ON THE LIMIT OF GENERALIZED GOLDEN NUMBERS

Hongquan Yu, Yi Wang, and Mingfeng He

Dalian University of Technology, Dalian 116024, China (Submitted November 1994)

1. INTRODUCTION

In this paper we discuss the asymptotic behavior of maximal real roots of generalized Fibonacci polynomials defined recursively by

$$G_{n+2}(x) = xG_{n+1}(x) + G_n(x), \tag{1}$$

for $n \ge 0$, with $G_0(x) = -a$, $G_1(x) = x - a$, where a is a real number.

Very recently, G. A. Moore [2] considered, among other things, the limiting behavior of the maximal real roots of $G_n(x)$ defined by (1), and with $G_0(x) = -1$, $G_1(x) = x - 1$. Let g_n denote the maximal real root of $G_n(x)$ which may be called "the generalized golden numbers" following [1]. G. Moore confirmed an implication of computer analysis that the odd-indexed subsequence of $\{g_n\}$ is monotonically increasing and convergent to 3/2 from below, while the even-indexed subsequence of $\{g_n\}$ is monotonically decreasing and convergent to 3/2 from above. Moreover, it was shown that $\{g_n\}$, n > 2, is a sequence of irrational numbers. He also guessed that this result may be generalized in the sense that there exists a real number taking the place of 3/2 for other kinds of Fibonacci polynomial sequences defined by (1) with given $G_0(x)$ and $G_1(x)$.

Here we generalize Moore's result by showing that, for Fibonacci polynomial sequences defined by (1) with $G_0(x) = -a$, $G_1(x) = x - a$, where a is a positive real number, a(a+2)/(a+1) is just the limit of the maximal real roots of $G_n(x)$.

It is noteworthy that the demonstration here is different from Moore's in that it does not rely on the previous knowledge of $\{G_n(x)\}$ on the limit point of g_n . In other words, we shall proceed here in a "deductive" rather than a "confirmative" way.

2. EXISTENCE OF $\{g_n\}$

Let $\{G_n(x)\}\$ be defined by (1) with $G_0(x) = -a$, $G_1(x) = x - a$, with a > 0. It can be checked easily by induction that each $G_n(x)$ is monic with degree *n* and constant term -a. Therefore, for each $n \ge 1$, $G_n(x)$ will tend to positive infinity for x large enough.

Note that $G_1(a) = 0$, $G_2(a) = -a < 0$, $G_3(a) = -a^2 = aG_2(a) < 0$, $G_4(a) = -a^3 - a \le aG_3(a) < 0$, by induction; suppose that $G_k(a) \le aG_{k-1}(a) < 0$ for $k \ge 2$. Then, from (1), $G_{k+1}(a) = aG_k(a) + G_{k-1}(a) < 0$, and the induction is completed. Therefore, for each $n \ge 1$, there exists at least one real root of $G_n(x)$ on $[a, +\infty)$ and, by definition, $g_n > a$.

On the other hand, it can be checked readily using the recursive relation (1) and by an induction argument that we have $G_n(x) > 0$ for $x \in [a+1, +\infty)$.

Therefore, each $G_n(x)$ $(n \ge 2)$ has at least one root on the interval [a, a+1). In particular, $g_n \in [a, a+1)$.

Lemma 2.1:^[2] If r is the maximal real root of a function f with positive leading coefficient, then f(x) > 0 for all $x \ge r$. Conversely, if f(x) > 0 for all $x \ge t$, then r < t. If f(s) < 0, then s < r.

320

[AUG.

Remark 2.2: If $a \ge 1$ is an integer, then a standard algebraic argument may be applied to show that the maximal real root of $G_n(x)$ is actually irrational.

3. THE MONOTONICITY OF $\{g_{2n-1}\}$ AND $\{g_{2n}\}$

To illustrate the monotonicity of $\{g_{2n-1}\}$ and $\{g_{2n}\}$, we need a formula of [2] which may be verified by induction.

Formula 3.1: $G_{n+k}(g_n) = (-1)^{k+1} G_{n-k}(g_n)$ for $n \ge k$.

Proposition 3.2: $\{g_{2n-1}\}\$ is a monotonically increasing sequence and $\{g_{2n}\}\$ is a monotonically decreasing sequence. Moreover, $g_{2n-1} < g_{2n}$.

Proof:

<u>Odd-Indexed Sequence</u>. It can be checked readily that $G_3(a) = -a^2 < 0$; thus, $g_3 > a = g_1$. Assume that, by induction, $g_1 < g_3 < \cdots < g_{2k-3} < g_{2k-1}$. Then, by Lemma 2.1, $G_{2k-3}(g_{2k-1}) > G_{2k-3}(g_{2k-3}) = 0$. Using Formula 3.1, we get

$$G_{2k+1}(g_{2k-1}) = G_{(2k-1)+2}(g_{2k-1}) = (-1)^3 G_{(2k-1)-2}(g_{2k-1}) < 0.$$

It follows from Lemma 2.1 that G_{2k+1} has a real root greater than g_{2k-1} , and thus $g_{2k-1} < g_{2k+1}$.

Even-Indexed Sequence. Using recursive formula (1), one obtains

$$g_{2k+1}(g_{2k-1}) = g_{2k-1}G_{2k}(g_{2k-1}) + G_{2k-1}(g_{2k-1}) = g_{2k-1}G_{2k}(g_{2k-1}).$$

Since $g_{2k-1} < g_{2k}$, it follows from Lemma 2.1 that $G_{2k-1}(g_{2k}) > 0$, thus $G_{2k-2}(g_{2k}) < 0$, and it follows from Lemma 2.1 again that $g_{2k} < g_{2k-2}$. \Box

4. THE CONVERGENCE OF g_{2n-1} AND g_{2n}

It is known now that $\{g_{2n-1}\}\$ is monotonically increasing, bounded above by a+1, and $\{g_{2n}\}\$ is monotonically decreasing, bounded below by a. Thus, limits exist for both of the sequences. Denote by $g_{\text{odd}} =: \lim_{n \to \infty} g_{2n-1}, g_{\text{even}} =: \lim_{n \to \infty} g_{2n}$. Then Proposition 3.2 implies $g_{\text{odd}} \leq g_{\text{even}}$. Our aim here is to show that $g_{\text{odd}} = g_{\text{even}}$, which is included in the following theorem.

Theorem 4.1: Both $\{g_{2n-1}\}$ and $\{g_{2n}\}$ converge to $\xi = a(a+2)/(a+1)$ when n tends to infinity.

Remark 4.2: If a is an integer, then, from Proposition 3.2, g_n is a sequence of irrationals that converges to a rational number a(a+2)/(a+1). This reduces to Moore's result in [2] when a = 1.

Proof: Since $G_n(x)$ may be expressed in terms of roots of its characteristic equation as

$$G_n(x) = C_1(x)\lambda_1(x)^n + C_2(x)\lambda_2(x)^n,$$
(2)

where

$$\lambda_1(x) = \frac{x + \sqrt{x^2 + 4}}{2} > \lambda_2(x) = \frac{x - \sqrt{x^2 + 4}}{2}, \tag{3}$$

and

1996]

321

$$C_{1}(x) = \left[2(x-a) + ax - a\sqrt{x^{2}+4}\right] / 2\sqrt{x^{2}+4},$$

$$C_{2}(x) = \left[-2(x-a) - ax - a\sqrt{x^{2}+4}\right] / 2\sqrt{x^{2}+4}.$$
(4)

It is seen readily that $\lambda_1(x) \ge \lambda_1(a) > 1$, $|\lambda_2(x)| = 1/\lambda_1(x) \le 1/\lambda_1(a)$ for $x \in [a, a+1]$. Therefore, $\lim_{n\to\infty} \lambda_1(x)^n = +\infty$, $\lim_{n\to\infty} \lambda_2(x)^n = 0$ uniformly for $x \in [a, a+1]$.

Now, setting n = 2k - 1 and $x = g_{2k-1}$ in (2), we obtain

$$C_1(g_{2k-1})\lambda_1(g_{2k-1})^{2k-1}+C_2(g_{2k-1})\lambda_2(g_{2k-1})^{2k-1}=0.$$

Since $C_1(x)$ and $C_2(x)$ are continuous on the interval [a, a+1], this implies that $|C_1(x)|$ and $|C_2(x)|$ are bounded below and above on [a, a+1]. Therefore, we have

$$\lim_{k \to \infty} C_1(g_{2k-1}) = C_1(g_{odd}) = 0,$$

and it follows that $g_{\text{odd}} = \lim_{k \to \infty} g_{2k-1} = a(a+2)/(a+1)$ by the continuity of $C_1(x)$.

On the other hand, by taking n = 2k in (2), a similar argument can be applied to show that $g_{\text{even}} = a(a+2)/(a+1)$. \Box

Note that $\lim_{n\to\infty} g_n = 1$ if and only if $a = (\sqrt{5} - 1)/2$, the original golden number.

In conclusion, we remark that it may be shown easily that the maximal real root of $G'_n(x)$, denoted by g'_n , also exists on the interval (a, a+1) for $n \ge 4$. It seems, from numerical analysis, that the sequence $\{g'_n\}$ is monotonically increasing and converges to $\xi = a(a+2)/(a+1)$. This implication deserves further exposition.

REFERENCES

- 1. G. Moore. "A Fibonacci Polynomial Sequence Defined by Multidimensional Continued Fractions; and Higher-Order Golden Ratios." *The Fibonacci Quarterly* **31.4** (1993):354-64.
- 2. G. A. Moore. "The Limit of the Golden Numbers Is 3/2." The Fibonacci Quarterly 32.3 (1993):211-17.

AMS Classification Numbers: 11B39, 11B37

$\diamond \diamond \diamond$