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Positive integers of the form \m{m-l) are called triangular numbers. The Diophantine 
equation 

X(X-\W = y(y-\) ( i ) 

corresponds to the question: For which triangular numbers are their squares still triangular [1]? In 
1946, Ljunggren [2] solved this problem when he proved the following. 

Theorem: The Diophantine equation (1) has only the following solutions in positive integers: 
( x , J ^ ( U ) , (2 ,2 ) , and(4 ,9 ) . 

That is, only the two triangular numbers 1 and 36 can be represented as squares of numbers 
of the same form. However, Ljunggren used his knowledge of the biquadratic field Q(2 ) and 
the/7-adic method, so his proof is somewhat complex. In 1965, Cassels [3] gave a much simpler 
proof, but he also used his knowledge of the biquadratic field Q((-2) ) . In 1989, Cao [4] con-
jectured that (1) could be solved by the method of recurrent sequences. We verify his conjecture 
in this paper by giving the theorem and an elementary as well as simple proof by the method of 
recurrent sequences without using anything deeper than reciprocity. 

Proof of the Theorem: Let X = 2x -1 and Y = -2y-l, then equation (1) may be reduced to 
Y2 -1{ JC~zl f = 1. Since u + v42 =un+vn42=(l + 42)n gives the general solution of the Pellian 
equation u2 -v2 =(-1)", where 1 + V2 is its fundamental solution and n is an arbitrary integer 

(see, e.g., [1]), we get 
X2 = 4vn + l, 2\n. (2) 

The following relations may be derived easily from the general solution of Pell's equation: 

un+2 = 2un+l +un, u0 = \ ux = 1; (3) 
Vn+2=2vn+l+V*> V0 = °> ^ = 1; (4) 

u2n = u2+2vl v2 n=2^vw; (5) 

v_n = (-iy+\; (6) 

V u - H ) ^ (modtfc). (7) 

If n < 0, then 4vn +1 < 0, and (2) is impossible. Hence, it is necessary that n > 0. We shall 
prove that (2) cannot hold for any n > 4 by showing that 4vn 4-1 is a quadratic nonresidue modulo 
some positive integer. 
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First, we consider the following three cases: 

Case 1. If n = 0 (mod 6) and n> 0, then we write n = 3r(6k+ 2), 4 > 1. Let m = 3r, then, by 
(6) and (7), we get v„ = v±2m = ±v2m (mod u3m). Since u3m = um(u2

m + 6v2
m), we obtain 4v„ +1 = 

±4v2m + l(modu2
m + 6v2

m). 
Note that 2\m implies u2

n + 6v2
n = 7 (mod 8) and vm = 1 (mod 4) so, by (5), we obtain 

u2 + 6vl 

(q,+vJ/2' 

8vm(»m+vJ 

(where 2J||wm + vm) 

-1 

-1 

' «£ + <£ 
( I J ^ + V J / 2 * 

7 
v(M™+vJ/2s _|ffe±2k 

Similarly, 

-4v2OT + l 
V*4 + 6 vm, 

Equations (3) and (4) modulo 7 yield two residue sequences with the same period of 6. Since 
m = 3 (mod 6), we have ±um + vm = 5 (mod 7), so that 

4v„ + l 
V*4 + 6vm. 

-1, 

and (2) cannot hold. 

Case 2. If n = 2 (mod 4) and n>2, then we write « = 2 + 2-3r-w, where r>0, /w = ±2 
(mod 6). By (7), we have 4vn +1 = -4v2 +1 = - 7 (mod um), 

^--mm^-so that (2) cannot hold. 

Case 3. If n = 4 (mod 60) and n>4, then we write ft = 4 + 2-3-5-A:-2r, where r>\, 2\k. 
Let m = 2r or 3 • 2r or 15- 2r (to be determined). By (7), we have 4vn +1 = -4v4 +1 = -47 (mod 

4v +1 -47 

*« y 
The residue sequence of (3) modulo 47 has period 46. The period, with respect to r, of the 

residue sequence of {2r} modulo 46 is 11. We determine our choice of m as follows: 
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hr, if r s 3,5,6,7,8,9 (mod 11), 
m = l3-2r, ifrsO.1,10 (mod 11), 

[l5-2r i f r s 2 , 4 (mod 11), 

from which we obtain the following table. 

r (mod 11) 
2r (mod 46) 

3-2r (mod 46) 
15-2r (mod 46) 

um (mod 47) 

0 

26 

35 

1 2 

6 
14 

5 33 

3 4 
8 

10 
13 26 

5 6 
32 18 

33 15 

7 
36 

26 

8 
26 

35 

9 10 
6 

36 

5 26 

It is easy to verify that each of the um in this table is a quadratic nonresidue modulo 47, from 
which it follows that (2) is impossible. 

The three cases above tell us that, for (2) to hold, n must satisfy one of the following condi-
tions: 

w = 0,2,4; 
or 

n = 8,16,20,28,32,40,44,52,56 (mod 60). (8) 

We now exclude all residues in (8) by considering some moduli of the sequence {Avn +1}. 
First, consider modulo 5. The residue sequence of {4v„ + l} has period 12. If w = 8 (mod 

12), then 4vn + 1 = 3 (mod 5), which implies that (2) is impossible. Thus, we exclude w= 8, 20, 
32, 44, 56 (mod 60) in (8). 

Second, consider modulo 31. We get the residue sequence of {4vn + 1} having a period 30. 
If n = 10,16,22,28 (mod 30), then 4vn +1 = 27,17,12,24 (mod 31), respectively. However, all 
of these are quadratic nonresidue modulo 31; thus, (2) cannot hold. Hence, we can exclude in (8) 
the other four residue classes of n = 16,28,40,52 (mod 60). 

Finally, we look at the three values of n = 0,2,4, which give X = 1,3,7, respectively, in (2). 
Therefore, we see that all positive integer solutions of (1) are (x, y) = (1,1), (2,2), and (4,9) and 
the proof is complete. 
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