POLYNOMIALS ASSOCIATED WITH GENERALIZED MORGAN-VOYCE POLYNOMIALS

A. F. Horadam
The University of New England, Armidale, Australia 2351

(Submitted December 1994)

1. PROLOGUE

André-Jeannin [1] recently defined a polynomial sequence $\left\{P_{n}^{(r)}(x)\right\}$, where r is a real number, by the recurrence

$$
\begin{equation*}
P_{n}^{(r)}(x)=(x+2) P_{n-1}^{(r)}(x)-P_{n-2}^{(r)}(x) \quad(n \geq 2) \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{0}^{(r)}(x)=1, \quad P_{1}^{(r)}(x)=x+r+1 . \tag{1.2}
\end{equation*}
$$

Furthermore [1], a sequence of integers $\left\{a_{n, k}^{(r)}\right\}$ exists for which

$$
\begin{equation*}
P_{n}^{(r)}(x)=\sum_{k=0}^{n} a_{n, k}^{(r)} x^{k}, \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n, n}^{(r)}=1 \quad(n \geq 0) . \tag{1.4}
\end{equation*}
$$

He also proved [1] the crucial formula ($n \geq 0, k \geq 0$)

$$
\begin{equation*}
a_{n, k}^{(r)}=\binom{n+k}{2 k}+r\binom{n+k}{2 k+1} \tag{1.5}
\end{equation*}
$$

and the recurrence

$$
\begin{equation*}
a_{n, k}^{(r)}=2 a_{n-1, k}^{(r)}-a_{n-2, k}^{(r)}+a_{n-1, k-1}^{(r)} \quad(n \geq 2, k \geq 1) . \tag{1.6}
\end{equation*}
$$

Simple instances of $P_{n}^{(r)}(x)$ are [1], with slightly varied notation,

$$
\begin{equation*}
P_{n-1}^{(0)}(x)=b_{n}(x) \quad(n \geq 1) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n-1}^{(1)}(x)=B_{n}(x) \quad(n \geq 1) \tag{1.8}
\end{equation*}
$$

where $b_{n}(x)$ and $B_{n}(x)$ are the well-known Morgan-Voyce polynomials [4]. (Please see [1] for other references to $b_{n}(x)$ and $B_{n}(x)$.)

It is the purpose of this short paper to give a brief account of a closely related sequence of polynomials $\left\{Q_{n}^{(r)}(x)\right\}$ with particular emphasis on the case $r=0$. Necessarily, a formula corresponding to (1.5) will have to be discovered.

For ready comparison and contrast with the contents of [1], it seems desirable to present this material in a partially similar way. Before proceeding, however, we need to add the following items of information.

Lemma 1: $a_{n, k}^{(1)}-a_{n-2, k}^{(1)}=a_{n, k}^{(0)}+a_{n-1, k}^{(0)} \quad(n \geq 2)$.
Proof: $\binom{n+k}{2 k}+\binom{n+k}{2 k+1}=\binom{n+k+1}{2 k+1}$ by Pascal's Theorem,
i.e., $\quad\binom{n+k}{2 k}+\binom{n+k-1}{2 k}+\binom{n+k-1}{2 k+1}=\binom{n+k+1}{2 k+1}$ by Pascal's Theorem,
i.e., $\quad\binom{n+k}{2 k}+\binom{n+k-1}{2 k}=\binom{n+k+1}{2 k+1}-\binom{n+k-1}{2 k+1}$.

Use (1.5) for $r=0, r=1$, and the Lemma follows by Pascal's Theorem.
When $r=2$ in (1.1), then $P_{n-1}^{(2)}(x)$ is found to be

$$
\begin{equation*}
P_{n-1}^{(2)}(x)=c_{n}(x)=\frac{b_{n+1}(x)-b_{n-1}(x)}{x} \quad(n \geq 1), \tag{1.9}
\end{equation*}
$$

where $c_{n}(x)$-given in terms of Morgan-Voyce polynomials-has been introduced independently by me is a paper currently being written in which it is also demonstrated that

$$
\begin{equation*}
c_{n+1}(x)-c_{n}(x)=C_{n}(x), \tag{1.10}
\end{equation*}
$$

in which $C_{n}(x)$ is to be defined in (2.11).

2. THE POLYNOMIALS $\left\{Q_{n}^{(r)}(x)\right\}$

Define, as in (1.1), a polynomial sequence $\left\{Q_{n}^{(r)}(x)\right\}$ recursively by

$$
\begin{equation*}
Q_{n}^{(r)}(x)=(x+2) Q_{n-1}^{(r)}(x)-Q_{n-2}^{(r)}(x) \quad(n \geq 2) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{0}^{(r)}(x)=2, \quad Q_{1}^{(r)}(x)=x+r+2 . \tag{2.2}
\end{equation*}
$$

Then a sequence of integers $\left\{b_{n, k}^{(r)}\right\}$ exists such that

$$
\begin{equation*}
Q_{n}^{(r)}(x)=\sum_{k=0}^{n} b_{n, k}^{(r)} x^{k}, \tag{2.3}
\end{equation*}
$$

where

$$
b_{n, n}^{(r)}= \begin{cases}1 & (n \geq 1) \tag{2.4}\\ 2 & (n=0)\end{cases}
$$

Now $b_{n, 0}^{(r)}=Q_{n}^{(r)}(0)$. By (2.1) and (2.2),

$$
\begin{equation*}
b_{n, 0}^{(r)}=2 b_{n-1,0}^{(r)}-b_{n-2,0}^{(r)} \quad(n \geq 2) \tag{2.5}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
b_{0,0}^{(r)}=2, \tag{2.6}\\
b_{1,0}^{(r)}=2+r \text { by }(2.2) .
\end{array}\right.
$$

Following [1], we deduce that ($n \geq 0$)

$$
\begin{equation*}
b_{n, 0}^{(r)}=2+n r, \tag{2.7}
\end{equation*}
$$

whence

$$
\begin{equation*}
b_{n, 0}^{(0)}=2 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n, 0}^{(1)}=2+n . \tag{2.9}
\end{equation*}
$$

Comparison of coefficients of x^{k} in (1.1) leads to the recurrence ($n \geq 2, k \geq 1$)

$$
\begin{equation*}
b_{n, k}^{(r)}=2 b_{n-1, k}^{(r)}+b_{n-1, k-1}^{(r)}-b_{n-2, k}^{(r)} . \tag{2.10}
\end{equation*}
$$

Table 1 displays a triangular arrangement of the coefficients $b_{n, k}^{(r)}$. This ought to be compared with the (preferably extended) table in [1] for the coefficients $a_{n, k}^{(r)}$.

TABLE 1. Coefficients $b_{n, k}^{(r)}$ of $Q_{n}^{(r)}(x)$

$n-k$	0	1	2	3	4	5	\cdots
0	2						\cdots
1	$2+r$	1					\cdots
2	$2+2 r$	$4+r$	1			\cdots	
3	$2+3 r$	$9+4 r$	$6+r$	1		\cdots	
4	$2+4 r$	$16+10 r$	$20+6 r$	$8+r$	1		\cdots
5	$2+5 r$	$25+20 r$	$50+21 r$	$35+8 r$	$10+r$	1	\cdots
\cdots							

Next, we introduce the important symbolism

$$
\begin{equation*}
Q_{n}^{(0)}(x)=C_{n}(x) . \tag{2.11}
\end{equation*}
$$

Using Table 1, we may now write out the expressions for $C_{0}(x), C_{1}(x), C_{2}(x), C_{3}(x), \ldots$. Some properties of $C_{n}(x)$, especially in relation to Lucas polynomials, appear in [2].

3. CONNECTION BETWEEN $\left\{P_{n}^{(r)}(x)\right\}$ AND $\left\{Q_{n}^{(r)}(x)\right\}$

Inherent in the nature of the laws of formation of $\left\{P_{n}^{(r)}(x)\right\}$ and $\left\{Q_{n}^{(r)}(x)\right\}$-namely, (1.1), (1.2), (2.1), and (2.2)-is the inevitably close connection between $a_{n, k}^{(r)}$ and $b_{n, k}^{(r)}$.

Typically, for example,

$$
\left\{\begin{array}{l}
b_{5,2}^{(r)}=50+21 r=(35+21 r)+15=a_{5,2}^{(r)}+a_{4,2}^{(0)} \tag{3.1}\\
b_{6,3}^{(r)}=112+36 r=(84+36 r)+28=a_{6,3}^{(r)}+a_{5,3}^{(0)}
\end{array}\right.
$$

These illustrations suggest the nature of the constant (for which $r=0$) by which $b_{n, k}^{(r)}$ exceeds $a_{n, k}^{(r)}$. It is $a_{n-1, k}^{(0)}$.

Theorem 1: $\quad b_{n, k}^{(r)}=a_{n, k}^{(r)}+a_{n-1, k}^{(0)} \quad(n \geq 1)$

$$
=\binom{n+k}{2 k}+\binom{n-1+k}{2 k}+r\binom{n+k}{2 k+1} \text { by (1.5). }
$$

Proof: Follow the inductive proof in [1] for $a_{n, k}^{(r)}$, using the binomial coefficients and (2.10). The occurrence of the middle (extra) binomial term causes no complication.
[Alternatively: Subtract (1.6) from (2.10) and use induction.]
Combine the first two binomial coefficients in Theorem 1 to derive
Corollary 1: $\quad b_{n, k}^{(r)}=\frac{n}{k}\binom{n-1+k}{2 k-1}+r\binom{n+k}{2 k+1}$.
Multiply both sides of Theorem 1 by x^{k} and sum. Immediately, from (1.3) and (2.3), we infer the fundamental polynomial property associating $Q_{n}^{(r)}(x)$ with $P_{n}^{(r)}(x)$.

Theorem 2: $Q_{n}^{(r)}(x)=P_{n}^{(r)}(x)+P_{n-1}^{(0)}(x) \quad(n \geq 1)$.
Fixing $r=0$ in Theorem 2 and using (1.7) and (2.11), we deduce

$$
\begin{equation*}
C_{n}(x)=b_{n+1}(x)+b_{n}(x) . \tag{3.2}
\end{equation*}
$$

Evaluating in Theorem 2 when $x=1$ produces a nice specialization. Already [1] we know that, for Fibonacci numbers,

$$
\begin{equation*}
P_{n}^{(r)}(1)=F_{2 n+1}+r F_{2 n} . \tag{3.3}
\end{equation*}
$$

Application of (3.3) enables us to get the following two useful subsidiary results for Fibonacci and Lucas numbers from Theorem 2 when $x=1$.

Corollary 2: $Q_{n}^{(r)}(1)=L_{2 n}+r F_{2 n}$.
Proof: $Q_{n}^{(r)}(1)=P_{n}^{(r)}(1)+P_{n-1}^{(0)}(1) \quad$ by Theorem 2

$$
=F_{2 n+1}+r F_{2 n}+F_{2 n-1} \quad \text { by (3.3) }
$$

$$
=L_{2 n}+r F_{2 n}
$$

Corollary 3: $Q_{n}^{(2 u+1)}(1)=2 P_{n}^{(u)}(1)$.
Proof: $Q_{n}^{(2 u+1)}(1)=F_{2 n+1}+(2 u+1) F_{2 n}+F_{2 n-1}$ as in Corollary $2(r=2 u+1$, odd)

$$
\begin{aligned}
& =2\left(F_{2 n+1}+u F_{2 n}\right) \\
& =2 P_{n}^{(u)}(1) \text { by (3.3). }
\end{aligned}
$$

Thus,

$$
\begin{align*}
& Q_{n}^{(1)}(1)=2 P_{n}^{(0)}(1)=2 F_{2 n+1}=2 b_{n+1}, \tag{3.4}\\
& Q_{n}^{(3)}(1)=2 P_{n}^{(1)}(1)=2 F_{2 n+2}=2 B_{n+1}, \tag{3.5}\\
& Q_{n}^{(5)}(1)=2 P_{n}^{(2)}(1)=2 L_{2 n+1}=2 c_{n+1} . \tag{3.6}
\end{align*}
$$

Conventional symbolism $b_{n}(1)=b_{n}, \ldots$ has been employed in (3.4)-(3.6). Even superscript values of r in Corollary 2 do not, in general, appear to produce neat or interesting simplifications. However, by Corollary 2, (2.11), and [2], we do know that

$$
\begin{equation*}
Q_{n}^{(0)}(1)=C_{n}=L_{2 n} . \tag{3.7}
\end{equation*}
$$

Worth recording in passing is

$$
\begin{equation*}
Q_{n}^{(2)}(1)=F_{2 n+3}=b_{n+2} . \tag{3.8}
\end{equation*}
$$

4. CONNECTION BETWEEN $Q_{n}^{(0)}(x)$ AND $B_{n}(x)$

Lastly, the link between our polynomials and the Morgan-Voyce polynomial $B_{n}(x)$ is described.

Theorem 3: $Q_{n}^{(0)}(x)=B_{n+1}(x)-B_{n-1}(x)$.

$$
\text { Proof: } \begin{aligned}
Q_{n}^{(0)}(x) & =\sum_{k=0}^{n} b_{n, k}^{(0)} x^{k} & & \text { by (2.3) }(r=0) \\
& =\sum_{k=0}^{n}\left(a_{n, k}^{(0)}+a_{n-1, k}^{(0)}\right. & & \text { by Theorem 1 }(r=0) \\
& =\sum_{k=0}^{n}\left(a_{n, k}^{(1)}-a_{n-2, k}^{(1)}\right) & & \text { by Lemma 1 } \\
& =P_{n}^{(1)}(x)-P_{n-2}^{(1)}(x) & & \text { by (1.3) } \\
& =B_{n+1}(x)-B_{n-1}(x) & & \text { by (1.8). }
\end{aligned}
$$

Corollary 4: $C_{n}(x)=B_{n+1}(x)-B_{n-1}(x) \quad$ by (2.11), Theorem 3

$$
=\sum_{k=0}^{n-1} \frac{n}{k}\binom{n-1+k}{2 k-1} x^{k}+2+x^{n} \quad \text { by (i), (2.4), (2.8), (2.11), Corollary } 1 .
$$

The property embodied in Corollary 4 means that $B_{n}(x)$ and $C_{n}(x)$ form another pair of cognate polynomials which can be incorporated into the synthesis [3], to which all the theory therein applies, e.g.,

$$
\begin{gather*}
B_{n}(x) C_{n}(x)=B_{2 n}(x), \tag{4.1}\\
\frac{d}{d x} C_{n}(x)=n B_{n}(x) . \tag{4.2}
\end{gather*}
$$

5. CHEBYSHEV POLYNOMIALS

Polynomials $P_{n}^{(r)}(x)$ are shown [1] to be related to $U_{n}(x)$, the Chebyshev polynomials of the second kind. In particular, with an adjusted subscript notation,

$$
\begin{equation*}
B_{n}(x)=\frac{\sin n t}{\sin t}=U_{n}\left(\frac{x+2}{2}\right), \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
x+2=2 \cos t \tag{5.2}
\end{equation*}
$$

Now, by Theorem 3, Corollary 4, and (5.2),

$$
\begin{align*}
Q_{n}^{(0)}(x) & =C_{n}(x)=B_{n+1}(x)-B_{n-1}(x) \\
& =\frac{\sin (n+1) t-\sin (n-1) t}{\sin t} \\
& =2 \cos n t \tag{5.3}\\
& =2 T_{n}\left(\frac{x+2}{2}\right) \tag{5.4}
\end{align*}
$$

where $T_{n}(x)$ are the Chebyshev polynomials of the first kind.
More generally, we construct the law relating $Q_{n}^{(r)}(x)$ to the two types of Chebyshev polynomials. Needed for this is a pair of known results involving Chebyshev polynomials (our notation):

$$
\begin{gather*}
P_{n}^{(r)}(x)=U_{n+1}\left(\frac{x+2}{2}\right)+(r-1) U_{n}\left(\frac{x+2}{2}\right) \text { by }[1] \tag{5.5}\\
2 T_{n}(x)=U_{n+1}(x)-U_{n-1}(x) \tag{5.6}
\end{gather*}
$$

Theorem 4: $Q_{n}^{(r)}(x)=2 T_{n}\left(\frac{x+2}{2}\right)+r U_{n}\left(\frac{x+2}{2}\right)$.
Proof: $Q_{n}^{(r)}(x)=P_{n}^{(r)}(x)+P_{n-1}^{(0)}(x) \quad$ by Theorem $2(n \geq 1)$

$$
\begin{aligned}
& =U_{n+1}\left(\frac{x+2}{2}\right)+(r-1) U_{n}\left(\frac{x+2}{2}\right)+U_{n}\left(\frac{x+2}{2}\right)-U_{n-1}\left(\frac{x+2}{2}\right) \quad \text { by }(5.5) \\
& =U_{n+1}\left(\frac{x+2}{2}\right)-U_{n-1}\left(\frac{x+2}{2}\right)+r U_{n}\left(\frac{x+2}{2}\right) \\
& =2 T_{n}\left(\frac{x+2}{2}\right)+r U_{n}\left(\frac{x+2}{2}\right) \quad \text { by }(5.6)
\end{aligned}
$$

Zeros

Zeros $x_{k}(k=1,2, \ldots, n)$ of $C_{n}(x)=Q_{n}^{(0)}(x)$ are, by (5.4), tied to the zeros of $T_{n}\left(\frac{x+2}{2}\right)$. Thus,

$$
x_{k}+2=2 \cos \left(\frac{2 k-1}{n} \cdot \frac{\pi}{2}\right) \quad(k=1,2, \ldots, n)
$$

implying

$$
\begin{equation*}
x_{k}=-4 \sin ^{2}\left(\frac{2 k-1}{2 n} \cdot \frac{\pi}{2}\right) \quad(k=1,2, \ldots, n) \tag{5.7}
\end{equation*}
$$

For instance, the 3 zeros of $C_{3}(x)\left[=2 T_{3}\left(\frac{x+2}{2}\right)\right]=x^{3}+6 x^{2}+9 x+2=(x+2)\left(x^{2}+4 x+1\right)$ are

$$
x_{k}=-4 \sin ^{2}\left(\frac{\pi}{12}\right),-4 \sin ^{2}\left(\frac{\pi}{4}\right)=-2, \quad-4 \sin ^{2}\left(\frac{5 \pi}{12}\right) \quad(k=1,2,3)
$$

Zeros of $P_{n}^{(r)}(x)(r=0,1,2, \ldots, n)$ are given in [1].

EPILOGUE

Together with the Morgan-Voyce polynomials $b_{n}(x)$ and $B_{n}(x)$, the polynomials $c_{n}(x)$ and $C_{n}(x)$ constitute an appealing quartet of polynomial relationships which form the subject of my paper alluded to following (1.9). Here, they exhibit a nice simplicity amid complexity, a cohesion and unity amid diversity.

REFERENCES

1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quarterly 32.3 (1994):228-31.
2. R. André-Jeannin. "A Note on a General Class of Polynomials, Part II." The Fibonacci Quarterly 33.4 (1995):341-51.
3. A. F. Horadam. "A Synthesis of Certain Polynomial Sequences." In Applications of Fibonacci Numbers 6 (in press).
4. A. M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." I.R.E. Transactions Circuit Theory 6.3 (1959):321-22.
AMS Classification Number: 11B39
