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1. INTROBUCTION 

The Fibonacci rabbit population model is often regarded as one of the first studies of popula-
tion growth using mathematics. Later, an analytic model of population dynamics was introduced 
by Voltera (Deakin & McElwain [2]). Systematic epidemic modeling in age-structured popula-
tions was first carried out in this century by Hoppensteadt [6]. 

Dubeaiu [3], in revisiting the Fibonacci rabbit growth model, has developed an approach that 
can be applied to population dynamics and epidemiology where censoring occurs either by in-
ability to procreate or by death. It is the purpose of this note to apply Dubeau's method to 
Fibonacci's model of infectious diseases which was developed by Makhmudov [9] and to combine 
it with the approach of Shannon et al. [12] who attempted to refine the work of Makhmudov. 

2, THE MODEL 

Following Makhmudov [9], three epidemiological stages in the process of spreading 
infectious diseases are postulated: 
(i) an initial (incubation) stage of r periods (periods 0, 1, 2, ..., r-l) during which those who 

are ill with the disease do not affect others, 
(ii) a mature (infectious) stage of t periods (periods r, r +1,..., r +1 -1) when each person infects 

s healthy people, and 
(iii) a removal stage of m periods (periods r + t,...,r + t + m-l) when those who have been 

infected are no longer infectious. 

An example might be the common cold which, on average, takes about two days to develop 
(r = 2), a person is then infectious for about three days (f = 3), and the symptoms persist for 
about seven days (r + t + m = J, hence m = 2). In general, s is variable, but we shall treat it as a 
constant in the absence of other information. For background material on the structure of general 
epidemic models, the reader is referred to Billiard & Zhen Zhao [1]. 

In terms of a modification to Fibonacci's rabbit problem, these correspond in turn to 
(i) the infancy stage, 
(ii) the reproductive stage, and 
(iii) the post reproductive stage, 
respectively, and instead of infectives we have male-female pairs of rabbits. For the original Fibo-
nacci model, we take r = 2, s - 1, and t = m = +co. 
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2.1 A Direct Approach 
Following Dubeau [3], let 

un be the total number of disease carriers at the 71th period, and 

vl
n be the number of/-period old disease carriers at the nth period. 

More precisely, Vn represents the disease carriers in the 
(i) initial stage for i = 0,..., r -1, 
(ii) mature stage for i = r,...,r + t-l, 
(iii) removal reproductive stage for / = r +1,..., r +1 + m -1, 
and for / = r + t + rn,..., vl

n represents the disease carriers who have been infected in the past but 
have already recovered. 

It will be convenient to define un and Vn for all n eZ ={..., - 3 , - 2 , - 1 , 0,1,2, 3,...} and 
1 G N = {0,1,2,3,...}. We consider the following initial conditions on Vn : 

v: =< 
0 f.f/i<0 and 1 = 0,1,2,..., 

lor\n = 0 and/ = 1,2,3,..., 
[l(orvo) for« = 0and/ = 0. 

As a consequence, for any « G Z , 

K = v ,'-1 for / > 0, 
and 

We obtain 

v - ' 1 for n = 0, 
.^K + ' - ' + C " 1 } for/i*0. 

K« V l T O W r vn-r-ti 

for « > 1. From the definition we have, for any « G Z , 

(i) 

It follows that 

or 

r+t+m-l 

;=0 

U„=< 

0 for n < 0, 
r+ r - l 

w0 +5 2]*/„_£ for« = 0, . . . ,r + f+ /W-1, 
fc=r 

r+f-1 

k=r 
forn>r + t + m, 

un = V i - 8^ r+t+mu0 + s{//w_r - un_r_t} 

for w > 1, where SUJ = 0 if 1' * 7, or 1 if/' = 7. 

(2) 

(3) 
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Example 1: Table 1 contains values of vl
n and un for r - 2, t = 3, m = 2, and s = 1. 

TABLE 1. r = 2,* = 3,m = 2,ands = l 

s: 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 ' 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

518 

760 

1 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

518 

2 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

un 

3 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

4 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

5 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

6 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

un 

I 

1 

2 

3 

5 

7 

11 

15 

23 

33 

49 

71 

105 

153 

225 

329 

483 

707 

1037 

1519 

2227 

Remark—The Effect ofm: Let {un}^0 and {un}^0 be the sequences generated with m and m + l 
for the same values of r, t, and s. From (3) we have, for n > 1, 

Un ~ Un-\ ~ ®n, r+t+mU0 + S\Un-r ~ Un-r-0 

and 
Un ~ Un-l ~dn, r+/+m+1^0 + S\Un~r ~ Un-r-ti • 

Let Anu = un~un, then from (3) 
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KU = A « - 1 W + (<?«, r+t+m ~ Snr+t+m+l)u0 + s{An_rU ~ An_r_tu}-

It follows from (1) that Ar+t+m+nu = v°n for n > 0. 

2.2 A Generating Function Approach 

Following Weland [13], Hoggatt [4], Hoggatt & Lind [5], and Parberry [11], we can use the 
generating function method to obtain the recurrence relation (1), (2), or (3). 

Let us define the generating function for the sequence {i/w}^0: 

U(x) = ^unx". 
n=0 

The function U(x) can be expressed in terms of (i) the generating function of the infectious 
process (a polynomial) 

+00 

B(x) = ^b„x" (b0 = 0), 

where bn indicates the number of infected healthy people by an /?-period old disease carrier, and 
(ii) the "total recovering" polynomial D{x) - xr+t+m. 

Let 
+00 

be the generating function associated to the sequence {v°}£?0, where 

v°2=b/2+b/l+b2vl 
etc.. 

and, in general, 

for n > 1. It follows that 

v° = Yb.v° . 
n L-i J n~J 

j=0 

V(x) = - l 

\-B{x)' 
Let u* be the number of disease carriers at the rfi period, assuming no recovery, and 

Then 
n 

,0 

y=0 
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and we obtain 

U*(x) = —L-:v(x): 
0-*) ' 0-*)(l-^(x))' 

If we now allow for recoveries, since each disease carrier recovers r + t + m periods after its 
infection, the number hn of recovering people at the 71th period is given by hn - v°_(r+r+w). There-
fore, 

H(x) = f>„x" = D(x)V(x) = -2&-. 

Let rn be the total number of people who recovered up to the rfi period, then 

7=0 
and 

W to 1-x } ( l - x ) ( l - 5 ( x ) ) 

Now, un-un- rn (>? > 0), so that 

PW-TO-W-,,.^). 
From the model, we have 

r+t-l 
B(x) = s ^ \ D(x) = xr+t+m, 

n=r 

and 
1 _ yr+t+m 

U(x) = -1 - x - sxr + sxr+t 

It follows that u0 = 1 and, for n > 1, un = un_x - 8nr+l+ji0 + s{un_r - un_(r+t)}. Moreover, since 

1 
V(x) = - r+t-l 

l-s£x" 
n-r 

it follows that v£ = 1, and v° = s{v°_r + • • • + v°_(r+r_1}} for n > 1. 

2.3 A Matrix Approach 

Following Klarner [8], let us consider the sequence of (r +1 + m)-vectors {v„}£?0: 

v ^ C v ^ v i , . . . ^ ' ^ 1 ] (/i = 0,1,2,...). 

They are related by the equation 

v„+1 = vnF = - = v 0 F " + \ (4) 

where v0 = [1,0,..., 0] and F = (ftj) is a square matrix of order r + t + rn with entries fv(i = 0, ..., 
r + t + m-1; j = 0, ...,r + t + m-l) such that 
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r+t+m-l 
V: w+1 5X6 • 

;=0 

For our problem, 

and for j = 1,...,r+ * + #*-!, 

f _ J s fo r*=r , . . . , r+ r - l , 
*'7° (0 elsewhere, 

^ [0 elsewhere. 

The characteristic polynomial of F is det(x/ -F) = xr+t+m - s(xt+m + • • • + xl+m) = cF(x). From 
the Cayley-Hamilton theorem, the matrix F satisfies its characteristic equation, and we have 
cF(F) = 0. Hence, FncF(F) = 0 for any n > 0. It follows that Fn -s(Fn~r + • • • + Fn~(r+t~l)) = 0 
for n > r +1 + /w. Finally, from (4), we have 

and, since z/w = vwl, where 1 = [1,..., 1]T, 

for n>r + t+m. 

3. A RELATED ARRAY 

Let w^Qc) be the number of /-period old disease carriers of the k^ generation at the w* 
period, and wn(k) be the number of disease carriers of the k^ generation at the rfi1 period. We 
have 

r+t+m-l 

7=0 

and, for / >r + t + m, wl
n(k) indicates the number of people of the £* generation at the rfi period 

infected i periods ago and who have already recovered. 
We also have 

wf
n(k) = 0 fo r«<0or /<0 , 

Wn(k) = Sni for n > 0 and / > 0, 

and, for k > l,n > 0, and / > 0, 

W (k) = ls{w»(k -l) + " ' + < + r " 1 ^ -!)} for i = 0, 

We can deduce that w°n(k) * 0 for kr < n < k(r +1-1), k = 0,1,2,.... It follows that wn(k) * 0 
only for k>0mdn>0 such that kr = nL(k)<n^n^k) = (r + t + m-l) + k(r + t-l). Then, for 
a given w, let 
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kL(n) = imJkGN\k>0 and k>n (r + t+m 1) 
[ , r+t-1 

ku(n) = mdx\k GN\k< — >; 

hence, wn(k) = 0 for k < kL(n) and k > kjj(ri). To relate the wn(k) and w'n(k) to the un and vj,, we 
have 

+co ku(n) 

k=Q k=kL(n) 

+00 %(w) 

i£ = 2>i(*) = X^W-
&=0 &=0 

Also, for A: >1, 
r+H-m-1 r+t+m-1 

>"„(*) = E^(*) = !>"-,(*) 
;=0 ;=0 

r+f+m-1 r+f-1 r+f-1 r+f+m-1 

7=0 ^=r £=r 7=0 

r+f-1 r+f+w-1 r+r-1 :*I I^U*-!)=*!>„-<(*-1)-
^=r 7=0 ^=r 

As a consequence, using the generating function, we have 
+oo +oo fr+t-l \ 

<?*(*) = !>„(*)*» = *X X>„_*(*-1) 
w=0 W=0V ^=r / 

77=0 

Also, 

thus 

and 

= ST\ Yw£(k-l)\x"=$(xr + --+xr+t-l)Ydw»(k-lW 
n=0\£=n-(r+t-l) J 

= s(xr + -+xr+'-l)Gk_l(xl 

+oo 

G0(x) = X w»(°)*" = 1 + * + • • • + x1 r+f+m-1 

w=0 

G^(x) = / [x r ( l + x + ••• +xt~l)f G0(x) 

uv{k) 

Gk(l) = (st)k(r + t + m)= £*„(*)• 
n=nL(k) 

Example 2: Table 2 illustrates the values of wj
n(k) and wn(k) for r = 2, f = 3, wi = 2, and J = 1. 
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TABLE 2. r = 2,t = 3, m = 2, and s = 1, nL(k) = 2&, %(&) = 4* +6, 

ftL(/i)-min|ftG^|ft>Oandft>^^k M » ) = maxj& eN\k < ^ 

« 
1 ° 
1 I 
1 2 

1 3 

4 

1 5 

1 6 

1 7 

8 

9 

kL{n)* k *kv(n) 

Mo)- o -Mo) 
MO- 0 -MO 
M*) = 0 

I -M2) 
M*)- 0 

1 -M3) 
M*)"- 0 

1 
2 -M4) 

M*)- 0 
1 
2 -M$) 

M*)- 0 
1 
2 
3 =M6) 

^ ( 7 ) - 1 
2 
3 -M?) 

^ ( 8 ) - 1 
2 
3 
4 - ^ ( 8 ) 

^ ( 9 ) = 1 
2 
3 
4 -M9) 

<(*) 
i 

0 
1 
0 
0 
i 
0 
1 
0 
1 
1 
0 
0 
2 
0 
0 
3 
1 
0 
2 
3 
0 
i 
6 
1 
0 
0 
7 
4 

1 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 

I 
0 
0 
2 
0 
0 
3 
1 
0 
2 
3 
0 
0 
1 
6 
1 

2 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
i 
0 
0 
1 
1 
0 
0 
2 
0 
0 
3 
1 
0 
0 
2 
3 
0 

3 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
i 
0 
0 
2 
0 
0 
0 
3 
1 
0 

4 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
0 
0 
2 
0 
0 

5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 

6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

i 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

".(*) 1 
1 
1 
I 
1 
1 
2 
i 
3 
1 
1 
3 
3 
1 
3 
6 j 
1 
3 
8 
4 
3-
9 
10 
1 

2 
9 
17 
5 

4. LIMIT OF RATIOS un+11 un 

We consider the linear difference equation (2) of order r +1 -1 : 
r+t-l 

un = sY,un-k (n>r + t+m). 

The sequence {un}^r+t+m is completely defined if we assume that the values um+l, um+2, ..., 
ur+t+m-i are known. 
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For our model (2) or (3), we observe that the finite sequence {MW}̂ O+WI l is a sequence of non-
decreasing integers with u0 = l (or any initial value u0 > 0). 

We consider two cases for the analysis of the ratios un+l/un: the case t = 1 and the case t > 1. 

4.1 The Case *=1 
We have un - sun_r (n>r+rn + l). It follows that 

(n>m + T) 

and the sequence of ratios un+l/un is a sequence of length r repeated infinitely many times. It is 
completely characterized by the finite sequence 

-J2± -̂ for n = m +1,..., m + r. 

Using (2), for the initial value uQ = 1, we have 
k 

I 
7=0 

Un=lL^ for n<r+m, and 
&r < ?z < (& + l)r 

and 

w « = X ^ for « = 0,..., r + m. 

Let 

Pu = 

/=o 

r+m and pL = l + /w 

then pu - pLor pL
Jr\. Hence, the sequence yfL\H m+i is such that 

v i _ 

r - 2 times, 

It can be shown that the set 

PL Pu 

*lWl> ltime> 
/=o / /=o 

PU I PL 

X^/ I^ ltime-
/=0 / z=0 

-il±I \n = m + l,...,m + r 

converges to the set {1, s} when m goes to +QO. 

Example 3: Table 3 contains the values of (6) for r = 4, t = 1, and s = 2. 
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TABLES. r = 4 ,*=l ,and£ = 2 

1 Um+i + l 
' um+i 

i 

1 

2 

3 

4 

1 

1 

3 

1 

2/3 

2 

3 

1 

1 

2/3 

3 

1 

1 

1 

2 

4 

1 

1 

7/3 

6/7 

m 

5 

1 

7/3 

1 

6/7 

6 

7/3 

1 

1 

6/7 

7 

1 

1 

1 

2 

8 

1 

1 

15/7 

14/15 

9 

1 

15/7 

1 

14/15 

4.2 The Case t > 1 
Let K = r + t-l. The linear difference equation (5) is equivalent to the following linear dif-

ference equation of order K, 
t-i 

if the sequence {un}^=o for (7) corresponds to the sequence K £ + 1 for (5). Hence, the limit of 
un+\ / un *s ^ e same for both equations. 

Let us recall some definitions and results about linear difference equations of the form 

Un+K ' blUn+K-l bK-lUn+l ' hKUn = ° i n * ° ) • ( 8 ) 

Definitions: 

(a) The polynomial (p{X) = AK- \XK~l bK is called the characteristic polynomial for (8). 

(b) The equation <p(A) - 0 is the characteristic equation for (8). 

(c) The solutions Ah...,Xe of the characteristic equation are the characteristic roots. 

The first result is a standard result about the general solution of (8). 

Theorem 1: Suppose (8) has characteristic roots Xh ..., Xk with multiplicities Ji,...,jk, respec-
tively. Then (8) has n independent solutions nJ'/t", j = 0,...,je-l; £ = l,...,k. Moreover, any 
solution of (8) is of the form 

e=\ j=o 

where the fiej are obtained from the values of un for n = 0,..., K -1. 

Proof: See, for example, Kelley & Peterson [7]. D 

The next two results depend on the form of (8). 
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Theorem 2: Assume the bt are nonnegative in (8). 
(a) If at least one bt is strictly positive, then (8) has a unique simple characteristic root u > 0 and 

all other characteristic roots of (8) have moduli not greater than a. 
(b) If the indices of the bt that are strictly positive have the common greatest divisor 1, then (8) 

has a unique simple characteristic root a > 0, and the moduli of all other characteristic roots 
of (8) is strictly less than a. 

Proof: See Ostrowski [10, pp. 91-92]. D 

Theorem 3: If in (8) the bt are nonnegative and {ww}£?0 is a sequence satisfying (8) such that u0, 
ul9 ..., %_x are strictly positive, then we have un > aan (« > 0), where a > 0 is given by 

a = mm {> = *...,*-!}. 
Proof: See Ostrowski [10, p. 93]. D 
Since 

f0 for/ = l , . . . , r - l , 
*s fori = r,...,r + t-l, 

and the common greatest divisor of r, . . . , r +1 -1 is 1 for t > 1, it follows from Theorem 2(b) that 
(7) as a unique simple characteristic root a > 0 and the moduli of all other characteristic roots are 
less than a. 

Let Al5.. . , Xk and a be the characteristic roots of (7), then, from Theorem 1, 

Moreover, since u0 > 1 and {wJ^To is a nondecreasing sequence, we obtain, from Theorem 3, 
u„ > aon for 

It follows that 

a 

a = min|-^|w = 0,...,JS:-l|. 

u k h~l (2 Y 

and taking the limit on both sides we have lim uj an = J3>a>0 as a consequence of the 
following lemma. 

Lemma: If |p|<l,.then lim napn - 0 for any a = 0,1,2,.... D 
»->+oo 

Finally, 

u„ ujan 
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and we obtain lim un+l /un=a, where <J is the unique positive root of 
w-»+oo 

<P(x) = xr+t-1-sYJxi (t>\y 
7=0 

5. A MORE REALISTIC MODEL 

In any real population, the epidemiological status of members is as follows: (i) susceptibles, 
(ii) infected, and (iii) resistants. Thus, there is not an unlimited supply of susceptibles. 

Let 
N be the total population, 
Sn be the number of susceptibles at the nth period, 
Un be the number of infected and carriers at the rfi period, and 
Rn be the number of resistants at the /7th period. 

Then N = S„+Un+Rn, and the initial conditions are S0 = N-l, UQ = l, and i^ = 0. Using the 
notation of Section 2, we have 

r+t+m-l 
un= I>< 

and 

j=r+t+m i=r+t+m 

fO \fn<r + t + m, 
n 

Y,vn-t if n>r + t + m, 
\J-r+t+m 

S„ = N-U„-R„. 

However, the number of susceptibles is limited, so 

and 

r+t-l 

For Rn we have 

v^ = min\Sn,l9s^\i 

r+t+m-l 
r+t+m Ki ~ *\-{r+t+m) + 2^ Vn-i 

7=0 

r+t+m-l 
= *\i-(r+t+m) + 2~i Vn-(r 

7=0 

~~ *\i-(r+t+m) + Un-{r+t+m) ~ ™ ~ ^n-(r+t+m). 
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It follows that 

$n ~ $n-(r+t+m) +Un = 0 

or 
11 - K - V 
^ n~ °n-(r+t+m) °n 

and, if Sn = 0, then U„ = Sn_{r+t+m). 

Example 4: Table 4 illustrates this model for r = 2, t = 3, m = 2, s = 1, and JV = 200. 

TABLE 4* r = 2, f•= 39 m = 29 s = 1, and N= 200 

w \i 

0 

1 

1 2 
3 

1 4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

0 

2 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

Vn 

3 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

4 

0 
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