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1. AIM OF THE PAPER 

The well-known identity (e.g., see [1], p. 127) 

^=fk o-i) 
/=i 

led us to investigate the Fibonacci numbers of the form Fk„ with k and n positive integers. The 
principal aim of this note is to present some new identities involving Fk„, some of which general-
ize (1.1). This is done in Sections 2 and 3. In Section 4, a first-order recurrence relation for Fk„ 
is established which involves certain combinatorial quantities whose properties will be investigated 
in a future paper. A glimpse of analogous results concerning the Lucas numbers L „ is caught in 
Section 5. 

The formulas established in this note encompass the trivial case n = 1 under the usual assump-
tions 

n / ( o = i i f f t < f l (i.2) 
i=a 

and 

X / ( 0 = 0 i fA<* (1.3) 
i=a 

2. MAIN RESULT 

Proposition 1: Ifk is even and n > 1, then 

/=i 

We can immediately observe that, if k = 2, identity (2.1) reduces to (1.1). 
Proof of Proposition 1: Write 

F- F, F n-if . , 

whence, following the notation used in [2] [namely, Rs(t) = Fst / Ft], we can rewrite (2.2) as 

^r=F*fU(*')- (2-3) 
7 = 1 

Using (2.3) along with (2.1) of [2] yields 

Jfc/2 

; = i 
U/-i)*' 

(2.1) 
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n-l (k/2 1 
Fk» = FkJl \YXF

k<(2j-l)-l +Fk\2j-l)j\ 

The right-hand side of (2.4) clearly equals that of (2.1). Q.E.D. 

Proposition 2: If & is odd and n > 1, then 

(2.4) 

n-l (Jfc-l)/2 

Observe that, if & = 3, identity (2.5) reduces beautifully to 
n-l 

^ = 2II(Jw-i) 
7=1 

In order to prove Proposition 2, we need the identity 

f r_1Y7 _ (-irr4r+(-i)rv+i)-4-2(-ir 

(2.5) 

(2.6) 

(2.7) 

which can readily be proved by using the Binet form for Lucas numbers and the geometric series 
formula. We also need the identity 

La+b-(-l)bLa_b=5FaFb, (2.8) 

which can be obtained from identities I21 - 1 2 4 of [3]. 

Proof of Proposition 2: The proof has to be split into two cases according to the residue of 
k modulo 4. 

Case 1. k = 1 (mod 4) [i.e., (k -1) 12 is even] 
By (2.2), we can write 

n-l fT , n-l 
i +

5 /> '5 ' - i 
* S 

/=i 

/=i 

2 , LkM-ki+LkM+k' 2 

V + 2 (by (2.8) and I17 of [3]) 

1+-A^..»,+i 2fc'(fc-l)/2 2fc'(fc+l)/2 2fc' 

V + 2 
4, . -2 

7=1 

(Ar-l)/2 

/2=1 

[by (2.7)]. 

Observe that, since ( £ - l ) / 2 is even by hypothesis, the above expression does not vary if we 
multiply it by (-l)(w-1)(^1)/2. 
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Case 2. k = 3 (mod 4) [I.e., (k -1) / 2 is odd] 
Analogously, we can write 

Fr = <rirlFk ft 
7 = 1 

=(-ir^n 
/=1 

=(-ir^n| 
7 = 1 1 

L « ? J 
1 , ~ ik'ik-iyi ~~ ik'ik+iyi ~ ikl 

I H : 

L \k<+2 

(k-l)/2 
1+ I (-1)*^ 

*=i 

- 2 " 

_ 

Observe that, since (k -1) 12 is odd by hypothesis, the factor (-1)" l in the above expression can 
be rewritten as (-l)*"-**-*)'*. Q.E.D. 

3. RELATED RESULTS 

Some results related to those established in Section 2 can be obtained readily. Observe that, 
if the exponent n in (2.1) is composite (say, n = st), then F n (k even) can be expressed as 

t-i 
F =F =F TT 

kn kst ks 1 1 7=1 

ksn 

2^ L{2j-\)ksl (k even), 

where s and t can obviously be interchanged. For example, by (1.1) and (3.1), we have 
2«- l w-1 

^ = F4» - I"K< = Fr I V i « - = 3E[(^ +Z!H')-~2' 2 " ^ (2;- l )2w 

(3.1) 

(3.2) 
7 = 1 

For k odd, the analog of (3.1) can be obtained immediately. 
An expression analogous to (2.1) can be established for F ̂  when mk is even. If mk is odd, 

the corresponding expression is somewhat unattractive and its presentation is omitted. 

Proposition 3: If n > 1, 

F
mk" = F

mkU n 
7 = 1 

and 

mkn *„& I I 
7 7 - 1 

n 
7 = 1 

kl2 

2^ jL(2/-l)mA:'' 
/=1 

(k-l)/2 

1 + I<L2jmk< 

Proof: Write 

(k even, m arbitrary) 

(A: odd, m even). 

7 1 - 1 

(3.3) 

(3.4) 

^^ft^^-IPM"*') 
= 1 ^ f r ' 7 = 1 ' = * rf 

and use (2.1) and (2.2) of [2]. Q.E.D. 
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If we let m = k in (3.3), we see that an equivalent form for (2.1) is 

(£even, n>2). (3.5) F
k-=FM 

7 = 1 

k/2 

J=l 
\2j-l)ki+l 

Moreover, if we let n = u + v {u, v > 1) and m = ku in (3.3), we get the relation 

*" fcM+v ;tM/tv ku+l 1 1 
v - l 

n 
7 = 1 

which generalizes (3.5). 

fc/2 
V T 
£* (2j-l)ku+i 

/=1 

(A even), (3.6) 

4. A RECURRENCE RELATION FOR Fk„ 

A problem [6] that appeared in this journal led us to discover the first-order nonlinear homo-
geneous recurrence relation 

F3n+l=5Ffn-3Fr (n>0). (4.1) 

The aim of this section is to obtain an analogous relation valid for all positive subscripts kn+1 

with k odd and n an arbitrary nonnegative integer. 

Proposition 4: If k is a positive odd integer and n is a nonnegative integer, then 
(fc-3)/2 

Fk„+l=5«-»nFk
k„- X 5'q,fcif;+1, (4.2) 

7=0 

where the coefficients Cuk are given by 

Cjk = (_lf+1y2^(k + 1)72 -wj ^ + k ^ {0<i<{k_3)l2l (4.3) 

As an example, for k = 3,5,7, and 9, (4.2) gives (4.1), 

F5„+1 - 25/£ - 2 5 ^ + 5F5„, (4.4) 

F7„+1 = 125^1 - 175F7
5„ + 70F?

3 - 7F?„, (4.5) 

and 

Fgn+l = 625F9
9

n -1125i£ + 675/£ -150F9
3 + 9^w, (4.6) 

respectively. 
Proof of Proposition 4: First, let us write 

^ ^ z G ^ c - i y ^ v ^ " , (4.7) 
where a = l - / ? = ( l + V5)/2. After several simple but tedious manipulations involving the use of 
the Binet forms for Fibonacci and Lucas numbers, and the relation afi = -l9 (4.7) yields the 
following identities which may be of some interest/?er se\ 
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Fk -• l 

kn ^(k~l)/2 V1 
(k-l)/2 

+ - g l " F 
{k-2j)kn 

{k odd, n > 0), (4.8) 

Fk=-±- ^r{k
k
ny E H>'0>, \k-2j)k" (A: even, «> 1). 

By (4.8), we immediately obtain 

Then, using (4.10) along with Theorem 1 of [4] leads to the expression 

_ ( W <*-WW 2+i_. k-2j • |T|f{k +1)/2 + i- A „2/+i 
~ ft & ( " } (* + l)/2+i-75l/A 2i + l J k" 

which, after reversing the summation order, can be rewritten as 
(Jfc-l)/2 

•^-l)l2Fk
kn- I *4,*/£+ 1 , i ^ n . 1 

/=o 
where 

(fc-l)/2-/ * - 2 / fA:V(A: + l) /2 + i - 7 

Since A^-iyi^ - 0 by (1.3), expression (4.12) becomes 

(fc-3)/2 

i=0 

'2/+1 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Now it remains to show that the numbers 4,t [defined by (4.13)] and the numbers Cik 

[defined by (4.3)] coincide. To do this, consider the combinatorial identity 

£<-^(JXW 
h ^ ) [l£»*(*-»/2], 

(4.15) 

which can be obtained by [5, p. 58], and replace m by (k -1 ) / 2- / ' in (4.15) to obtain the desired 
result Cik = Ak. Q.E.D. 
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5. CONCLUDING REMARKS 

Some properties of the numbers Fk„ have been investigated in this note. In particular, 
expressions for these numbers in terms of products involving Lucas numbers have been estab-
lished. Analogous expressions for Z „ appeared to be rather unpleasant, so we confine ourselves 
to show some partial results whose proofs are left to the perseverance of the reader. In particular, 
we show the identity 

j*.=2+(^-2)n 

which, for k - 2, reduces to 

Z,2„=2-f5f}4 (»>2). (5.2) 

We also have 

Lf=4U(^+V> ("^)- (53) 
7 = 1 

Observe that the identity 

F2.r=*li(I?2.y-X) = sfi(L4.y+r) ("sl> (5-4) 
i=\ 7=1 

can be obtained either by (2.6) and (5.3), or by (3.4). 
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k/2 

U=l 
L(2J-l)ki+l 12 (&even, n>2) (5.1) 
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