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INTRODUCTION 

Let {un} be a strictly increasing sequence of natural numbers, so that un > n for all n. Let 

g(z) = Yl(l-z"»). (1) 
I f | z |< l , then 

n>\ n> n>\ 

so the product in (1) converges absolutely to an analytic function without zeros on compact sub-
sets of the unit disk. Let g(z) have a Maclaurin series representation given by 

*(z) = 5 V , (2) 
«>o 

Let 
f(z) = l/g(z). (3) 

Then f(z) is also an analytic function without zeros on compact subsets of the unit disk. We 
have 

A * ) = n o - * * ) - 1 = z v <with u°=0- (4) 
«>1 «>0 

Definition 1: Let r(#)? r^(n), r0(w) denote, respectively, the number of partitions of n into dis-
tinct parts, evenly many distinct parts, oddly many distinct parts from {un}. Let r (0) = rE(0) = l, 
r0(0) = 0. If an =rE(n)-rQ(n)9 then U„ is the number of partitions of n all of whose parts belong 
to {un}, that is, f(z) is the generating function for {un}. Since f(z)*g(z) = l, w e obtain the 
recurrence relation: 

1tan-kUk = 0 (forn>l). (5) 
k=0 

This provides a way to determine the U„, once the a„ are known. N o w Definition 1 implies that 

r0(n) = r(n)-rE(n); (6) 
hence, 

a„ = 2rE(n)-r(n). (7) 

Our original problem, namely, to determine Un, has been reduced to determining the r(n) and 
rE{n). 

Several researchers have investigated the case where {un} is the Fibonacci sequence. If w e 
let un = F„, as was done by Verner E. Hoggatt , Jr., & S. L. Basin [3], then an anomaly arises: 
since Fx = F2 = 1, it follows that 1 may occur twice as a summand in a partition of n into "distinct" 
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Fibonacci summands. We therefore prefer to let un = Fn+l, since the Fibonacci sequence is strictly 
increasing for n > 2. This is the approach taken by Klarner [4] and Carlitz [1]. Our algorithm for 
computing r(n) is simpler and apparently more efficient than that of Carlitz. 

Definition 2: The trivial partition of n consists of just n itself. 

We shall use the following well-known properties of Fibonacci numbers: 

An ~ Aw-1 + An-2 •> W 
m 

Y,Fk=Fm+2-\, (9) 

m 

lLF2k=F2m+l~\, (10) 

m 

£ ^ * - i = ^ - i . (ii) 
k=2 

Zeckendorf s Theorem (see [5]). (12) 

Every natural number n has a unique representation: 
r 

n=HckFk, 
k=2 

where cr = 1, each ck = 0 or 1, and ck_xck - 0 for all k such that 3 < k < r. Following Ferns [2], 
we call this the minimal Fibonacci representation ofn. 

More generally, if we drop the requirement that ck_fk - 0, we obtain what will be called a 
Fibonacci representation of n. The ck are called the digits of the representation. Now r(n) 
denotes the number of distinct Fibonacci representations of n. 

THE MAM THEOREMS 

Theorem 1: r(Fm) = [/2m] if m>2. 

Proof: (Induction on m) Since r(F2) = r(l) = 1 = [X (2)] and r(F3) = r(2) = 1 = [X (3)], 
Theorem 1 holds for m - 2,3. Now suppose m > 4. Every nontrivial partition of Fm into distinct 
Fibonacci parts must include Fm_l as a part, since (9) implies that Y^ZlFk=Fm-2<Fm. There-
fore, by (8), every nontrivial partition of Fm into distinct Fibonacci parts consists of Fm_u plus 
the summands in such a partition of Fm_2. Therefore, r(Fm) = l + r(Fm_2) ifm>4. (The 'T8 in 
this formula corresponds to the trivial partition of Fm.) By the induction hypothesis, r(Fm_2) = 
[ X ( M - 2 ) J . Thus, r(Fm) = l + V/2(m-2)] = [/2ml 

Remark: Essentially the same proof of Theorem 1 appears in [1] and [3]. 

Theorem2: rE(Fm) = [/4m] if m>2. 

Proof: (Induction on m) Since rE(F2) = rE(l) = 0 = [/4(2)] and rE(F3) = rE(2) = 0 = [X(3)], 
Theoremi 2 holds for m = 2,3. Now suppose m>4. As in the proof of Theorem 1, any partition 
of Fm into evenly many distinct Fibonacci parts must include Fm_l as a part, plus the summands in 

1996] 307 



FIBONACCI PARTITIONS 

a partition of Fm_2 into oddly many distinct Fibonacci parts. That is, rE{Fm) - r0(Fm_2). But (6), 
Theorem 1, and the induction hypothesis imply that r0(Fm_2) = r(Fm_2)-rE(Fm_2) = [}((m-2)]-

Theorem 3: Let a(n) = an. Then 
[0 ifm = 0,l (mod 4), 

a(Fm) - \ v m) \-\ i fm^2,3 (mod4). 

Proof: From (7) and from Theorems 1 and 2, we have a{Fm) - 2[l/Am\ = [)4m], from which 
the conclusion follows. 

Having settled the case where n is a Fibonacci number, let us now consider the case where n 
is not a Fibonacci number. In the minimal Fibonacci representation, let n-Fk +Fk + --Fk , 
where r > 2 , kr>2, and kt-ki+l>2 for all / with l < / < r - l . Let n0 = n, nf =ni_l-Fk for 
1 < /' < r. In particular, nl = n-Fk , nr_x -Fk , nr = 0. Given any Fibonacci representation of «, 
define the initial segment as the first kx - k2 digits, while the terminal segment consists of the 
remaining digits. In the minimal Fibonacci representation of n, the initial segment consists of a 1 
followed by kl-k2-I O's, while the terminal segment starts with 10. Fibonacci representations of 
n may be obtained as follows: 
Type I: Arbitrary combinations of Fibonacci representations of the integers corresponding to 
the initial and terminal segments in the minimal Fibonacci representation of n; 
Type II: Suppose that in a nonminimal Fibonacci representation of n the initial segment ends in 
10 while the terminal segment starts with 0. If this 100 block, which is partly in the initial seg-
ment and partly in the terminal segment, is replaced by 011, a new Fibonacci representation of n is 
obtained. 

Lemma 1: Every Fibonacci representation ofn that includes Fk as a part has an initial segment 
which agrees with that of the minimal Fibonacci representation. 

Proof: If n has a Fibonacci representation that includes Fk as a part but differs from the 
minimal Fibonacci representation, then n = Fk + Fj•,+ • • •, where j>k2. But n<Fk +Fk +Fk _2 + 
Fkl-4 + -• < ^ + i^2+1 - 1 by (10) and (11). Now Fkx +Fj<n<Fki + Fki+l, which implies Fj < 
Fk +1; hence, j <k2, an impossibility. 

Lemma 2: Let r(n) be the number of Fibonacci representations of n that do not include Fk as a 
part. Then f (n) = r(n) - r(nx). 

Proof: If n is a Fibonacci number, then the conclusion follows from Definitions 1 and 2. 
Otherwise, by hypothesis, r(n) - r(n) is the number of Fibonacci representations of n that do 
include Fk as a part. By Lemma 1, the initial segment of such a representation is unique, and 
consists of a 1 followed by kx - k2 -1 O's. Since the terminal segment is unrestricted, the number 
of such Type I representations is 1 *r(^) = r (^) . Type II representations are excluded here, since 
they can only arise when the initial segment has a nonminimal representation. Therefore, we have: 
r(n) - r(n) = r(n^), from which the conclusion follows. 
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Lemma 3: Let rE(n) denote the number of partitions of n into evenly many distinct Fibonacci 
numbers, not including Fk as a part. Then rE(n) = rE(n) - rQ(n^). 

Proof: The proof of Lemma 3 is similar to that of Lemma 2, and is therefore omitted. 

X (Jh ~h+ l)Kwi) if K - k2 is odd, 
(l + X {k\ ~ k2))r(nl) - r(n2) if kx - k2 is even. 

Proof: Let m = kh h = k2. Recall that the initial segment of the minimal Fibonacci repre-
sentation of n consists of a 1 followed by m-h-1 O's. Viewed by itself, this initial segment 
corresponds to the minimal Fibonacci representation of Fm_h+l. By Theorem 1, the number of 
Fibonacci representations of the initial segment is r(Fm_h+l) = [)4(ni-h + \)\. The number of 
Fibonacci representations of the terminal segment is by definition r(n^). Therefore, the number of 
Type I Fibonacci representations of n is [X (m - h 4- l)]r(n^). 

If m - h is odd, then the initial segment in the minimal Fibonacci representation of n consists 
of a 1 followed by evenly many O's. Therefore, each Fibonacci representation of Fm_h+l (the inte-
ger corresponding to the initial segment) ends in 00 or 11. Thus, Type II Fibonacci representa-
tions of n cannot arise, so that r(n) = [)((rn-h +1)]/*^) = X ( m ~ h + l)r(wi). 

If rn-h is even, then the initial segment in the minimal Fibonacci representation of n consists 
of a 1 followed by oddly many O's. Therefore, Fm_h+l Vas a unique Fibonacci representation 
ending in 10. By Lemma 2, the integer corresponding to the terminal segment, namely r\, has 
r (?%) = ripi) - r(w2) Fibonacci representations that start with digit 0. Thus, we have r(n^) - r(n2) 
Type II Fibonacci representations of n. Therefore, r(nl) = [^(m-h^l)]r(nl)^r(nl)-r(n2). 
Simlifying, we get r(n) = (l + X (jn - h))r(nl) - r(n2). 

Theorem 5: 
(a) If kx - k2 = 3 (mod 4), then rE(n) = X (*i ~ h + l)Kwi) • 
(b) If kx-k2 = 1 (mod4), then rE(n) ~x/A{kl-k2 + 3)r(w1)-rE{n^). 
(c) If kx - k2 = 2 (mod 4), then rE(n) = /4 (kt - k2 + 2)r(«1) + rE(n2) - r{n2). 
(d) If kx~k2^Q (mod4), then rE(n) = (l + X ( ^ - £ 2 ) > ( ^ - r E { n x ) - r ^ ) . 

Proof: Let m-k^ h-k2. Let b(n) and c(n) denote, respectively, the numbers of Type I 
and Type II representations of n as a sum of evenly many distinct Fibonacci numbers, so that 
rE(n) = b(n) + c(n). A Fibonacci representation of n has evenly many parts if and only if the num-
ber of l's in the initial segment has the same parity as the number of l's in the terminal segment. 
Thus, 

b(n) = ^ ( F w ^ + 1 ) ^ ( ^ ) + r0( i 7^+i>o("i) 

^Wim-h + lftM + M^ 

I f w - / i E E 0 o r 3 ( m o d 4 ) , t h e n [ X ( ^ - ^ ^ 
If wi-A = l o r 2 ( m o d 4 ) , then [/2(m-h + l)] = l + 2[X(w-/? + l)], so b(n) = (l-h[/4(m-

/i + l ) ] ) ^ ) - ^ ^ ) . 

Theorem 4: r(n) • 
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If m -h is odd, then, as in the proof of Theorem 4, no Type II Fibonacci representations of n 
can occur, that is, c{ri) = 0. Upon simplifying, we obtain: 

(a) If m-h = 3 (mod4), then rE(ri) =/4(m-h + l)r(^); 
(b) Ifm-h = l(mod4), then rE(n) = Y4{m-h + 3)r(«1)-rE(n^). 
Ifm-h ;is even, then, as in the proof of Theorem 4, the integer corresponding to the initial 

segment has a unique Fibonacci representation ending in 10, so that Type II Fibonacci representa-
tions of n do occur. A Type II Fibonacci representation will have evenly many l's if and only if 
the number of l's in the initial and terminal segments differ in parity. 

If m- h = 2 (mod 4), then the unique Fibonacci representation of the integer corresponding to 
the initial segment that ends in 10 has an odd number of l's. Therefore, 

c(n) = fE(n1) = rE(nl)-r0(n2). 
Thus, 

rE(n) = b(n) + c(n) 
= (l + [X(w-/r + l)]>(/%)--r^)+^(/i l)-r0(/i2) 

= X(m-h + 2y(nL) + rE(n2)-r(n2). 
This proves (c). 

Ifm-h = 0 (mod 4), then the unique Fibonacci representation of the integer corresponding to 
the initial segment that ends in 10 has an even number of l's. Therefore, 

c(n) = r0(nl) = r(nl)-FE(nl) 
= rfa) - r ( ^ ) - (rE(nx) - r 0 (^)) 
= r(ni)-rE(nL)-rE(n2). 

But b(n) = [/4(m-h + l)]r(nx) = /4(m-h)r{n{), so 

rE(n) = b(n) + c(n) = (l + /4(m- A)>fa) - rEbh) • 
This proves (d). 

Theorem 6: Ifn is not a Fibonacci number, then 

(-a(nx) - airij) if kx - k2 = 0 (mod 4), 
-a(nx) if kY - k2 = 1 (mod 4), 

a{n) = < 
a(ri2) if kx - k2 = 2 (mod 4), 

[0 if^-^2 = 3 (mod4). 
Proof: This follows from (7) and from Theorems 4 and 5. 

(0 if r(n) is even, 
Theorem 7: a(n) - < 

[±1 if r(ri) is odd. 
Proof: If n is a Fibonacci number, then the conclusion follows from Theorems 1 and 3. If n 

is not a Fibonacci number, then we will use induction. Note that (7) implies a(ri) = r(ri) (mod 2). 
Therefore, it suffices to show that \a{ri)\< 1. By Theorem 6 and the induction hypothesis, this 
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is true, except possibly when kl-k2 = 0 (mod 4). In this case, we have a(n) - -a{n{)-a{n^). 
Again by Theorem 6 we have: 

(mod 4), 
(mod 4), 
(mod 4), 
(mod 4). 

(mod 4), 
(mod 4), 
(mod 4), 
(mod 4). 

Thus, \a(n)\< 1 except, possibly, when k2-k3 = 2 (mod4). In the latter case, we evaluate air^) 
using Theorem 6. We then see that \a{n) | < 1 except, possibly, when k3-k4 = 2 (mod 4), in which 
case a(n) = -a(n3)-a(n4). If \a(n)|> 1, then we would have an infinite sequence: n>nl>n2> 
n3>->. This is impossible, so we must have \a(n) | < 1 for all n. 

Theorem 8: r(n) — 1 if and only if n = Fm - 1 for some m > 2; if so, then 

[ 1 i fm s i ,2 (mod4), 
am) = < 

[-1 if m = 0,3 (mod 4). 
Proof: First, suppose that n = Fm-l. By (10) and (11), we have 

VAm-l] 

This is the minimal Fibonacci representation of n (since the condition CJ_XCJ - 0 holds) and con-
sists of alternating l's and 0's. Since no two consecutive 0's appear, this Fibonacci representation 
is also maximal; hence, is unique, that is, r(n) = 1. Conversely, if r(n) = 1, then the unique Fibo-
nacci representation of n cannot contain consecutive 0's, and thus must consist of alternating l's 
and 0's. Therefore, for some /w, we have n = Fm_l +iy_3 +Fm_5 H—. Now (10) and (11) imply 
n-Fm-l. If m = 4 j +1 or Aj 4- 2 for some j , then the unique Fibonacci representation of n has 
2/ summands. Thus, a(n) = 1 if m = 1,2 (mod 4). On the other hand, if m = Aj or 4 j - 1 , then 
the unique Fibonacci representation of n has 2j -1 summands. Therefore, a(n) = -1 if m- 0,3 
(mod 4). 

Theorem 9: There are arbitrarily long sequences of integers n such that a(n) - 0. 

Proof: If Fm + Fm_3 <n< Fm + Fm_2 - 1 , then the minimal Fibonacci representation of n is 
n = Fm+ Fm_3 H—. Therefore, Theorem 6 implies that a(n) = 0. The number of integers satisfy-
ing the above inequality is Fm_2 - Fm_3 = Fm_4. For any given h, we can find m > 6 such that 
Fm_4 > h. Thus, we are done. 
Remark: With a little additional effort, one can also show that a(Fm + Fm_3 -1) = 0. 

afa) -

Therefore, we have 

a(n) = -

i-oQh)-
-a («2) 

)a(>h) 

1° 
a(n3) 
0 

- « ( « 2 > -

-afa) 

- a ( « j ) 

a{*h) 

\ik2-
\fk2-
if k2 -
if k2-

ifk2-
i£k2 -
ifk2-
if k2-

-k3 = 0 
-k^l 
_ f(,3 = Za 

-k^Z 

-A3 = 0 
-^3 = 1 

-«3 =2 
-*3 = 3 
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Using (5) as well as Theorems 3, 4, and 6, one can compute r(ri), a(ri), and U(ri) for any n. 
Table 1 lists the results of these computations for 1 < n < 100. 

TABLE 1 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

r{n) 
1 
1 
2 
1 
2 
2 
1 
3 
2 
2 
3 
1 
3 
3 
2 
4 
2 
3 
3 
1 
4 
3 
3 
5 
2 
4 
4 
2 
5 
3 
3 
4 
1 
4 
4 
3 
6 
3 
5 
5 
2 
6 
4 
4 
6 
2 
5 
5 
3 
6 

a(n) 
-1 
-1 
0 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
-1 
1 
0 
0 
0 
1 

-1 
. -1 

0 
1 
1 

-1 
0 
0 
0 
0 
1 

-1 
-1 
0 
1 
0 
0 
1 
0 

-1 
-1 
1 
0 
0 
0 
0 
0 
0 
1 

-1 
-1 
0 

U(n) 
1 
2 
3 
4 
6 
8 
10 
14 
17 
22 
27 
33 
41 
49 
59 
71 
83 
99 
115 
•134 
157 
180 
208 
239 
272 
312 
353 
400 
453 
509 
573 
642 
717 
803 
892 
993 
1102 
1219 
1350 
1489 
1640 
1808 
1983 
2178 
2386 
2609 
2854 
3113 
3393 
3697 

n 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

r{n) 
3 
4 
4 
1 
5 
4 
4 
7 
3 
6 
6 
3 
8 
5 
5 
7 
2 
6 
6 
4 
8 
4 
6 
6 
2 
7 
5 
5 
8 
3 
6 
6 
3 
7 
4 
4 
5 
1 
5 
5 
4 
8 
4 
7 
7 
3 
9 
6 
6 
9 

a{n) 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
0 
0 

-1 
0 
1 
1 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

-1 
-1 
0 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
-1 
1 
0 
0 
0 
1 

-1 
-1 
1 
0 
0 

-1 

U(n) 
4017 
4367 
4737 
5134 
5564 
6016 
6504 
7025 
7575 
8171 
8791 
9466 

10183 
10936 
11744 
12599 
13502 
14471 
15486 
16568 
17715 
18921 
20207 
21559 
22987 
24506 
26094 
27782 
29558 
31425 
33405 
35478 
37664 
39973 
42386 
44939 
47613 
50421 
53384 
56478 
59735 
63154 
66727 
70492 
74422 
78543 
82871 
87383 
92122 
97075 
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Author and Title Index 
The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the 
first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. 
Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted 
version of the disk will be $40.00 plus postage for non-subscribers, while subscribers to The Fibonacci 
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of 
the indices, write to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices 
for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. 
Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT 
WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends 
you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is 
working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification 
Scheme. Those who purchase the indices will be given'6one free update of all indices when the SUBJECT 
index and the AMS Classification of all articles published in The Fibonacci Quarterly are completed. 
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