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1. INTRODUCTION 

For any x eM, x may be expressed as the sum ao+a^lO1)*--- + ̂ (10^), where each 
a,E{0,l,2,...,9}. 

Suppose that x GN is a composite number. Then x = PiP2-Pm, where each pk is a prime 
number. We can then formally define two functions S(x) and Sp(x) as 

d m 

S(x) = ^aJ and S^^Sif,). 

That is, S{x) is the digital sum of x and Sp(x) is the digital sum of the prime factors of x. 
Wilansky [2] defines a Smith number as a composite integer where S(x) = Sp(x). This paper 
deals with two kinds of sets related to Smith numbers. These sets are called Monica sets and 
Suzanne sets. 

Definition 1.1: The rfi1 Monica set M.w consists of those composite numbers x for which 
n\S(x)-Sp(x) [we write S(x) =nSp(x)]. 

Definition 2.1: The rfr Suzanne set S„ consists of those composite numbers x for which n\S(x) 
and n\Sp(x). 

It should be noted that because I developed this concept from Smith numbers, I consider it to 
be akin to Smith's. Therefore, I have named these sets after my cousins, Monica and Suzanne 
Hammer. 

2. ON THE POPULATION OF MONICA AND SUZANNE SETS 

The following theorems give indications of what sort of integers belong to Monica and 
Suzanne sets. 

Theorem 2.1: If x is a Smith number, then x GM„, \/n eN. 

Theorem 2.2: x e S„ => x eMn. 

Note that the converse of Theorem 2.2 is not true; for example, 10 = 5x2, thus £(10) = 1 and 
£,(10) = 7. 10 eM6 since 6|l-7, but 10 £S6 since 6|1. 

Theorem 2.3: For any integer k > 1, if x is a k-Smith, then x G M H . 

Proof: McDaniel [1] defines a k-Smith as a composite number x such that kS'(x) = Sp(x). 
Thus, S(x) - Sp(x) is divisible by k - 1 . Therefore, x eMk_x. D 
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3. EPILATIONS BETWEEN SETS OF MONICAS AND SETS OF SUZANNES 

There are some rather simple properties of Monica and Suzanne sets that may be useful in 
later studies. 

Theorem 3: 
(a) If p, q GN and p\q, then x GMq implies x GMp; 
(b) If py q GH and p\q, then x eSq implies x eS^; 
(c) If p, q GN and p\q are relatively prime, then x GMp and x sMq implies x G M W ; 
(d) If p, q GN and p\q are relatively prime, then x sSp and x e$q implies x ^Spq. 

4. INFINITE ELEMENTS IN EACH MONICA AND SUZANNE SET 

The most interesting property of Monica and Suzanne sets is that every Monica set and every 
Suzanne set has an infinite number of elements. McDaniel [1] proves that there is an infinite 
number of Smiths; this implies, by Theorem 2.1, that every Monica set has an infinite number of 
elements.. The proof that there is an infinite number of elements in each Suzanne set is more 
complicated. 

Theorem 4: All Suzanne sets have infinitely many elements. 

Proof: Consider Sv For any composite number x, l\S(x) and l\Sp(x). 
For S„, where n > 1, we need to construct a candidate integer r such that S(r) = n. Let r be 

an w-digit Repunit, that is, a string of n ones (see [3]). Let z = ar, where a is determined by the 
following table: 

Sp{r)=70 
Sp(r)^l 
Sp(r)^72 
5p(r)S,3 
Sp(r)^4 
Sp(r)^75 
Sp{r)^6 

then 
then 
then 
then 
then 
then 
then 

a = l 
a = 9 
a~5 
a = 4 
a = 3 
a = 2 
a = 15 

since SpQr) = Sp(r) 
since Sp(9) = 6 
since Sp(S) - 5 
since S (4) = 4 
since S (3) = 3 
since Sp(2) = 2 
since Sp(\5) = 8 =71 

From the table it should be obvious that 7\Sp(r) + Sp(a), and thus 7\Sp(z). Note that 
S(z) = S(r)S(a) because of our choice of r, so n\S(z). 

Let m be an integer such that n\(Sp(z) + 7m) and let y - z * 10w. Clearly, Sp(y) - Sp(z) + 
Sp(\0m) and Sp(\0m) = 7m; thus, n\Sp(y) = Sp(z) + Sp(lOm). 

Note that S(y) = S(z), so n\S(y); thus, ar* 10w =y GS„ for all m such that n\Sp(ar) + 7m. 
Clearly, there are infinitely many choices for m. • 
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