P-LATIN MATRICES AND PASCAL'S TRIANGLE MODULO A PRIME

Valery V. Karachik
Institute of Cybernetics of Acad. Sci. of Uzbekistan, 34, F. Hodzhaev St., Tashkent, 700143, Uzbekistan
(Submitted December 1994)

INTRODUCTION

One of the more effective methods of counting residues modulo a prime in the rows of Pascal's triangle is a reduction of this problem to that of solving of certain systems of recurrence equations. This way was successfully employed by B. A. Bondarenko [1] in the investigation of this problem for various values of p and (only) for certain rows of Pascal's triangle. However, some characteristic properties of the matrices of these recurrent systems were noticed which led to the idea of p-latin matrices. This idea was formulated in more detail in [2], which also uses p latin matrices in the investigation of other arithmetic triangles.

In this paper we consider a new application of the properties of p-latin matrices to the investigation of Pascal's triangle modulo a prime. Using a representation of the p-latin matrices in a convenient basis, we obtain the distribution of Pascal's triangle elements modulo a prime for an arbitrary row.

p-LATIN MATRICES

We note the definition of a p-latin matrix as given in [1] and [2]. A square matrix of order n is called a "latin square of order n " [3] if its elements take on n values in such a way that each value occurs only once in each column and row. A latin square of order n is called a " p-latin square of order $n^{\prime \prime}$ if no diagonals except the main and secondary ones (the element indices are i and $n-i+1$ for $1 \leq i \leq n$) have equal elements. A p-latin square of order n is said to be a "normalized p-latin square of order $n^{\prime \prime}$ if its first row has the form ($1,2, \ldots, n$), and the main diagonal has the form $(1, \ldots, 1)$.

We will construct such a matrix for any prime p.
Let us introduce the matrix $P=(j / i)_{i, j=\overline{1, p-1}}$ of order $p-1$ whose elements are to be understood as elements from the field \mathbb{Z}_{p}. (Here and later we use the notation $i, j=\overline{1, p-1}$ to mean $1 \leq i \leq p-1,1 \leq j \leq p-1$.)

Example 1: For $p=7$, the matrix P has the form:

$$
P=\left(\begin{array}{llllll}
1 / 1 & 2 / 1 & 3 / 1 & 4 / 1 & 5 / 1 & 6 / 1 \\
1 / 2 & 2 / 2 & 3 / 2 & 4 / 2 & 5 / 2 & 6 / 2 \\
1 / 3 & 2 / 3 & 3 / 3 & 4 / 3 & 5 / 3 & 6 / 3 \\
1 / 4 & 2 / 4 & 3 / 4 & 4 / 4 & 5 / 4 & 6 / 4 \\
1 / 5 & 2 / 5 & 3 / 5 & 4 / 5 & 5 / 5 & 6 / 5 \\
1 / 6 & 2 / 6 & 3 / 6 & 4 / 6 & 5 / 6 & 6 / 6
\end{array}\right) \equiv\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 2 & 6 & 3 \\
5 & 3 & 1 & 6 & 4 & 2 \\
2 & 4 & 6 & 1 & 3 & 5 \\
3 & 6 & 2 & 5 & 1 & 4 \\
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right) .
$$

Theorem 1: If p is a prime number, then the matrix P is a normalized p-latin square.

Proof: It is obvious that elements of P occurring in the same row or column are distinct and belong to the multiplicative group of the field \mathbb{Z}_{p}. Thus the matrix P is a latin square.

Let j / i be one element of some diagonal that is parallel to the main diagonal. Then any other element of this diagonal has the form $(j+s) /(i+s)$. Assume that these elements are equal; then $i s=j s$ and therefore $i=j$, so in this case the element j / i has to occur on the main diagonal. There is an analogous situation with diagonals parallel to the secondary one. Hence P is a p-latin square. Since the first row of P has the form $1,2, \ldots, p-1$ and on the main diagonal there are only 1's, P is a normalized p-latin square.

Let us define the set of square matrices of order $p-1$ (called in [2] "normalized p-latin matrices"):

$$
\mathbb{N}_{p}=\left\{\left(c_{p_{i, j}}\right)_{i, j=\overline{1, p-1}} \mid c_{1}, \ldots, c_{p-1} \in \mathbb{C},\left(p_{i, j}\right)=P\right\}
$$

where \mathbb{C} denotes the complex numbers.
Example 2: If $p=7$, then, according to Example 1, the matrix

$$
\left(\begin{array}{llllll}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} \\
c_{4} & c_{1} & c_{5} & c_{2} & c_{6} & c_{3} \\
c_{5} & c_{3} & c_{1} & c_{6} & c_{4} & c_{2} \\
c_{2} & c_{4} & c_{6} & c_{1} & c_{3} & c_{5} \\
c_{3} & c_{6} & c_{2} & c_{5} & c_{1} & c_{4} \\
c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1}
\end{array}\right)
$$

belongs to \mathbb{N}_{7}.
Though the idea of this set of matrices was contained in [1] and [2], their existence for any p was not made explicit.

Corollary 1: If $C, B \in \mathbb{N}_{p}$, then $C B \in \mathbb{N}_{p}$ and $C B=B C$.
Proof: In fact, if $C=\left(c_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, then the equality

$$
C B=\left(\sum_{k=1}^{p-1} c_{k / i} b_{j / k}\right)_{i, j=\overline{1, p-1}}=\left(\sum_{s=1}^{p-1} c_{s} b_{j /(i s)}\right)_{i, j=\overline{1, p-1}}
$$

where all indices are in \mathbb{Z}_{p}, holds. Therefore, if we denote by a_{k} the sum $\sum_{s=1}^{p-1} c_{s} b_{k / s}$, then we will have $C B=\left(a_{j / i}\right)_{i, j=\overline{1, p-1}}$; hence $C B \in \mathbb{N}_{p}$. Moreover, in the same way, we can establish

$$
B C=\left(\sum_{s=1}^{p-1} b_{s} c_{j s / i}\right)_{i, j=\overline{1, p-1}}=\left(a_{j / i}\right)_{i, j=\overline{1, p-1}},
$$

with the aid of the equality

$$
a_{k}=\sum_{s=1}^{p-1} b_{s} c_{k / s}
$$

Hence $C B=B C$, which was to be proved.
We develop the properties of these matrices from \mathbb{N}_{p} in what follows.

Let us denote by $\Delta^{(1)}$ the Pascal triangle modulo a prime p and let $C(n, m)$ be an arbitrary element. Let us also denote by $\Delta_{s}^{(1)}$ the triangle containing only the first s rows of $\Delta^{(1)}$. Now consider the triangle $\Delta^{(k)} \equiv k \Delta^{(1)}$, whose elements $C_{k}(n, m)$ are defined by the expression $C_{k}(n, m)=$ $k C(n, m)(\bmod p)$ and denote by $\Delta_{s}^{(k)}$ the triangle containing only the first s rows of $\Delta^{(k)}$. It is clear that $\Delta_{s}^{(k)}=k \Delta_{s}^{(1)}$.

Definition: The triangle with $s m$ rows arising from $\Delta_{s}^{(k)}$ by replacing its elements $C(n, \ell)$ by the triangles $\Delta_{m}^{(C(n, \ell))}$ and filling in free places by 0 is denoted by $\Delta_{s}^{(k)} * \Delta_{m}$.

Example 3: For $p=5$, the triangles $\Delta_{4}^{(1)}$ and $\Delta_{3}^{(k)}$ have the form

$$
\Delta_{4}^{(1)}=\begin{gathered}
11 \\
121 \\
1331
\end{gathered}, \quad \Delta_{3}^{(1)}=\begin{gathered}
1 \\
121
\end{gathered}, \quad \Delta_{3}^{(2)}=\begin{gathered}
2 \\
2242
\end{gathered}, \quad \Delta_{3}^{(3)}=\begin{gathered}
3 \\
33 \\
313
\end{gathered}
$$

and therefore we obtain:

This leads to the principal fractal property of Pascal's triangle.
Theorem 2: For any $n, m \in \mathbb{N}$ and each $k=\overline{1, p-1}$, the equality $\Delta_{m}^{(k)} * \Delta_{p^{n}}=\Delta_{m p^{n}}^{(k)}$ holds.
The proof of this theorem is lengthy but not difficult and is given in [4].
This result allows us to reduce an investigation of $\Delta^{(1)}$ to the investigation of $\Delta_{p}^{(k)}$ for $k=\overline{1, p-1}$. The details will be given in Theorem 3 .

Let $B_{k}, 1 \leq k \leq p-1$, be the matrix of order $p-1$, any element $b_{i, j}$ of which is the number of elements equal to j in the $k^{\text {th }}$ row of the triangle $\Delta_{p}^{(i)}$. Denote by $g_{s}^{(k)}(n, p)$ the number of elements equal to s modulo p in the $n^{\text {th }}$ row of the triangle $\Delta^{(k)}$.

Theorem 3: If $n=\left(a_{r}, \ldots, a_{0}\right)_{p}$ is the p-ary representation of n, then

$$
\begin{equation*}
g_{s}^{(k)}(n, p)=\left(B_{a_{r}} \ldots B_{a_{0}}\right)_{k, s} . \tag{1}
\end{equation*}
$$

Proof: Using Theorem 2, we can write the equality

$$
\Delta_{p^{r+1}}^{(1)}=\Delta_{p}^{(1)} * \Delta_{p^{r}}
$$

which means that the $n^{\text {th }}$ row of $\Delta_{p^{r+1}}^{(1)}$ is found in the $a_{r}^{\text {th }}$ row of $\Delta_{p}^{(1)}$, which consists of the triangles $\Delta_{p^{r}}^{(k)}, 1 \leq k \leq p-1$ (see Example 3). If we set $n_{(k)} \equiv\left(a_{r-k}, \ldots, a_{0}\right)$, then the following vector equality will hold:

$$
\left(g_{s}^{(k)}(n, p)\right)_{k=\overline{1, p-1}}=B_{a_{r}}\left(g_{s}^{(k)}\left(n_{(1)}, p\right)\right)_{k=\overline{1, p-1}}
$$

Continuing this process, we can obtain

$$
\left(g_{s}^{(k)}(n, p)\right)_{k=\overline{1, p-1}}=B_{a_{r}} \ldots B_{a_{i}}\left(g_{s}^{(k)}\left(n_{(r)}, p\right)\right)_{k=\overline{1, p-1}}
$$

Since $n_{(r)}=a_{0}$ and $g_{s}^{(k)}\left(a_{0}, p\right)=\left(B_{a_{0}}\right)_{s, k}$, we get (1). This completes the proof.
Using Theorem 3, we can reduce counting the $g_{s}^{(1)}(n, p)$, where $s=\overline{1, p-1}$, to finding a product of the matrices B_{k}.

Theorem 4: $B_{k} \in \mathbb{N}_{p}$.
Proof: Let $b_{1}^{(k)}, \ldots, b_{p-1}^{(k)}$ be the elements of the first row of B_{k}. We will prove the equality

$$
\begin{equation*}
B_{k}=\left(b_{p_{i, j}}^{(k)}\right)_{i, j \overline{1, p-1}} \tag{2}
\end{equation*}
$$

We can define the addition of the triangles $\Delta_{p}^{(k)}$ as the same operation between corresponding elements of $\Delta_{p}^{(k)}$ in \mathbb{Z}_{p}. For example, the following equality

$$
\begin{equation*}
\sum_{k=1}^{s} \Delta_{p}^{(1)}=\Delta_{p}^{(s)} \tag{3}
\end{equation*}
$$

holds. If we denote the elements of matrix B_{k} by $b_{i, j}^{(k)}$, then, using (3) and the definition of $b_{i, j}^{(k)}$, we can write $b_{1, j}^{(k)}=b_{s, j s}^{(k)}$ for each $s=\overline{1, p-1}$. Thus, $b_{i, j}^{(k)}=b_{1, j / i}^{(k)}$, and hence (2) holds. The proof is complete.

Let n_{i} be the number of elements equal to i in the p-ary representation of n in the form $n=\left(a_{r}, \ldots, a_{0}\right)_{p}$. By (1), using Corollary 1 , we can find

$$
\begin{equation*}
g_{s}^{(k)}(n, p)=\left(\prod_{i=1}^{p-1} B_{i}^{n_{i}}\right)_{k, s} \tag{4}
\end{equation*}
$$

Here the matrix B_{0} is absent because $B_{0}=\operatorname{diag}(1, \ldots, 1) \equiv E$. Now, to calculate the value of $g_{s}^{(k)}(n, p)$, we have to investigate the further properties of the matrices in \mathbb{N}_{p}.

PROPERTIES OF THE MATRICES FROM \mathbb{N}_{p}

It is true that \mathbb{N}_{p} is just a subspace of the linear space of square matrices of order $p-1$. Moreover, we have

Corollary 2: $\operatorname{Dim} \mathbb{N}_{p}=p-1$ and

$$
\begin{equation*}
B \in \mathbb{N}_{p} \Rightarrow B=\sum_{k=1}^{p-1} b_{k} I_{k} \tag{5}
\end{equation*}
$$

where $I_{k} \in \mathbb{N}_{p}$ and $I_{k}=\left(\delta_{k i, j}\right)_{i, j=\overline{1, p-1}}$.
Here $\delta_{i, j}$ is Kronecker's symbol and all indices are to be understood as elements from \mathbb{Z}_{p}.
Proof of this property can be obtained directly from the definition of \mathbb{N}_{p}.
Let us verify that the matrices I_{k} possess the property $I_{k} I_{m}=I_{k m}$. In fact

$$
I_{k} I_{m}=\left(\sum_{s=1}^{p-1} \delta_{k i, s} \delta_{m s, j}\right)_{i, j=\overline{1, p-1}}
$$

and consequently the element of the matrix $I_{k} I_{m}$ with the indices i and j does not vanish if there exists an s so that $k i=s$ and $m s=j$. Hence $j=m k i$, and therefore $I_{k} I_{m}=\left(\delta_{m k i, j}\right)_{i, j=\overline{1, p-1}}=I_{k m}$.

Let v be the root of the equation $x^{p-1}=1$ in the field \mathbb{Z}_{p}, such that for each $k=\overline{1, p-2}$ the inequality $v^{k} \neq 1$ holds. For what follows, it will be convenient to introduce the matrices $J_{k}=$ $\left(I_{v}\right)^{k}$. If we set $c_{k}=b_{\nu^{k}}$, then (5) can be written in the form

$$
\begin{equation*}
B=\sum_{k=1}^{p-1} c_{k} J_{k} \tag{6}
\end{equation*}
$$

Corollary 3: If μ is an eigenvalue of B, then there is a root of the equation $z^{p-1}=1$ in \mathbb{C}, which we denote as λ, such that

$$
\begin{equation*}
\mu=\sum_{k=1}^{p-1} c_{k} \lambda^{k} . \tag{7}
\end{equation*}
$$

Proof: Let a be some vector from \mathbb{C}^{p-1} and

$$
b=\sum_{k=1}^{p-1} \lambda^{-k} J_{k} a .
$$

Then, employing the equality $J_{s} b=\lambda^{s} b$ and carrying this out for each $s=\overline{1, p-1}$, we can write

$$
B b=\sum_{k=1}^{p-1} c_{k} J_{k} b=\sum_{k=1}^{p-1} c_{k} \lambda^{k} b=\mu b,
$$

i.e., μ is an eigenvalue of B. Now it remains to prove that formula (7) gives us all eigenvalues of B. We will complete this after Corollary 6 .

As a consequence of Corollary 3, we note that the matrices I_{k}, and hence the matrices J_{k}, are nonsingular matrices, and $\forall k, \operatorname{det} I_{k}=\operatorname{det} J_{k}=1$. Indeed, since all eigenvalues of J_{k} are the roots of the equation $x^{p-1}=1$ (we denote them by λ_{i}), then we have

$$
\operatorname{det} J_{k}=\prod_{i=1}^{p-1} \lambda_{i}^{k}=\mu^{k}
$$

where $\mu=\lambda_{1} \ldots \lambda_{p-1}$. Using the equality $\sum_{k=1}^{p-1} k=0(\bmod p)$, we get $\mu=1$, and hence $\operatorname{det} J_{k}=1$.

As another interesting property of the matrices I_{k} we note that they are orthogonal matrices, namely, $I_{k} I_{k}^{*}=E$, where $\left(a_{i, j}\right)^{*}=\left(\bar{a}_{j, i}\right)$ and the bar denotes complex conjugation. This immediately follows from the equality

$$
I_{k}^{*}=\left(\delta_{i, j k}\right)_{i, j=\overline{1, p-1}}=I_{1 / k} .
$$

Obviously, the matrices J_{k} possess the same property, but by the equality $J_{k} J_{s}=J_{k+s}$ we have

$$
\begin{equation*}
J_{k}^{*}=J_{k}^{-1}=J_{p-k-1} \tag{8}
\end{equation*}
$$

for each $k=\overline{1, p-2}$. Since $J_{p-1}=E$, we have $J_{p-1}^{*}=J_{p-1}$.
Corollary 4: Let B be in \mathbb{N}_{p} and be written in the form (6), then

$$
B^{*}=\sum_{k=1}^{p-2} \bar{c}_{p-k-1} J_{k}+\bar{c}_{p-1} J_{p-1} .
$$

Proof: In fact, using (8), we immediately obtain

$$
B^{*}=\sum_{k=1}^{p-2} \bar{c}_{k} J_{k}^{*}+\bar{c}_{p-1} J_{p-1}^{*}=\sum_{k=1}^{p-2} \bar{c}_{k} J_{p-k-1}+\bar{c}_{p-1} J_{p-1}
$$

hence Corollary 4 is true.
Let us introduce the matrices S_{i} for $i=\overline{1, p-1}$ in the form

$$
\begin{equation*}
S_{i}=\frac{1}{(p-1)} \sum_{k=1}^{p-1} \lambda_{i}^{-k} J_{k} \tag{9}
\end{equation*}
$$

Here, as before, λ_{i} is one of the roots of the equation $x^{p-1}=1$ in \mathbb{C}. It is clear that, for each $i=\overline{1, p-1}$, the matrices S_{i} belong to \mathbb{N}_{p}.

Let λ be a primitive root of the equation $x^{p-1}=1$, i.e., for each $k=\overline{1, p-2}$, we have $\lambda^{k} \neq 1$. Therefore, in formula (9), we can assume that $\lambda_{i}=\lambda^{i}$.

Theorem 5: The following equalities,

$$
\begin{equation*}
S_{i} S_{j}=\delta_{i, j} S_{i} \tag{10}
\end{equation*}
$$

are true for all $i, j=\overline{1, p-1}$.
Proof: Consider the left-hand side of (10). After some calculation, we get

$$
S_{i} S_{j}=\frac{1}{(p-1)^{2}}\left[\sum_{\ell=0}^{p-2} \lambda_{j}^{-\ell} J_{\ell} \sum_{k=0}^{\ell} \lambda_{i-j}^{-k}+\sum_{\ell=p-1}^{2(p-2)} \lambda_{j}^{\ell} J_{\ell} \sum_{k=\ell-p+2}^{p-2} \lambda_{i-j}^{-k}\right],
$$

whence

$$
S_{i} S_{j}=\frac{1}{(p-1)^{2}}\left[\sum_{\ell=0}^{p-2} \lambda_{j}^{-\ell} J_{\ell} \sum_{k=0}^{\ell} \lambda_{i-j}^{-k}+\sum_{\ell=0}^{p-3} \lambda_{j}^{-\ell} J_{\ell} \sum_{k=\ell+1}^{p-2} \lambda_{i-j}^{-k}\right] ;
$$

hence

$$
S_{i} S_{j}=\frac{1}{(p-1)^{2}} \sum_{\ell=0}^{p-2} \lambda_{j}^{-\ell} J_{\ell} \sum_{k=0}^{p-2} \lambda_{i-j}^{-k} .
$$

Let us examine this equality. Employing the identity $\lambda_{i-j}=\lambda_{i} / \lambda_{j}$, where $\lambda_{i} \neq \lambda_{j}($ for $i \neq j)$, we obtain

$$
\sum_{k=0}^{p-2} \lambda_{i-j}^{-k}=\left(\lambda_{i-j}^{1-p}-1\right) /\left(\lambda_{i-j}^{-1}-1\right)=0
$$

Hence (10) holds for $i \neq j$. Further, at $i=j$, we have

$$
\begin{equation*}
\sum_{k=0}^{p-2} \lambda_{i-j}^{-k}=p-1 ; \tag{11}
\end{equation*}
$$

consequently, $S_{i}^{2}=S_{i}$, and the proof is complete.
The matrices S_{i} are Hermitian, i.e., they possess the property $S_{i}=S_{i}^{*}$. In fact, for $i=\overline{1, p-1}$, we have

$$
S_{i}^{*}=\frac{1}{(p-1)} \sum_{k=1}^{p-1} \lambda_{i}^{k} J_{k}^{*}=\frac{1}{(p-1)} \sum_{k=1}^{p-1} \lambda_{i}^{k-p+1} J_{p-k-1}=S_{i} .
$$

Let us denote the transposed matrix $A=\left(a_{i, j}\right)_{i, j=\overline{1, p-1}}$ by $A^{\prime}=\left(a_{j, i}\right)_{i, j=\overline{1, p-1}}$. Then we have $S_{i}^{\prime}=S_{p-i-1}$ for $i=\overline{1, p-2}$. This can be proved in the same way as the previous result, but we need to keep in mind that $J_{k}^{*}=J_{k}^{\prime}$ and $\bar{\lambda}_{i}=\lambda_{p-i-1}$.

Theorem 6: The equalities

$$
\begin{equation*}
J_{k}=\sum_{i=1}^{p-1} \lambda_{i}^{k} S_{i}, k=\overline{1, p-1}, \tag{12}
\end{equation*}
$$

which are converse to (9), are true.
Proof: Employing (9)-(11) and making some transformations, we get

$$
\sum_{i=1}^{p-1} \lambda_{i} S_{i}=\sum_{k=1}^{p-1}\left[\frac{1}{(p-1)} \sum_{i=1}^{p-1} \lambda_{i}^{1-k}\right] J_{k}=\sum_{k=1}^{p-1} \delta_{k, 1} J_{k} .
$$

Therefore, (12) is true for $k=1$. For the completion of the proof, it suffices to note that $J_{k}=J_{1}^{k}$ and to make use of (10).

Now we must note that the matrix S_{p-1} consists only of 1's in each place; hence $S_{p-1}^{\prime}=S_{p-1}$. This is clear from the following equalities,

$$
S_{p-1}=\sum_{k=1}^{p-1} J_{k}=\sum_{k=1}^{p-1} I_{k}=\left(\sum_{k=1}^{p-1} \delta_{k i, j} J_{k}\right)_{i, j=\overline{, p-1}},
$$

if we bear in mind that, for $i, j=\overline{1, p-1}, \sum_{k=1}^{p-1} \delta_{k i, j}=1$.
Corollary 5: Let $B \in \mathbb{N}_{p}$, then

$$
\begin{equation*}
B=\sum_{i=1}^{p-1} \mu_{i} S_{i} \text {, where } \mu_{i} \text { are the eigenvalues of } B \text {. } \tag{13}
\end{equation*}
$$

The proof of this Corollary can be obtained without difficulty from (6) by using Theorem 6 and equality (7).

Using the basis S_{1}, \ldots, S_{p-1}, we can easily find the product of matrices from \mathbb{N}_{p}. To illustrate this statement we prove

Theorem 7: Let $\mu_{1}^{(i)}, \ldots, \mu_{p-1}^{(i)}$ be the eigenvalues of the matrices B_{i} from Theorem 3. If we set

$$
\begin{equation*}
\sigma_{j}=\prod_{i=1}^{p-1}\left(\mu_{j}^{(i)}\right)^{n_{i}}, \tag{14}
\end{equation*}
$$

then the equality

$$
\begin{equation*}
g_{s}^{(k)}(n, p)=\left(\sum_{i=1}^{p-1} \sigma_{i} S_{i}\right)_{k, s} \tag{15}
\end{equation*}
$$

is true.
Proof: It is readily seen that, making use of (13) and Theorem 5, we can obtain

$$
B_{i}^{n_{i}}=\sum_{j=1}^{p-1}\left(\mu_{j}^{(i)} S_{j} .\right.
$$

Therefore, equality (4) transforms to (15), and the proof is complete.
Note that we can also write σ_{j} in the form $\sigma_{j}=\mu_{j}^{\left(a_{r}\right)} \ldots \mu_{j}^{\left(a_{0}\right)}$.
Corollary 6: Any eigenvector b_{i} of the matrix B corresponding to the eigenvalue μ_{i} can be written in the form

$$
\begin{equation*}
b_{i}=\sum_{(j)} S_{j} c_{j}, \tag{16}
\end{equation*}
$$

where $c_{j} \in \mathbb{C}^{p-1}$ and the summation is taken over j satisfying the condition $\mu_{j}=\mu_{i}$.
Proof: Let b_{i} be the eigenvector of the matrix B corresponding to the eigenvalue μ_{i}. Operating on the equality $B b_{i}=\mu_{i} b_{i}$ by the matrix S_{s}, using (13) and Theorem 5, we obtain $\mu_{s} S_{s} b_{i}=$ $\mu_{i} S_{s} b_{i}$. If $\mu_{i} \neq \mu_{s}$ here, then $S_{s} b_{i}=0$. Now, if we make use of the identity $E=S_{1}+\cdots+S_{p-1}$, which easily follows from Corollary 5 for $B=E$, then we get $b_{i}=\left(\Sigma_{(j)} S_{j}\right) b_{i}$.

In addition, if $c \in \mathbb{C}^{p-1}$, then, using the equality $B S_{i} c=\mu_{i} S_{i} c$, we can say that the vectors of the form $S_{i} c$ are the eigenvectors corresponding to the eigenvalue μ_{i}. Thus (16) is true, and the proof is complete.

Conclusion of the Proof of Corollary 3: Let us take $c \in \mathbb{C}^{p-1}$ so that $\forall k, S_{k} c \neq 0$. This is possible, for example, with $c=(1,0, \ldots, 0)$. We saw above that the vector $c_{k}=S_{k} c$ is the eigenvector of the matrix B corresponding to the eigenvalue μ_{k} determined from (7) at $\lambda=\lambda_{k}$. We claim that the vectors $c_{k}(k=\overline{1, p-1})$ are linearly independent. In fact, if there are δ_{1}, \ldots, $\delta_{p-1} \in \mathbb{C}$ not all zero and such that $\delta_{1} c_{1}+\cdots+\delta_{p-1} c_{p-1}=0$, then operating on this equality by S_{k}, we obtain $\delta_{k} c_{k}=0$ or $\delta_{k}=0$ for $k=\overline{1, p-1}$, which is a contradiction. Thus, the vectors c_{k} for $k=\overline{1, p-1}$ are the basis in \mathbb{C}^{p-1}, and so there are no other eigenvalues of B. Thus, the proof is complete.

Corollary 7: If $\mu_{i} \neq 0$ for each $i=\overline{1, p-1}$, then the matrix B has an inverse defined by the equality

$$
B^{-1}=\sum_{i=1}^{p-1} \mu_{i}^{-1} S_{i}
$$

To prove this statement, it is sufficient to use the identity $E=S_{1}+\cdots+S_{p-1}$ again, and to employ Theorem 5.

Now we apply the properties obtained of the matrices from \mathbb{N}_{p} to counting $g_{s}^{(k)}(n, p)$ for $p=7$. It should be pointed out that in [5] this problem was considered for $p=3$ and $p=5$.

COUNTING $g_{s}^{(k)}(n, 7)$

To count the value of $g_{s}^{(k)}(n, p)$ we need, according to Theorem 7, to examine the triangles $\Delta_{7}^{(k)}$ for $k=\overline{1,6}$. The triangle $\Delta_{7}^{(1)}$ has the form:
11
111
121
1331
146641
153351
1616161

If we multiply each element of $\Delta_{7}^{(1)}$ by k in \mathbb{Z}_{p}, we will obtain the triangle $\Delta_{7}^{(k)}$. For example, $\Delta_{7}^{(3)}$ has the form:

$$
\begin{gathered}
3 \\
33 \\
363 \\
3223 \\
35453 \\
312213
\end{gathered}
$$

Now we need to find the matrices B_{k} for $k=\overline{1,6}$. Let us take, for instance, the $4^{\text {th }}$ rows of triangles $\Delta_{7}^{(k)}$, which give us the matrix B_{4}. The $4^{\text {th }}$ row of triangle $\Delta_{7}^{(1)}$ has the form $(1,4,6,4,1)$. Since the numbers 1 and 4 occur twice and the number 6 occurs once there, the first row of B_{4} has the form $(2,0,0,2,0,1)$. If we want to count the third row of B_{4} now, we must take the $4^{\text {th }}$ row of triangle $\Delta_{7}^{(3)}$, which gives us what we desire, i.e., $(0,0,2,1,2,0)$. Thus, we can count all the matrices B_{k} for $k=\overline{1,6}$. To write our calculation, we make use of the matrices $J_{k}(k=\overline{1,6})$. So let us find the matrix J_{1}. In our case, we have $v=3$ because, for each $k=\overline{1,5}$, the inequality $3^{k} \neq 1(\bmod 7)$ is correct. Therefore,

$$
J_{1}=I_{3}=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Now we can write

$$
\begin{aligned}
& B_{0}=J_{6}, \quad B_{1}=2 J_{6}, \quad B_{2}=J_{2}+2 J_{6}, \quad B_{3}=2 J_{1}+2 J_{6}, \\
& B_{4}=J_{3}+2 J_{4}+2 J_{6}, \quad B_{5}=2 J_{1}+2 J_{5}+2 J_{6}, \quad B_{6}=3 J_{3}+4 J_{6} .
\end{aligned}
$$

Let us assume that the number k is contained in the record of $(n)_{7}$ a total of n_{k} times. Using the notation of Theorem 7 and formulas (6) and (7), and keeping in mind that $\lambda_{k}=\exp (i k \pi / 3$) (here, $i^{2}=-1$), we obtain, for each $k=\overline{1,6}$,

$$
\begin{aligned}
& \mu_{k}^{(1)}=2, \quad \mu_{k}^{(2)}=\lambda_{k}^{2}+2, \quad \mu_{k}^{(3)}=2 \lambda_{k}+2, \quad \mu_{k}^{(4)}=\lambda_{k}^{3}+2 \lambda_{k}^{4}+2, \\
& \mu_{k}^{(5)}=2\left(\lambda_{k}+\lambda_{k}^{5}+1\right), \mu_{k}^{(0)}=3 \lambda_{k}^{3}+4 .
\end{aligned}
$$

Whence, by (14),

$$
\begin{align*}
& \sigma_{1}=2^{n_{1}-n_{2}}(3+i \sqrt{3})^{n_{2}+n_{3}}(-i \sqrt{3})^{n_{4}} 4^{n_{5}}, \\
& \sigma_{2}=2^{n_{1}-n_{2}}(3-i \sqrt{3})^{n_{2}}(1+i \sqrt{3})^{n_{3}}(2+i \sqrt{3})^{n_{4}}\left(2 \lambda_{2}+2 \lambda_{4}+2\right)^{n_{5}} 7^{n_{6}}, \tag{17}\\
& \sigma_{3}=(-1)^{n_{5}} 2^{n_{1}+n_{5} 3^{n_{2}+n_{4}}\left(2 \lambda_{3}+2\right)^{n_{3}}, \quad \sigma_{6}=2^{n_{1}} 3^{n_{2}} 4^{n_{3} 5^{n_{4}} 6^{n_{5}} 7^{n_{6}}},} \\
& \sigma_{4}=\bar{\sigma}_{2}, \quad \sigma_{5}=\bar{\sigma}_{1},
\end{align*}
$$

where the bar denotes the complex conjugate. To make use of (15), we need the matrices S_{k} ($k=\overline{1,6}$). According to (9), the matrices S_{1} and S_{2} have the form

$$
S_{1}=\frac{1}{6}\left(\begin{array}{cccccc}
1 & \bar{\lambda}_{2} & \bar{\lambda}_{1} & \lambda_{2} & \lambda_{1} & -1 \\
\lambda_{2} & 1 & \lambda_{1} & \bar{\lambda}_{2} & -1 & \bar{\lambda}_{1} \\
\lambda_{1} & \bar{\lambda}_{1} & 1 & -1 & \lambda_{2} & \bar{\lambda}_{2} \\
\bar{\lambda}_{2} & \lambda_{2} & -1 & 1 & \bar{\lambda}_{1} & \lambda_{1} \\
\bar{\lambda}_{1} & -1 & \bar{\lambda}_{2} & \lambda_{1} & 1 & \lambda_{2} \\
-1 & \lambda_{1} & \lambda_{2} & \bar{\lambda}_{1} & \bar{\lambda}_{2} & 1
\end{array}\right), \quad S_{2}=\frac{1}{6}\left(\begin{array}{cccccc}
\frac{1}{\lambda_{2}} & \lambda_{2} & \bar{\lambda}_{2} & \bar{\lambda}_{2} & \lambda_{2} & 1 \\
\lambda_{2} & \bar{\lambda}_{2} & \lambda_{2} & \lambda_{2} & 1 & \bar{\lambda}_{2} \\
\lambda_{2} & \bar{\lambda}_{2} & 1 & 1 & \bar{\lambda}_{2} & \lambda_{2} \\
\bar{\lambda}_{2} & 1 & \lambda_{2} & \lambda_{2} & 1 & \bar{\lambda}_{2} \\
1 & \lambda_{2} & \bar{\lambda}_{2} & \bar{\lambda}_{2} & \lambda_{2} & 1
\end{array}\right) .
$$

If we denote the $k^{\text {th }}$ row of S_{3} by $\left(S_{3}\right)_{k}$, then we have

$$
\begin{aligned}
\left(S_{3}\right)_{1} & =\left(S_{3}\right)_{2}=-\left(S_{3}\right)_{3}=\left(S_{3}\right)_{4}=-\left(S_{3}\right)_{5}=-\left(S_{3}\right)_{6} \\
& =1 / 6(1,1,-1,1,-1,-1) .
\end{aligned}
$$

Also, from the general properties of S_{j}, we find $S_{4}=S_{2}^{\prime}, S_{5}=S_{1}^{\prime}, S_{6}=(1)_{i, j=\overline{1,6}}$.
Now, from (15), keeping in mind (17), we can obtain what we required, i.e.,

$$
\begin{align*}
& g_{1}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(\sigma_{1}+\sigma_{2}\right)+\sigma_{3}+\sigma_{6}\right], \\
& g_{2}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(\lambda_{4} \sigma_{1}+\lambda_{2} \sigma_{2}\right)+\sigma_{3}+\sigma_{6}\right], \\
& g_{3}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(\lambda_{5} \sigma_{1}+\lambda_{4} \sigma_{2}\right)-\sigma_{3}+\sigma_{6}\right], \tag{18}\\
& g_{4}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(\lambda_{2} \sigma_{1}+\lambda_{4} \sigma_{2}\right)+\sigma_{3}+\sigma_{6}\right], \\
& g_{5}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}\right)-\sigma_{3}+\sigma_{6}\right], \\
& g_{6}^{(1)}(n, 7)=1 / 6\left[2 \operatorname{Re}\left(-\sigma_{1}+\sigma_{2}\right)-\sigma_{3}+\sigma_{6}\right] .
\end{align*}
$$

Since $2 \lambda_{2}+2 \lambda_{4}+2=0$ and $2 \lambda_{3}+2=0$, we know the equalities obtained are true only if $n_{3}=n_{5}=0$. When $n_{3} \neq 0$ and $n_{5}=0$, we must assume that $\sigma_{3}=0$ in (18), but when $n_{5} \neq 0$ and $n_{3}=0$, we must assume that $\sigma_{2}=0$. Finally, if $n_{3} \neq 0$ and $n_{5} \neq 0$, then $\sigma_{2}=\sigma_{3}=0$. In all other cases except those indicated above, we must make use of (17).

CONCLUSION

We note here two simple properties of $g_{s}^{(k)}(n, p)$. Consider two rows of Pascal's triangle with numbers $(n)_{p}$ and $(m)_{p}$. First, if $(n)_{p}$ and $(m)_{p}$ contain the same figures excepting zero, then $g_{s}^{(k)}(n, p)=g_{s}^{(k)}(m, p)$ for each k and s. Second, if $(n)_{p}$ contains 1ℓ more than $(m)_{p}$, then $g_{s}^{(k)}(n, p)=2^{\ell} g_{s}^{(k)}(m, p)$ for each k and s. The latter follows from (4) because $B_{1}=2 E$ for each $\Delta_{p}^{(1)}$.

ACKNOWLEDGMENT

I wish to thank Professor Boris Bondarenko for his interest and helpful criticism and the anonymous referee for many valuable comments.

REFERENCES

1. B. A. Bondarenko. Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Applications (trans. from Russian; ed. R. C. Bollinger). Santa Clara, Calif.: The Fibonacci Association, 1993.
2. B. A. Bondarenko. "Normalizovannye p-latinskie kvadraty i algorithmy ih primenenija k zada-cham raspredelenija elementov po modulju p v ariphmeticheskih strukturah." Voprosy vichislitelnoj i priklandnoj matematiki 91 (1991):61-80. (Tashkent, RISO AN RUz.)
3. J. Dénes \& A. D. Keedwell. Latin Squares and Their Applications. Budapest: Akad. Kiadó, 1974.
4. V. V. Karachik. "O nekotorhy svojstvah p-latinskih matriz i ih primenenii." Voprosy vichislitelnoj i prikladnoj matematiki 95 (1993):49-60. (Tashkent, RISO AN RUz.)
5. E. Hexel \& H. Sachs. "Counting Residues Modulo a Prime in Pascal's Triangle." Indian J Math. 20.2 (1978):91-105.
AMS Classification Numbers: 11B65, 11B50, 11C20

$$
\% \%
$$

