TRIANGULAR NUMBERS IN THE PELL SEQUENCE

Wayne L. McDaniel
Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121
(Submitted June 1994)

1. INTRODUCTION

In 1989, Luo Ming [5] proved Vern Hoggatt's conjecture that the only triangular numbers in the Fibonacci sequence $\left\{F_{n}\right\}$ are 1, 3, 21, and 55. It is our purpose, in this paper, to show that 1 is the only triangular number in the Pell sequence $\left\{P_{n}\right\}$.

Aside from the proof itself, Ming's unique contribution in his paper was his development and use of the value of the Jacobi symbol $\left(8 F_{2 k_{g}+m}+1 \mid L_{2 k}\right)$, where $\left\{L_{n}\right\}$ is the sequence of Lucas numbers, g is odd, and $k \equiv \pm 2(\bmod 6)$. In other papers involving similar arguments, the value of the Jacobi symbol $\left(f(2 k g+m) \mid L_{t}\right)$, for certain functions $f(n)$ of F_{n} and/or L_{n}, has often been obtained for t a divisor of k, but not for t equal to $2 k$ (e.g., [1], [2], [3], and [7]).

It is immediate, from the definition, that an integer k is a triangular number iff $8 k+1$ is a perfect square >1. We shall employ an argument similar to that used by Ming to show that, for every integer $n \neq \pm 1$, there exists an integer $w(n)$, such that $8 P_{n}+1$ is a quadratic nonresidue modulo $w(n)$.

We require the sequence of "associated" Pell numbers defined by $Q_{0}=1, Q_{1}=1$ and, for all integers $n \geq 0, Q_{n+2}=2 Q_{n+1}+Q_{n}$. The first few Pell and associated Pell numbers are

$$
\left\{P_{n}\right\}=\{0,1,2,5,12, \ldots\} \text { and }\left\{Q_{n}\right\}=\{1,1,3,7,17, \ldots\} .
$$

2. SOME IDENTITIES AND PRELIMINARY LEMMAS

The following formulas and identities are well known. For all integers n and m,

$$
\begin{gather*}
P_{-m}=(-1)^{m+1} P_{m} \text { and } Q_{-m}=(-1)^{m} Q_{m} \tag{1}\\
P_{m+n}=P_{m} P_{n+1}+P_{m-1} P_{n} \tag{2}\\
P_{m+n}=2 P_{m} Q_{n}-(-1)^{n} P_{m-n} \tag{3}\\
P_{2^{2} m}=P_{m}\left(2 Q_{m}\right)\left(2 Q_{2 m}\right)\left(2 Q_{4 m}\right) \cdots\left(2 Q_{2^{-1} m}\right) \tag{4}\\
Q_{m}^{2}=2 P_{m}^{2}+(-1)^{m} \tag{5}\\
Q_{2 m}=2 Q_{m}^{2}-(-1)^{m} \tag{6}
\end{gather*}
$$

If $d=\operatorname{gcd}(m, n)$, then

$$
\begin{cases}\operatorname{gcd}\left(P_{m}, Q_{n}\right)=Q_{d} & \text { if } m / d \text { is even } \tag{7}\\ \operatorname{gcd}\left(P_{m}, Q_{n}\right)=1 & \text { otherwise }(\text { see [4] })\end{cases}
$$

We note that (6) readily implies that, if $t>1$, then $Q_{2^{t}} \equiv 1(\bmod 8)$.

Lemma 1: Let $k=2^{t}, t \geq 1, g>0$ be odd and m be any integer. Then,
(i) $P_{2 k g+m} \equiv-P_{m}\left(\bmod Q_{k}\right)$, and
(ii) $P_{2 k g} \equiv \pm P_{2 k}\left(\bmod Q_{2 k}\right)$.

Proof: (i) is known [and can be easily proved using (1) and (3)]. If $n=2 k g=2 k(g-1)+2 k$, then, using (3), (ii) readily follows from

$$
P_{n}=2 P_{2 k(g-1)} Q_{2 k}-(-1)^{2 k} P_{2 k(g-2)} \equiv-P_{2 k(g-2)}\left(\bmod Q_{2 k}\right) .
$$

Lemma 2: If $k=2^{t}, t \geq 1$, then $\left(8 P_{2 k}+1 \mid Q_{2 k}\right)=\left(-8 P_{2 k}+1 \mid Q_{2 k}\right)$.
Proof: We first observe that each Jacobi symbol is defined. Indeed, if $d=\operatorname{gcd}\left(8 P_{2 k}+1, Q_{2 k}\right)$ or $\operatorname{gcd}\left(-8 P_{2 k}+1, Q_{2 k}\right)$, then, using (5), d divides

$$
\left(8 P_{2 k}+1\right) \cdot\left(-8 P_{2 k}+1\right)=1-64 P_{2 k}^{2}=1-32\left(Q_{2 k}^{2}-1\right)=33-2 Q_{2 k}^{2}
$$

Hence, $\boldsymbol{d} \mid 33$. But $33 \mid P_{12}$ which implies $d=1$, since, by (7), $\operatorname{gcd}\left(P_{12}, Q_{2 k}\right)=1$.
To establish the lemma, note that

$$
\left(8 P_{2 k}+1 \mid Q_{2 k}\right)\left(-8 P_{2 k}+1 \mid Q_{2 k}\right)=\left(1-64 P_{2 k}^{2} \mid Q_{2 k}\right)=\left(33 \mid Q_{2 k}\right)=\left(Q_{2 k} \mid 33\right) .
$$

Now, by (6), $Q_{4}=17, Q_{8}=2 Q_{4}^{2}-1=2 \cdot 17^{2}-1 \equiv 16(\bmod 33)$, and by induction, $Q_{2 k} \equiv 16(\bmod$ 33) if $t \geq 2$. Hence, if $t \geq 1,\left(Q_{2 k} \mid 33\right)=+1$.

Lemma 3: If $k=2^{t}, t \geq 2$, then $\left(8 P_{k}+Q_{k} \mid 33\right)=-1$.
Proof: $Q_{2}=3, Q_{4}=17 \equiv-16(\bmod 33)$, and as observed in the proof of Lemma 2, $Q_{2^{j}} \equiv 16$ $(\bmod 33)$, if $j \geq 3$. Hence, by (4), if $t \geq 2$,

$$
8 P_{k}=8 P_{2}\left(2 Q_{2}\right)\left(2 Q_{4}\right) \cdots\left(2 Q_{2^{t-1}}\right) \equiv 8 \cdot 2 \cdot 6 \cdot(\pm 1) \equiv \pm 3(\bmod 33),
$$

so, $8 P_{k}+Q_{k} \equiv \pm 13$ or $\pm 19(\bmod 33)$ and both $(\pm 13 \mid 33)$ and $(\pm 19 \mid 33)=-1$.
From a table of Pell numbers (e.g., [6], p. 59), we find that $P_{24} \equiv 0(\bmod 9)$ and $P_{25} \equiv 1(\bmod$ 9). Using (2),

$$
P_{n+24}=P_{n} P_{25}+P_{n-1} P_{24} \equiv P_{n}(\bmod 9),
$$

and we have, immediately,
Lemma 4: If $n \equiv m(\bmod 24)$, then $P_{n} \equiv P_{m}(\bmod 9)$.

3. THE MAIN THEOREM

Theorem: The term P_{n} of the Pell sequence is a triangular number iff $n= \pm 1$.
Proof: If $n= \pm 1, P_{n}$ is the triangular number 1. By (1), if n is an even negative integer, then $8 P_{n}+1$ is negative, and if n is odd, then $P_{-n}=P_{n}$; hence, it suffices to show that $8 P_{n}+1$ is not a square for $n>1$. Let $n=2 k g+m, k=2^{t}, t \geq 1, g \geq 1$ odd, and assume P_{n} is a triangular number. [Then $\left(8 P_{n}+1 \mid N\right)=+1$ for all odd integers N.]

Case 1. n odd. Since $n \equiv \pm 1(\bmod 4), 8 P_{n}+1=8 P_{2 k g \pm 1}+1 \equiv-7\left(\bmod Q_{k}\right)$, by Lemma $1(\mathrm{i})$ and (1). But it is readily shown, using (6), that $Q_{k} \equiv 3(\bmod 7)$. Hence,

$$
\left(8 P_{n}+1 \mid Q_{k}\right)=\left(-7 \mid Q_{k}\right)=\left(Q_{k} \mid 7\right)=(3 \mid 7)=-1
$$

a contradiction.
Case $2(\bmod 4): n \equiv 2$. It is easily seen that $\left\{P_{n}\right\}$ has period 6 modulo 7 , and that, for n even, $\left(8 P_{n}+1 \mid 7\right)=+1$ only if $n \equiv 0(\bmod 6)$. Hence, $n \equiv \pm 6(\bmod 24)$. By Lemma 4 ,

$$
8 P_{n}+1 \equiv \pm 8 P_{6}+1 \equiv 3 \text { or } 8(\bmod 9)
$$

But 3 and 8 are quadratic nonresidues of 9 , so $8 P_{n}+1$ is not a square.
Case 3. $n \equiv 0(\bmod 4)$. By Lemma 1(ii) and Lemma 2,

$$
\left(8 P_{n}+1 \mid Q_{2 k}\right)=\left(8 P_{2 k}+1 \mid Q_{2 k}\right)
$$

If $k=2(t=1),\left(8 P_{2 k}+1 \mid Q_{2 k}\right)=(97 \mid 17)=-1$. Assume $t \geq 2$. Now,

$$
8 P_{2 k}+1 \equiv 8 P_{2 k}+\left(2 Q_{k}^{2}-Q_{2 k}\right) \equiv 2 Q_{k}\left(8 P_{k}+Q_{k}\right)\left(\bmod Q_{2 k}\right)
$$

Let $s_{k}=8 P_{k}+Q_{k}\left[\right.$ note that $\left.s_{k} \equiv 1(\bmod 8)\right]$. Then, using properties (5) and (6),

$$
\begin{aligned}
\left(8 P_{2 k}+1 \mid Q_{2 k}\right) & =\left(Q_{k} \mid Q_{2 k}\right)\left(s_{k} \mid Q_{2 k}\right)=\left(Q_{2 k} \mid Q_{k}\right)\left(Q_{2 k} \mid s_{k}\right) \\
& =\left(2 Q_{k}^{2}-1 \mid Q_{k}\right)\left(2 P_{k}^{2}+Q_{k}^{2} \mid s_{k}\right)=(+1)\left(2 P_{k}^{2}+\left(s_{k}-8 P_{k}\right)^{2} \mid s_{k}\right) \\
& =\left(66 P_{k}^{2} \mid s_{k}\right)=\left(33 \mid s_{k}\right)=\left(s_{k} \mid 33\right)=\left(8 P_{k}+Q_{k} \mid 33\right)=-1
\end{aligned}
$$

by Lemma 3, and the proof is complete.

REFERENCES

1. J. A. Antoniadis. "Generalized Fibonacci Numbers and Some Diophantine Equations." The Fibonacci Quarterly 23.3 (1985):199-213.
2. Brother U. Alfred. "On Square Lucas Numbers." The Fibonacci Quarterly 2.1 (1964):1112.
3. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-41.
4. W. L. McDaniel. "The G.C.D. in Lucas Sequences and Lehmer Number Sequences." The Fibonacci Quarterly 29.1 (1991):24-29.
5. L. Ming. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989):98108.
6. P. Ribenboim. The Book of Prime Number Records. New York: Springer-Verlag, 1989.
7. P. Ribenboim. "Square Classes of Fibonacci and Lucas Numbers." Port. Math. 46 (1989): 159-75.

AMS Classification Number: 11B39

