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I. INTRODUCTION 

A Fibonacci expansion of a nonnegative integer n is an expression of n as a sum of Fibonacci 
numbers Fk with k > 2. It may be thought of as a partition of n into Fibonacci parts. The most 
commonly studied such expansion is the unique one in which the parts are all distinct and no two 
consecutive Fibonacci numbers appear. C. G. Lekkerkerker first showed this expansion was 
unique in 1952 [5]. There is also a unique dual form of this expansion in w7hich no two con-
secutive Fibonacci numbers not exceeding n do not occur in the expansion [2]. Lekkerkerker's 
expansion is the only one I refer to in the remainder of this paper; from now on, I will call it the 
Fibonacci expansion of n, or fib(w) (I will give a precise definition in Part II). The Fibonacci 
expansion of nonnegative integers is similar in many ways to a fixed-base expansion (in fact, in 
some sense, it may be thought of as a base-r expansion, where r = y(l + V5)« 1.61803 is the 
golden mean). First, in each case there are both "top-down" and "bottom-up" algorithms for 
obtaining the expansion of a nonnegative integer (see [3], pages 281-282). Second, there are 
mechanical rules for adding the expansions of two or more nonnegative integers [1]. Third, each 
case may be generalized by defining infinite expansions (p-adic or "F-adic" integers), both of 
which have interesting algebraic properties. One should be warned, however, that this analogy 
has its limitations. For instance, the /?-adic integers form a ring, but the F-adic integers do not. 
My main result in this paper is that there is a 1-1 correspondence between the F-adic integers and 
the points on a circle, and that both of these sets share some important geometric properties. 

H. FIBONACCI EXPANSIONS OF NONNEGATIVE INTEGERS 

Definition: Let n eco = {0,1,2,...}. Suppose there exists a sequence (ck)% e{0, l}® such that 
ckck+1 = 0(\/k) and ^ = ^=0ckFk+2. Then (ck) is called the Fibonacci expansion of n and is 
denoted fib(n). It is well known that every nonnegative integer has a unique Fibonacci expansion 
[5], so fib: co -> {0,1}" is well defined. 

In this paper, I use the convention of increasing coefficient indices in Fibonacci expansions 
going from left to right. Thus, for instance, 

fib(5) =0001 
fib(10) =01001 
fib(100) = 0010100001 

where the rightmost 1 in each expansion is assumed to be followed by an infinite sequence of 
zeros. 

The top-down algorithm for computing fib(rc) is as follows (see [4], page 573). First, find the 
largest nonnegative integer k such that Fk+2 does not exceed n, and let ck - 1. Next, subtract 
Fk+2 from n and repeat the above procedure for the difference. After a finite number of iterations, 
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the difference will be zero; then we have obtained fib(n). This procedure is well known, and it is 
easy to check that the resulting expansion has the right form (see [3], [5]). 

As an example, suppose n -10. Since F6 = 8 is the largest Fibonacci number not exceeding 
10, we set c4 = 1 and subtract 8 from 10, obtaining 2. Since 2 = F3, we set cx - 1; now our differ-
ence is 2 - 2 = 0, so we stop. Thus, fib(10) = 01001. 

m . BOTTOM-UP ALGORITHM 

Both top-down and bottom-up algorithms for expanding a nonnegative integer in a fixed base 
are well known. For instance, to find the binary expansion of a nonnegative integer n, we could 
proceed by first finding the largest power k of 2 less than n, setting ck = l, subtracting 2k from n, 
and repeating this procedure until n - 0. This is the top-down algorithm. Alternatively, we could 
first determine n mod 2, set this equal to ct for i = 0, subtract ct from n, divide n by 2, increase / 
by 1, and repeat until n = 0. This is the bottom-up algorithm. The top-down algorithm given for 
finding fib(w) is clearly analogous to the top-down procedure for finding the binary expansion of 
n. By analogy with the binary case, we look for a bottom-up algorithm for calculating fib(«). 
Such an algorithm does exist; moreover, this algorithm makes it clear how to extend the Fibonacci 
expansion to negative integers and, more generally, "F-adic" integers. The algorithm goes as 
follows: 

Step 1: Let J = 0 . 
Step 2: Let x be the unique real number congruent to n mod r2 and lying in the interval [-1, r ) . 
Determine whether x lies in the closed interval from -{-z)~l~l to - ( - r ) - / . (Note that the intervals 
zero in on the origin as / increases.) If x lies in the subinterval, let ct - 0 and increase / b y 1; 
otherwise, let ct; = 1, cM = 0, decrease n by Fi+2, and increase / by 2. 
Step 3: If n = 0, stop. Otherwise, go to Step 2. 

Again, I illustrate for n - 10. It is straightforward to check that the unique real number in the 
interval [-1, r) congruent to 10 mod r2 is x = 10 ~4T2 « -0.47213. Since x e [ - l , r"1] , we have 
c0 = 0. Thus, we leave n alone and increase /'to 1. Now we check whether x lies in [-r~2, r"1] ; it 
does not, since the lower limit is too high. Thus, we set cx -1, decrease n by F3 - 2 to 8, and 
increase /" by 2 to 3. Now 8 - 3 r 2 « 0.14590, which lies in the interval [-r~4, r~3]. (As we will 
see shortly, by Lemma 1, we have 8 = F6 = r"4 « 0.14590.) Thus, we set x = r"4, c2 = c3 = 0, and 
increase /by 1, leaving n = 8 alone. Next, we check whether x lies in the interval [-r~4, r~5]. It 
does not, so we set c4 = 1 and decrease n by F6 = %. But now n - 0, so we stop. Thus, we have 
again obtained fib(10) = 01001. 

To show that the above algorithm works, we need a few lemmas. 

Lemme^ 1: Fk = {-rf~k mod r2 (V* e at). 

Proof: Since F0 = 0 = r 2 m o d r 2 and Fl-l = -rmodr2, the lemma holds for k -0 and 1. 
Also, note that (-r)2~k + (-r)l~k = (-r)_A:(Y2 - r) = (-r) _ / : . The lemma then follows by induction 
onk. • 

Lemma 2: Let w = Z^=0^(~r)~^» where the c^'s are the coefficients of the Fibonacci expansion 
of n. Then n is the unique real number in the interval [-1, r) congruent to n mod r2. 
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Proof: Let n = Z^ = 0
C JA+2 = T^^ck{-ryk= n (modr2). Thus, it is enough to show that 

-1 < n < x (uniqueness then follows, since the interval [-1, r) has length r2). The supremum of 
n is attained by setting ck = 1 for all even k and 0 for odd k\ its value is l + r~2 + r~4H—= r. 
Similarly, the infimum of n is (-r-1) + (-r~3) + (-r~5) +. • • = - 1 . • 

U-T~\ Tl~l) £ even, 
Lemma 3: ch - 0 (\/k <£)<^>n G< 

k IC-r1-',*-') ^odd. 
Proof: First, I will prove the forward implication. Consider the case where £ is even (the 

case where £ is odd is similar). Clearly, n < r~l + r~e~2 + r~e~4 + •••= r w . (The upper limit is 
approached by an arbitrarily long string of alternating l's and O's in fih(ri) with the leading 1 in the 
£** position.) Similarly, n > -r~£~l - r~e~3 = -r'1. 

The proof of the reverse implication goes as follows. Let k be the smallest integer such that 
ck-\ and assume k < £. Let n' -n-Fk+2. Clearly, the first k +1 coefficients of fib(w') are zero, 
so by the first part of the proof (replacing £ by k + 2\ we get 

_ h-T-(k+2\ T~{k+l)) £even, 

First, suppose k is even. Then n=n' + r~k lies in (r~(k+l\ r~^_1)). But then n is too big to fall in 
any interval of the form (-T~£, T~£) for £>k, so the inverse implication holds. A similar 
argument can be used in the case where k is odd. D 

First, note that n = n mod r2 by Lemma 1; thus, if there exists an integer m such that n-rnr2 

lies in the closed interval from (-r)~/_1 to (-r)~7, then; ck = 0 for k < i by Lemma 2. This justi-
fies the first if-then statement of Step 2 of the algorithm. If the condition in Step 2 is not met, ct 

must be 1; in this case, we subtract Fj+2 from n, obtaining a new n with ck - 0 for k < /+2 ; this 
justifies the second if-then statement of Step 2. Thus, the algorithm works. 

The basis of the bottom-up algorithm is the fact that, if rn mod T2 and n mod r2 are close 
(here, m and n are nonnegative integers), then the first few coefficients of fib(m) and fib(w) are the 
same. Figure 1 illustrates this. On the left side of the figure, n and fib(w) are plotted and tabu-
lated against n (height along the figure) for0<w<21 = i^. Although the figure is illustrated as a 
vertical line, it should be thought of as a circle with circumference r2. See Part V for an explana-
tion of the right side of the figure. 

IV. ADDITION OF FIBONACCI EXPANSIONS OF NONNEGATIVE INTEGERS 

Here, I present an algorithm for adding two Fibonacci expansions of nonnegative integers 
(see [4], [5]); i.e., given fib(m) = (ak) and fib(w) = (bk), it finds f\h(m + n) = (ck). The algorithm 
goes as follows. First, add the expansions coefficientwise, i.e., let ck -ak +bk for all k. The 
result will be a string of O's, l's, and 2's. To get rid of the 2's and consecutive l's, apply the 
transformations 

x + 1,^ + 1,0 H> x,y,l 
x, 0,^ + 2,0 h^ x + 1,0,^,1 
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n 
ft 

12 -
4 -
17 -
9 -
1 -
14 -

6 
19 -
11 -

3 
16 -
8 
0 
13 -
5 
18 -
10 -

2 
15 -
7 
20 J: 

n = 

n 
= T 
[— -1 
- -9 
- -17 
- -4 
- -12 
- -20 
- -7 
- -15 
- -2 
- -10 
- -18 
- -5 
- -13 
^ -21 
- -8 
- -16 
- -3 
- -11 
- -19 
- -6 
- -14 
— -1 
-1 

fibi(n) 

OlOlOlOlO 
10100010T 
101000010 
100010101 
100000101 
100000010 
100001010 
1001000I0 
001010101 
00100010T 
001000010 
000010101 
00000010T 
ooooooolo 
000001010 
OOOlOOOlO 
000101010 
01000010T 
oiooooolo 
010001010 
oioiooolo 
010101010 

fib2(n) 

101010101 
1010100T0 
101001001 
101001010 
IOOOIOOIO 
10000100T 
100100101 
100101001 
100101010 
0010100T0 
00100100T 
001001010 
ooooioolo 
00000100T 
000100101 
00010100T 
010010101 
OlOOlOOlO 
010001001 
010100101 
010101001 
101010101 

FIGURE 1 

to the rightmost applicable string. Continue until (ck) has no 2's or consecutive l's. These trans-
formations are justified by the identities Fk+2 = Fk+l + Fk and 2Fk - Fk+l + Fk_2. The algorithm 
must terminate after a finite number of steps, since each step increases the value of (ck) viewed as 
a ternary number with the order of the digits reversed, and this cannot increase indefinitely 
because the last digit must correspond to a Fibonacci number that does not exceed m + n. How-
ever, it should be noted that, as presented, this algorithm is not complete, since it may yield an 
expansion (ck) with a nonzero coefficient for k--York--2. For instance, adding 1 and 1 
gives the expansion 10.01 for 2 (coefficients with negative indices appear to the left of the decimal 
point). The case k = -2 is easy to deal with; simply eliminate this coefficient. This can be done 
because F0 = 0. In the case where c_x - 1, first set c_x - 0 and c0 = 1. (In this case, cQ must have 
been 0 previously, since we have no two consecutive l's at this stage.) Next, apply the first trans-
formation repeatedly, this time starting on the left, until (ck) is in the standard form. Again, only 
a finite number of applications is necessary, since each one decreases the number of l's by 1. 

V. NEGATIVE AND ffF»AMC?f INTEGERS 

One advantage of the bottom-up algorithm is that it allows a straightforward extension of fib 
to negative integers. We run the algorithm as stated, but must now allow for infinite expansions. 
For instance, applying the algorithm to - 1 , we get fib(-l) = 01010101... . Note that, if we had 
used open instead of closed intervals in Step 2, we would have obtained fib(-l) = 10101010... . 

fib(n) 

101010 

101000 
101001 

100010 

100000 
100001 

100100 
100101 

001010 

001000 
001001 

000010 

000000 
000001 

000100 
000101 

010010 

010000 
010001 

010100 
010101 
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In fact, both expansions are valid, and these are the only ones. This dichotomy occurs for all 
negative integers. We use the notation fibj for the first case (open intervals) and fib2 for the 
other case (closed intervals). Note that using closed intervals gives priority to the first 0 in the 
Fibonacci expansion where there is a choice between a 0 or a 1. Thus, the first coefficient that 
differs in fib x (ft) and fib 2 (ft) is a 0 in the former and a 1 in the latter. This can be seen in Figure 1 
above. 

Although the bottom-up algorithm as stated can be used to find fib t (ft) for all integers ft, it is 
not practical to use it directly for negative integers. A better method is as follows. First, find the 
smallest Fibonacci number Fk+2 > -ft. Set the first k +1 coefficients of fib^ft) equal to those of 
fib(i^+2 +ft). Finally, for i>k, set q = 0 if/' and k have the same parity; otherwise, set q = 1. 
For example, say n = -24. Then the smallest Fibonacci number exceeding —n is F9 = 34, so we 
set the first eight coefficients of fib(-24) equal to those of fib(34-24) = fib(10), i.e., 01001000. 
For /' > 8, we set q = 0 if/ is odd; 1 otherwise. Thus, fib! (-24) = 01001000010, where, as in the 
case for repeating decimal expansions, a line above a string of coefficients means that string is 
repeated endlessly. 

What about fib 2 (ft)? It can be found by a simple modification of the above procedure. First, 
instead of finding the smallest Fibonacci number exceeding -n, find the next smallest; in the 
above example, this would be Fl0 - 55. Again, calculate fib(i^+2 +'«), and set the first k +1 coef-
ficients of fib(ft) equal to these. (Now, however, k is one greater than last time.) Thus, returning 
to the example, fib(55-24) = fib(31) = 010010100. The last step is exactly the same as before, 
but with k replaced by k +1; thus, fib2(-24) = 0100101001 is the other expansion. Note that one 
expansion has ck = 0 for even k in the repeating portion of fib(ft), and the other has ck = 0 for odd 
k. This is always the case. Also, note that the nonrepeating portions of the two expansions only 
differ in one place. In fact, for all negative integers except - 1 , the nonrepeating portions differ in 
one place. (The two expansions of -1 are both purely periodic.) 

Let us refer again to the right side of Figure 1. Note that the negative integers lie on the 
borderline of regions where q is constant for i < k for some k. Also note that the positions of the 
positive and negative integers are staggered and that, for negative ft, the first six coefficients of 
fib^ft) and fib2(ft) agree with the expansions of the two positive neighbors of ft. 

The bottom-up algorithm involves first calculating the residue of an integer mod r2. What if, 
instead, we start with an arbitrary real number x, calculate its residue class mod r2 and apply the 
bottom-up algorithm? Then we will, in general, obtain an infinite sequence of 0's and l's with no 
two consecutive l's. Let f/be the set of all such sequences, and define the equivalence relation E 
by letting two distinct sequences in £/be equivalent iff one is fib^ft) and the other is fib 2 (ft) for 
some negative integer ft. Define the F-adic integers to be the elements of the set UIE (they are 
analogous to/?-adic integers). 

VI. GEOMETRIC STRUCTURE OF "F-ADIC" INTEGERS 

In Figure 1 I illustrated how the Fibonacci expansions of the integers have a nice interpre-
tation as points on a circle of circumference r2. In this section I would like to make that analogy 
more precise and to extend it to all the F-adic integers, which I denote ZF. (In fact, one can 
show that ZF is a topological group isomorphic to the circle group, but the proof is rather 
unenlightening.) 
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As indicated in Part V, the bottom-up algorithm may be applied to any arbitrary real number 
x to give an F-adic integer, which is unique up to the congruence class of x mod r2. Thus, there 
is a 1-1 correspondence between the F-adic integers and points on a circle of circumference r2. 
Furthermore, as can be seen in Figure 1, nearby points on the circle seem to correspond to 
"nearby" F-adic integers, where "nearby" roughly means having Fibonacci expansions agreeing to 
the first several places. I first need to make the notion of "nearby" F-adic integers more precise. 

Definition: Let a and /? be F-adic integers. Then a and fi are similar in k places if there exists 
an F-adic integer y and sequences (a2.), (ft;), (c?), and (c/) in U such that a ~ (a,.), (3 ~ (Z>;), (cf) ~ 
(c/), and for all / < i , w e have aj = ci and bi = c\. Here, ~ denotes the equivalence defined in Part 
V. If a and /? are similar in m places but not in m +1 places, we say they are similar in exactly m 
places. 

For example, suppose a = 4 and /? = 20. Then (a,.) = fib(4) = 1010 and (bt) = fib(20) = 
0101010. Lety = -1 and let (c/) = fib2(-l) = 10 and (c/) = fib1(-l) = 01. Thena,. =c,. andft, =q' 
for / < 4 so a and /? are similar in four places. 

Now I will state and prove the main theorem of my paper. 

Theorem: There exists a bijection <p:ZF —» R / r2Z for which, given any pair of F-adic integers 
a and /? which are similar in k places, there exists a real number x = (f>(a) - (f>(j3) (mod r2) such 
that \x\ < 2r2'k. Conversely, if a, /? e Z F are such that there exists a real number x = ^(a) - ^(/?) 
(mod r2) such that \x\ < r~k, then a and J3 are similar in k places. 

Proof: Consider the map 

f . [ / - ^ R / r 2 Z 

;=0 

Note that the inverse of ^ is just the bottom-up algorithm, and that this inverse is unique 
except when (c7) corresponds to a negative integer. Thus, we may define (j>(x) to be ^(x), where 
x is the equivalence class of x in ZF. 

Now let a and /? be F-adic integers that are similar in k places. Then there exist sequences 
a ~ (at) and /? ~ (fi,.) and an F-adic integer ^ ~ a^...ak_xckck+l...~ bj\..A-iciWfc+i.... Now let 
a' = a0...ajt_10 and /?'= V - A - i ^ - By Lemma 3, both (f>(a) = (f>(af) and <fi(y)-(f>(af) lie in a 
fixed interval of the form ±[-r-A:, r1"^], so their difference, <j)(a) - <j>(y), has absolute value not 
exceeding the length of the interval, r2~k. Similarly, \<j)(J3) - <j>(y) \ < r2~k. Thus, by the triangle 
inequality, | <f>(a) - <f>(fi) \ < 2r2~k. 

To prove the converse, suppose a and /? are as in the statement of the second half of the 
theorem. Say a-{a}) and /?-(&,). Suppose (a,) and {b}) agree to exactly I places, so that 
a. = bj = q for / < £, and al^bi. Without loss of generality, we may assume at - 0 and b£ = 1. 
Note thait ĉ _! = 0 since, otherwise, (fy) would contain two consecutive l's. Let n be the unique 
negative integer such that fib^w) agrees with (a;) to t + \ places and fih2(n) agrees with (Z>7) also 
to £ +1 places. Now we have 
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fib j(w) = cQcf2... ce_x0 01 
and fib2(ft) = c0c1c2...%_11001. 

Now suppose a and/? are similar through n in exactly m places, where m>£, i.e., y may be 
replaced by n in the definition of similarity. Then there are two possibilities for what (a7) and (bt) 
look like, depending on whether (a;) or (Z>) has the first discrepancy from fib^w) or fib2(#), 
respectively. In the first case, we have 

(ai) = c0clc2...c£_l00l...0l00am+1am+2..., 
(bi) = c0clc2...c£_ll00l...0l0bm+lbm+2..., 

where the second string of dots in each expansion stands for a finite repeating string of the form 
01...01. Note that in this case, (bt) necessarily agrees with fib2(w) to at least m + l places and 
that m = I (mod 2). From the definition of </>, we have 

( - l ) m ( ^ ) - ^ ( a ) ) s r - m
 + am+1r-m-1 

^-am+2)T'm-2+am+,T-m^ + -
>T~m 

and 
( - i ) - W ) - m) - (i - ^ i )^ -""1+*m +2^m _ 2 

+ ( l -^ + 3 ) r - m - 3 +^ + 4 r - m - 4 + -
>0, 

where the congruence is modulo T2 . 
In the second case, we have 

(ai) = c0clc2...ce_l001...0\0l0am+lam+2..., 
(A,) = c0clc2...ce_l100l...0100bm+lbm+2.... 

This time, we see that (a,) necessarily agrees with fibj(«) to at least m + l places and that l^m 
(mod 2). Now we find 

{-\nm - <Ka)) - (1 -a^r--1 +am+2T-m-2 

>0 
and 

> T~m. 

Again, the congruence is modulo r2. In each case, since <p(y) ls between (j)(a) and <j)(p), we 
conclude 

|^a)-^08)| = | ^ ) - ^ ) | + \<f>{y)-<t>{a)\>r-m, 
where the above absolute values refer to the minimal such absolute values of real numbers belong-
ing to the congruence class of the expression inside modulo r2. But since we are assuming |x|< 
r~k for some real number x = (<f>(a) - 0(J3)) (mod r) , we conclude that m > k. Thus, a and /? 
are similar in k places. • 
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As I indicated earlier, the F-adic integers have more structure than I have presented. For 
instance, the map ^ may be used to define addition on Z F . This addition makes Z F into an addi-
tive group isomorphic to the circle group [i.e., by requiring that <j){a + (3) - <f>(a) + (f){f3).] The 
map <f> also turns out to be a topological group isomorphism. 

VII. GENERALIZATIONS 

There are many ways to generalize the above procedure to other types of sequences. Perhaps 
the simplest (see [4]) is to consider sequences of the form Sk+l = aSk + hSk_{, Sx = S2 = 1, where a 
and b are positive integers with a>b. The corresponding expansion is E(n) = (ek)^=Qy where 
n = Z£Lo ekSjc+2> where now 0<ek <a and ek=a implies ek+l < b. Let X - ^ (a + ̂ a2 +4b) and 
X = \{a- si a1 + 4b); then it is easy to check that Sk+2 = ~)t mod X. Since | X \ < 1, Sk -» 0 mod X; 
thus, we should again have a bottom-up algorithm for determining E(n). It looks like the same 
analysis should carry through for these more general sequences. In particular, if we again define 
the analogous infinite sequences of coefficients (ek), they should again form an additive group 
isomorphic to R / Z . One can also carry out this procedure for a much more general class of 
sequences. The reader is invited to try his hand with the sequence 1, 10, 100, 1000, .... 

Another way to generalize is to define "F-adic numbers," the analog of p-adic numbers. At 
first, this does not seem feasible, for the Fn are integers for negative as well as positive n, so we 
gain nothing by considering sums of the form T^=ickFk+2j where I < 0 . The solution is to just 
consider formal sequences of the form (ck)™, where ck = 0 or 1, ckck+l = 0 for all &, and I e Z . 
We treat these sequences as before, but simplify the addition algorithm so as not to worry about 
fixing coefficients with negative indices. The resulting group seems to be isomorphic to R. It 
should be noted (see [5]) that an ordinary integer n will, in general, have a different expansion of 
this type than f\b(n). 
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