2: $L_{2 j}<k<L_{2 j+1}$
From Lemma 1 with $m=2 j$ we derive

$$
\begin{equation*}
k F_{n}=F_{n-2 j}+\left(k-L_{2 j}\right) F_{n}+F_{n+2 j} . \tag{2.9}
\end{equation*}
$$

Since $1 \leq k-L_{2 j}<L_{2 j-1}$, the induction hypothesis yields a representation of the form (2.3),

$$
\begin{equation*}
k F_{n}=F_{n-2 j}+\sum_{i=1}^{\bar{i}} F_{n+\bar{c}_{i}}+F_{n+2 j}, \tag{2.10}
\end{equation*}
$$

with $\overline{c_{1}} \geq-2(j-1), \overline{c_{i}} \geq 2(j-1)$, and $\overline{c_{1}} \ll \cdots \ll \overline{c_{t}}$. Letting $t=\bar{t}+2, c_{1}=-2 j, c_{t}=2 j$, and $c_{i+1}=$ $\bar{c}_{i}(i=1, \ldots, \hat{t})$, we obtain (2.4).

Case 3: $k=L_{2 j}$

By Lemma 2 we have $L_{2 j} F_{n}=F_{n-2 j}+F_{n+2 j}$. Thus, we can proceed without using the induction hypothesis, obtaining (2.3) and (2.4) with $t=2, c_{1}=-2 j$, and $c_{2}=2 j$.

Uniqueness of c_{1}, \ldots, c_{t} is implied by the uniqueness of the Zeckendorf representation.
Corollary 1: As an immediate consequence of Theorem 1, we get $R(k) \leq U(k)$.
To prove Conjecture 2, we need an additional lemma.
Lemma 3: Let c_{1} and c_{2} be as in Theorem 1. Then $c_{2}=c_{1}+2$ if and only if

$$
\begin{equation*}
k>2 L_{-c_{1}-1} \tag{2.11}
\end{equation*}
$$

Proof: By Theorem 1, we have $4 F_{n}=F_{n-2}+F_{n}+F_{n+2}$; thus, $c_{2}=c_{1}+2$. Also by Theorem 1, for $k \geq 5$, we obtain $c_{2} \geq c_{1}+2$ and $c_{1}=-2 j$ for some integer $j \geq 1$. From the proof of that theorem, it is clear that $L_{2 j-1}<k \geq L_{2 j+1}$. If $L_{2 j-1}<k<L_{2 j}$, then $c_{2}>c_{1}+2$. If $k=L_{2 j}$, then $t=2$ and $c_{2}-c_{1}=4 j>2$. If $L_{2 j}<k \leq L_{2 j+1}$, then $0<k-L_{2 j}<L_{2 j-1}$. Observing that (2.11) is equivalent to $k-L_{2 j}>L_{2 j-3}$, Theorem 1 yields $U\left(k-L_{2 j}\right)>-2(j-1)$ if $0<k-L_{2 j} \leq L_{2(j-1)-1}$ and $U\left(k-L_{2 j}\right)=-2(j-1)$ if $L_{2(j-1)-1}<k-L_{2 j} \leq L_{2(j-1)+1}$. Thus, we conclude that $c_{2}=-2 j+2$ if and only if (2.11) holds.

Theorem 2: $R(1)=0, R(2)=R(3)=1$, and for $k \geq 4$ we have

$$
R(k)= \begin{cases}2 j-1 & \text { if } L_{2 j-3}<k \leq 2 L_{2 j-3} \\ 2 j & \text { if } 2 L_{2 j-3}<k \leq L_{2 j-1}\end{cases}
$$

Proof: $R(1)=0$ is immediate from the definitions. By the identities $2 F_{n}=F_{n-2}+F_{n+1}, 3 F_{n}=$ $F_{n-2}+F_{n+2}$ for integral n, and $2 F_{1}=F_{0}+F_{2}, 3 F_{1}=F_{0}+F_{3}$ we obtain $R(2) \geq 1$ and $R(3) \geq 1$. Since $2 F_{0}=F_{1}$ and $3 F_{0}=F_{2}$, we get $R(2)=R(3)=1$. Let $k \geq 4$. By Corollary 1 , we have $R(k) \leq U(k)$ and $f\left(k F_{n}\right)=t$ for $n \geq U(k)$.

In the following, we distinguish two cases.
Case 1: $\quad 2 L_{2 j-3}<k \leq L_{2 j-1}$
Let $n=U(k)-1$. We show that in this case $f\left(k F_{n}\right)<t$; hence, $R(k)=U(k)$. Theorem 1 and Lemma 3 yield

$$
\begin{equation*}
k F_{n}=F_{-1}+F_{1}+\sum_{i=3}^{t} F_{n+c_{i}}=F_{2}+\sum_{i=3}^{t} F_{n+c_{i}} \tag{2.12}
\end{equation*}
$$

If $n+c_{3}>3$, then the right-hand side of (2.12) is a Zeckendorf representation and $f\left(k F_{n}\right)=t-1$. If $n+c_{3}=3$, then let i_{0} be the largest $i \geq 2$ such that $c_{i}=c_{i-2}+2$; let $i_{0}=1$ if such i does not exist. Then the right-hand side of (2.12) can be written in the form of a Zeckendorf representation as

$$
\begin{equation*}
F_{n+c_{i_{0}}+1}+\sum_{i>i_{0}}^{t} F_{n+c_{i}} \tag{2.13}
\end{equation*}
$$

Thus, $f\left(k F_{n}\right)=t-i_{0}+1$.
Case 2: $L_{2 j-3}<\boldsymbol{k} \leq 2 L_{2 j-3}$
We show $f\left(k F_{n}\right)=t$ provided that $n=U(k)-1$; however, $f\left(k F_{n}\right)=t-1$ for $n=U(k)-2$. Hence, we have $R(k)=U(k)-1$. Let $n=U(k)-1$. As a consequence of Theorem 1 , we get

$$
k F_{n}=F_{-1}+\sum_{i=2}^{t} F_{n+c_{i}}=F_{0}+\sum_{i=2}^{t} F_{n+c_{i}}
$$

Applying Lemma 3, we derive $n+c_{2} \geq 2$. Thus, the right-hand side is the Zeckendorf representation of $k F_{n}$ and we obtain $f\left(k F_{n}\right)=t$. Let $n=U(k)-2$. Theorem 1 yields

$$
\begin{equation*}
k F_{n}=F_{-2}+\sum_{i=2}^{t} F_{n+c_{i}}=\sum_{i=2}^{t} F_{n+c_{i}} \tag{2.14}
\end{equation*}
$$

The right-hand side of (2.14) is the Zeckendorf representation of $k F_{n}$; hence, $f\left(k F_{n}\right)=t-1$ and the proof is complete.

Remark: To see that $R(k)$ is the same as in Filipponi's Conjecture 2, note that $\mu=2 j-1$ if $L_{2 j-1}<k \leq L_{2 j+1}$ and if $F_{v}+F_{v-6}$ (in the definition of v) can be replaced by $2 L_{v-3}$.

ACKNOWLEDGMENTS

The authors are grateful to the Austrian-Hungarian Scientific Cooperation Programme, Project Nr. 10U3, the Austrian Science Foundation, Project Nr. P10223-PHY, the Hungarian National Foundation for Scientific Research, Grant Nr. 1631, and the Schrödinger Scholarship Nr. J00936-PHY for their support of this project.

REFERENCES

1. P. S. Bruckman. Solution of Problem H-457. The Fibonacci Quarterly 31.1 (1993):93-96.
2. P. Filipponi. Problem H-457. The Fibonacci Quarterly 29.3 (1991):284.
3. P. J. Grabner, I. Nemes, A. Pethö, \& R. F. Tichy. "Generalized Zeckendorf Expansions." Appl. Math. Letters 7 (1994):25-28.
4. P. J. Grabner \& R. F. Tichy. "Contributions to Digit Expansions with Respect to Linear Recurrences." J. Number Theory 36 (1990):160-69.
5. R. L. Graham, D. Knuth, \& O. Patashnik. Concrete Mathematics. Reading, Mass.: AddisonWesley, 1989.
6. W. Parry. "On the β-Expansions of Real Numbers." Acta Math. Acad. Sci. Hung. 11 (1960): 401-16.
7. E. Zeckendorf. "Répresentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas." Bull. Soc. Roy. Sci. Liège 41 (1972):179-82.

AMS Classification Number: 11A63

