SELF-GENERATING PYTHAGOREAN QUADRUPLES AND N-TUPLES

Paul Oliverio
Jefferson High School, Los Angeles, CA 90011

(Submitted December 1993)

1. INTEODUCTION

In a rectangular solid, the length of an interior diagonal is determined by the formula

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}=d^{2}, \tag{1}
\end{equation*}
$$

where a, b, c are the dimensions of the solid and d is the diagonal.
When a, b, c, and d are integral, a Pythagorean quadruple is formed.
Mordell [1] developed a solution to this Diophantine equation using integer parameters (m, n, and p), where $m+n+p \equiv 1(\bmod 2)$ and $(m, n, p)=1$. The formulas are:

$$
\begin{array}{ll}
a=2 m p & c=p^{2}-\left(n^{2}+m^{2}\right), \\
b=2 n p & d=p^{2}+\left(n^{2}+m^{2}\right) . \tag{2}
\end{array}
$$

However, the Pythagorean quadruple $(36,8,3,37)$ cannot be generated by Mordell's formulas since c must be the smaller of the odd numbers and

$$
\begin{aligned}
3 & =p^{2}-\left(n^{2}+m^{2}\right) \\
37 & =p^{2}+\left(n^{2}+m^{2}\right) \\
\hline 40 & =2 p^{2} \\
20 & =p^{2} ; \quad \text { so } p \text { is not an integer. }
\end{aligned}
$$

This quadruple, however, can be generated from Carmichael's formulas [2], using (m, n, p, q) $=$ $(1,4,2,4)$, that is,

$$
\begin{array}{ll}
a=2 m p+2 n q & c=p^{2}+q^{2}-\left(n^{2}+m^{2}\right), \\
b=2 n p-2 m q & d=p^{2}+q^{2}+\left(n^{2}+m^{2}\right) . \tag{3}
\end{array}
$$

By using an additional parameter, the Carmichael formulas generate a wider set of solutions where $m+n+p+q \equiv 1(\bmod 2)$ and $(m, n, p, q)=1$.

In the formulas above, either three or four variables are needed to generate four other integers (a, b, c, d). In this paper, we present 2-parameter Pythagorean quadruple formulas where the two integral parameters are also part of the solution set. We shall call them self-generating formulas. These formulas will then be generalized to give Pythagorean N-tuples when a set of ($n-2$) integers is given.

2. THE SELF-GENERATING QUADRUPLE FORMULAS

We use a and b to designate the two integer parameters that will generate the Pythagorean quadruples. The following theorem deals with the three possible cases arising from parity conditions imposed upon a and b.

Theorem 1: For positive integers a and b, where a or b or both are even, there exist integers c and d such that $a^{2}+b^{2}+c^{2}=d^{2}$. When a and b are both odd, no such integers c and d exist.

Case 1. If a and b are of opposite parity, then

$$
\begin{equation*}
c=\left(a^{2}+b^{2}-1\right) / 2 \quad \text { and } \quad d=\left(a^{2}+b^{2}+1\right) / 2 \tag{4}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
d^{2}-c^{2} & =(d+c)(d-c) \\
& =\left[\left(\frac{a^{2}+b^{2}+1}{2}\right)+\left(\frac{a^{2}+b^{2}-1}{2}\right)\right]\left[\left(\frac{a^{2}+b^{2}+1}{2}\right)-\left(\frac{a^{2}+b^{2}-1}{2}\right)\right] \\
& =\left[\frac{2\left(a^{2}+b^{2}\right)}{2}\right]\left[\frac{2}{2}\right] \\
& =a^{2}+b^{2}
\end{aligned}
$$

Therefore, $d^{2}=a^{2}+b^{2}+c^{2}$.
Since a and b differ in parity, c and d in (4) are integers.
Corollary: From (4), we see that c and d are consecutive integers. Therefore, $(a, b, c, d)=1$, even when $(a, b) \neq 1$.

Case 2. If a and b are both even, then

$$
\begin{equation*}
c=\left(\frac{a^{2}+b^{2}}{4}\right)-1 \quad \text { and } \quad d=\left(\frac{a^{2}+b^{2}}{4}\right)+1 \tag{5}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
16\left(d^{2}-c^{2}\right) & =\left(a^{2}+b^{2}+4\right)^{2}-\left(a^{2}+b^{2}-4\right)^{2} \\
& =16\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Therefore, $d^{2}=a^{2}+b^{2}+c^{2}$.
Since a and b are both even, c and d in (5) are integers.
Corollary: If $a-b \equiv 0(\bmod 4),\left(a^{2}+b^{2}\right) / 4$ is even and c and d are consecutive odd integers, so $(a, b, c, d)=1$. But, if $a-b \equiv 2(\bmod 4),\left(a^{2}+b^{2}\right) / 4$ is odd, c and d are consecutive even integers, and $(a, b, c, d) \neq 1$.

Case 3. If a and b are both odd, then $a^{2} \equiv b^{2} \equiv 1(\bmod 4)$.
Since $c^{2} \equiv 0(\bmod 4)$ or $c^{2} \equiv 1(\bmod 4)$, and similarly for d^{2}, we have:

$$
a^{2}+b^{2}+c^{2} \equiv 2(\bmod 4) \not \equiv d^{2} \text { for any integer } d
$$

or

$$
a^{2}+b^{2}+c^{2} \equiv 3(\bmod 4) \not \equiv d^{2} \text { for any integer } d
$$

Hence, no Pythagorean quadruple exists in this case.

3. SELF-GENERATING PYTHAGOREAN \boldsymbol{N}-TUPLES

The ideas and methods of proof for the self-generating quadruples can be generalized to the N-tuple case. We need to find formulas for generating integer N-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ when given a set of integer values for the $(n-2)$ members of the "parameter set" $S=\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$. Analogous to the parity conditions imposed on the self-generating quadruple formulas, we introduce the variable T. Proofs of the formulas are left to the reader; they are similar to those for Theorem 1.

Theorem 2: Let $S=\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$, where a_{1} is an integer, and let $T=$ "\# of odd integers in $S . "$ If $T \not \equiv 2(\bmod 4)$, then there exist integers a_{n-1} and a_{n} such that

$$
\begin{equation*}
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-1}^{2}=a_{n}^{2} \tag{6}
\end{equation*}
$$

Case 1. Let $T \equiv 1(\bmod 2)$, which implies that $T \equiv 1(\bmod 4)$ or $T \equiv 3(\bmod 4)$. Then, setting

$$
a_{n-1}=\left[a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}-1\right] / 2
$$

and

$$
a_{n}=\left[a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}+1\right] / 2
$$

we have

$$
\begin{aligned}
a_{n}^{2}-a_{n-1}^{2} & =\left(a_{n}+a_{n-1}\right)\left(a_{n}-a_{n-1}\right) \\
& =\left[2\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}\right) / 2\right][2 / 2] \\
& =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}
\end{aligned}
$$

as required.
Case 2. Let $T \equiv 0(\bmod 4)$. Then, setting

$$
a_{n-1}=\left[a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}\right] / 4-1
$$

and

$$
\begin{equation*}
a_{n}=\left[a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}\right] / 4+1 \tag{8}
\end{equation*}
$$

we have

$$
\begin{aligned}
a_{n}^{2}-a_{n-1}^{2} & =\left(a_{n}+a_{n-1}\right)\left(a_{n}-a_{n-1}\right) \\
& =\left[2\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}\right) / 4\right][2] \\
& =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}
\end{aligned}
$$

as required.
Case 3. Suppose $T \equiv 2(\bmod 4)$. Then $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2} \equiv 2(\bmod 4)$ And since either $a_{n-1}^{2} \equiv 0(\bmod 4)$ or $a_{n-1}^{2} \equiv 1(\bmod 4)$, we have

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}+a_{n-1}^{2} \equiv 2(\bmod 4) \not \equiv a_{n}^{2} \text { for any integer } a_{n}
$$

or

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-2}^{2}+a_{n-1}^{2} \equiv 3(\bmod 4) \not \equiv a_{n}^{2} \text { for any integer } a_{n}
$$

Hence, no Pythagorean quadruple N-tuple exists in this case.

ACKNOWLEDGMENTS

The author wishes to thank Dr. Ernest Eckert (University of South Carolina), Dr. Chuck Lanski (University of Southern California), Bill Graynom-Daly (Jefferson High School), and the referees for their valuable comments.

REFERENCES

1. L. J. Mordell. Diophantine Equations. London: Academic Press, 1969.
2. R. D. Carmichael. Diophantine Analysis. New York: John Wiley \& Sons, 1915.

AMS Classification Number: 11D09

FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES 100,003 THROUGH 4115,993

A Monograph
by Daniel C. Fielder and Paul S. Bruckman Members, The Fibonacci Association

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a twovolume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993.

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stock Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kindness of its originator, Dr. Roman Maeder, of ETH, Zürich, Switzerland.

The price of the book is $\$ 20.00$; it can be purchased from the Subscription Manager of The Fibonacci Quarterly whose address appears on the inside front cover of the journal.

