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1. INTRODUCTION 

Traditionally, the word "abracadabra" was encrypted onto amulets and other magical para-
phernalia to help ward off evil. George Polya ([8], [9]) provided the cryptic form of this word 
shown in Figure 1 and asked how many ways abracadabra can be spelled out using this diagram. 
If we replace the diagram in Figure 1 with the grid shown in Figure 2 where letters in the original 
diagram are placed at points of intersection of the grid, then the question is equivalent to asking 
how many paths there are from the top of the grid to the spade at the bottom of the grid where 
each step is either down and left or down and right. One such path that spells out abracadabra is 
shown. By considering this grid as a city street map, we can think of such paths as walking city 
blocks—or blockwalking. 
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FIGURE 1. How many ways can you spell ABRACADABRA in the above diagram? 

We can represent a blockwalking path by a series of Rs (right turns) and Z's (left turns). For 
example, the abracadabra path illustrated in Figure 2 can be represented by LRLRLRLRLR. It 
is easy to see that any path which spells abracadabra will have 5 Rs and 5 Z's. More generally, 
we can see that any corner of the map can be determined uniquely by how many Z's and Rs it 
takes to get there. If there are n total steps in the path to get to a corner and there are &Z's, then 
there are n-k Rs. The number of paths to that corner is thus the number of combinations of 
kLs and n-k Rs. As is well known, this is the binomial coefficient (£) = kl(^!_k)l. In particular, 
the number of ways abracadabra can be spelled out in the diagram is (5°) = 252. Thus, we use the 
binomial coefficients to label the corners, and it should be apparent that we are constructing 
Pascal's triangle. When looking at the binomial coefficient for a particular corner, remember that 
the ris indicate the row of the triangle whereas the ks count the number of lefts taken. For an 
excellent history of Pascal's triangle, see [3], which includes an English translation of Pascal's 
original treatise [7]. 
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( ! ) 

FIGURE 2„ The Hockey Stick Identity gets its name from the shape of 
a blockwalking argument In Pascal's triangle. 

Pascal's triangle is often created by first placing a 1 at each corner along the outside edges of 
the triangle. Second, an entry not on the edge is calculated by adding the two entries immediately 
above it. The top four rows generated using this method are shown in Figure 2, where the fourth 
row is 1 3 3 1. In terms of binomial coefficients, the second part of this construction is equivalent 
to the recurrence relation 

(*Hr-iMv) o 
Surprisingly, it appears that Polya never published a description of how blockwalking can be 

used to prove combinatorial identities—although it has been described elsewhere (e.g., [5], [13]). 
We introduce this technique by providing a blockwalking proof of (1). Partition the paths to (?) 
depending on whether the last step is an L or an R. The number of paths with last step L is (ll\) 
and the number of paths with last step R is ("fc1). Summing these gives (1). Conceptually, this is 
equivalent to setting up a sieve in the streets so that we must pass through the sieve to our 
destination and so that once we have passed through the sieve there is only one path to our final 
destination. Specifically, a sieve is defined to be a set of corners which partitions the paths to a 
particular corner into equivalence classes. For example, as shown in Figure 2, in order to get to 
the club at (2), we must pass through one of the spades at (f) or (f). Also, there is only one way 
to get to (2) from either of these spades. Thus, the corners indicated by these two spades form a 
sieve for the corner indicated by the club. (Note that identities involving products of binomial 
coefficients can be shown using sieves for which there is more than one path to the destination 
upon exiting a sieve.) 
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A different sieve leads us to the Hockey Stick Identity: 

Consider that for any path there must be a last L after which all other choices are i?'s. Thus, we 
may partition paths to (j£i) into classes depending on how many consecutive i?'s are at the end of 
the path. The sum of thejsizes of these classes thus equals the number of paths to (IX\)- This 
proves (2). Again, the equivalence classes can be associated with a sieve of corners. For example, 
the four spades from (4) to (I) form a sieve for (*). This example also illustrates the use of the 
name Hockey Stick Identity. (This is also called the Stocking Identity. Does anyone know who 
first used these names?) 

The following sections provide two distinct generalizations of the blockwalking technique. 
They are illustrated by proving distinct generalizations of the Hockey Stick Identity. We will be 
using the standard Hockey Stick Identity several times to prove these generalized forms. When 
we wish to do so by referencing its pictorial representation, we will refer to "summing the spades 
into the club." 

2. MULTITIERED BLOCKWALKING 

A somewhat obvious variation of the Hockey Stick Identity is to multiply the binomial coeffi-
cient inside the summation by /. Surprisingly, the author has not been able to find a reference for 
this variation (including [4] and [12]). We will give a generalized blockwalking argument to pro-
vide a closed form for this variation which we will call the Extended Hockey Stick Identity: 

KiMztiMr:;} 
As illustrated in Figure 3, stack copies of Pascal's triangle on top of each other in tiers. The 

multitiered blockwalking technique follows these rules: 
1. On each tier, you may walk blocks in the normal 2-dimensional fashion. 
2. Your starting point may be at the apex on any tier. 
3. At the end of a walk on your starting tier, you may step into an elevator and be raised a 

given number of tiers. 
4. After having been elevated, you are at your final destination. 

Any such path may be considered a series of Z's and i?'s followed by some number of Us (ups). 
(The alternative interpretation, which allows moving up at any point along a path, will be dis-
cussed under multinomial blockwalking in the next section.) 

As with the standard single-tiered case, we label a corner with the number of paths to that 
corner. Using the specified rules, the (g) corner on Tier t counts t(l) paths; (?) paths for each oft 
tiers. Figure 3 shows the path LRLLRRLUUU which starts on Tier 3 and ends at 6(1). (For pic-
torial convenience, Figures 3 and 4 have the ks count i?'s instead of Z's. This is symmetric to the 
standard representation of Pascal's triangle in Figure 2.) 
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FIGURE 3. Multitiered Blockwalking 

We can partition the paths to w(£+i) into equivalence classes based on how many C/'s are at 
the end and how many consecutive L's precede the C/'s. We illustrate this with n = 6 and k = 2 in 
Figure 3. The sieve for 6(3) Is shown using spades and filled circles. This illustrates: 

By splitting the corners in the sieve appropriately, we illustrate: 
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2>UMz: -5>-o i • < 6 ' 

UH'by&o (5> 
The filled circles in Figure 3 represent the first summation on the right-hand side of (5) and the 
spades represent the second summation. By rearranging (5) and applying (4), we get 

In order to complete the proof of (3), we need to find a closed form for the subtrahend in (6). 
A copy of Pascal's triangle can be formed by slicing a plane through the tiers as shown in 

Figure 4. That is, consider the plane that slices in front of the circles and through the last spade 
on each tier. This newly formed Pascal triangle consists of one street from each tier starting on 
Tier t = k + l. In the example, the corner labeled 3(j}) is the apex of the new slicing Pascal trian-
gle. Other nodes on this new Pascal triangle are labeled the same as they originally were except 
that the binomial coefficient is not multiplied by the tier number. 

Using the standard Hockey Stick Identity on the spades on each tier (i.e., sum the spades into 
the clubs in Figure 4), we see that 

i=k V / i=k j=k\ / ;=/A 

Applying the standard Hockey Stick Identity on the slicing plane (i.e., summing the clubs into the 
circle at Q) in Figure 4) gives 

Combining (6) with (7) gives (3). 
In personal correspondences to the author William Webb proved (3) using the "Snake Oil 

Method" of [14] and Bruce Berndt proved (3) using Vandermonde's theorem involving hyper-
geometric series (see [1]). However, a telescoping series gives the Generalized Extended Hockey 
Stick Identity: 

Note that ip -(i-l)p is a polynomial of degree p-l. Thus, the /7th case can be determined 
recursively. 

Let us consider this generalized form in terms of multitiered blockwalking. When p = l, the 
structure used to slice through the multitiered sieve is a line (between the spades and circles). 
Similar (though much more complicated) arguments could be provided for the /7th case by slicing 
the sieve with a curve of the form ip. 
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FIGURE 4. Slicing through the tiers and between the spades and circles* 

3. MULTINOMIAL BLOCKWALKING 

Perhaps a more natural generalization of the blockwalking technique to 3 dimensions is to 
allow moving up at any point along the path rather than just at the end. Also, it seems more natu-
ral to start at only one place—the origin. (Such a 3-dimensional version of the abracadabra con-
cept is presented in [6].) This is easily generalized to j dimensions. That is, when blockwalking in 
j dimensions, not only can we walk along the standard 2 dimensions, but we can invoke our magic 
abracadabra amulet to take steps in all other j - 2 dimensions. The grid we are walking on thus 
becomes the nonnegative j-dimensional lattice with corners labeled by multinomials 

L m n = T T r, wherenl+w2 + - . + n / = w.-
yh9n2>---9njj n]\n1\...nj\ J 
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This is also called a Pascal hyperpyramid or a Pascal poly tope. Generalizations of Pascal's ori-
ginal results to hyperpyramids can be found in [10] and [11]. An excellent survey and an exten-
sive bibliography of Pascal hyperpyramids can be found in [2]. 

Figure 5 illustrates blockwalking in 5 dimensions: 

0,0,0,2,0 
' n 4 = 0 x ' TI4 = 1 v ' TT-4 = 2 

FIGURE 5. Blockwalking in 5 dimensions 

Here, each tier represents a 2-dimensional blockwalk; tiers stacked on top of each other 
represent the 3rd dimension; the 4th dimension is represented by a row of 3-dimensional tiers 
going from left to right; the 5th dimension is represented by copies of the 4-dimensional rows 
stacked one above another. In 5 dimensions, we consider combinations of Z's, i?'s, Us, H*s 

2 8 6 [JUNE-JULY 



GENERALIZED HOCKEY STICK IDENTITIES AND ̂ -DIMENSION AL BLOCKWALKING 

(hyperspaces), and Ws (warpdrives). The path RLURRHLRWLHR is illustrated by circles in 
Figure 5. This path starts at the origin and ends at 

12 
v3,5,l,2,lJ 

The recurrence relation (1) for Pascal's triangle generalizes for hyperpyramids: 

n \ J i n-l 

ih>ih9>->,nj) j^\*h>"->nk-l>--->nj 

The blockwalking argument also generalizes. That is, partition the paths depending on what the 
last step is. For example, in Figure 5, the club at 

14 
5,5,2,1,1 

has a sieve of five spades—each of which is one step away in one of five dimensions. 
This brings us to the Multinomial Hockey Stick Identity: 

ni,ih>->nj 

J « l+"2 

-I I 
k=2 i=n2 

i + «3+« 4 + « - - + « / - l 

i-n2,n2,n39...9nk-l,...,nJj 

The sieve for this identity has j-l copies of the sieve for the standard Hockey Stick Identity. 
This is illustrated in Figure 5 (with j = 5)by the four rows of spades that form a sieve for the club 
at 

5.5.2.2.2, ? ^ J *"') *~? ' 

4. COMMENTS 

The beauty of Polya's blockwalking is that it provides a geometric interpretation of algebraic 
equations and, in so doing, gives a way of visualizing the concepts involved. The attempt here 
has been to utilize this idea to provide geometric and visual aids for more complex equations and 
higher dimensions. In developing the presentation of this visualization, the author conceived of 
the 2-dimensional representation of 5 dimensions shown in Figure 5. Although the 4-dimensional 
tesseract is often drawn in 2 dimensions, the author has never seen an attempt to represent 5 
dimensions on a flat surface. The final comments consider how the representation in Figure 5 can 
be generalized to more dimensions. 

The basic concept is to represent the n^ dimension by making copies of the (n -1)5* dimen-
sion. Thus, to visualize the 6th dimension, we make copies of Figure 5, say, by stacking pages on 
top of each other. Notice that this gives us a 3-dimensional array of 3-dimensional arrays. We 
can visualize further dimensions by considering larger and larger 3-dimensional arrays. For exam-
ple, we cam consider our 6-dimensional stack of pages as a ream of paper. Obtain the next 3 
dimensions by considering a 3-dimensional array of reams. Continuing in this fashion, call the 
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array of reams a box; consider a 3-dimensional array of boxes, call this a pallet; consider a 3-
dimensional array of pallets; etc. The structure just described, up through a 3-dimensional array 
of pallets, represents a 15-dimensional nonnegative lattice. The limiting factor in this method is 
our ability to establish a mnemonically reasonable ordering of containers to describe each level of 
3-dimensional arrays. This approach can be compared to a Mandelbrot set in that we are main-
taining the same visual picture only at larger and larger scales. 

The visualization just described is aided by the discrete nature of the lattice (i.e., the blocks of 
the blockwalking) and by restricting the picture to the nonnegative "hyperquadrant" of the lattice. 
In order to eliminate the discrete nature of our picture, instead of making discrete copies of the 
(w-1) -dimensional representation, move the (n-l) -dimensional representation in a continuous 
motion. To remove the restriction of only visualizing the nonnegative hyperquadrant of w-space, 
consider 2" copies of the hyperquadrant to represent the 2" hyperquadrants that exist in w-space. 
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