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1. INTRODUCTION 

In this paper we discuss the asymptotic behavior of maximal real roots of generalized Fibo-
nacci polynomials defined recursively by 

Gn+i(x) = *Gw+1(x) + Gn(x), (1) 

for n > 0, with G0(x) = -a, Gx(x) = x-a, where a is a real number. 
Very recently, G. A. Moore [2] considered, among other things, the limiting behavior of the 

maximal real roots of Gn(x) defined by (1), and with G0(x) = - 1 , Gl(x) = x-l. Let gn denote the 
maximal real root of Gn(x) which may be called "the generalized golden numbers" following [1]. 
G. Moore confirmed an implication of computer analysis that the odd-indexed subsequence of 
{gn} is monotonically increasing and convergent to 3/2 from below, while the even-indexed 
subsequence of'{gn} is monotonically decreasing and convergent to 3/2 from above. Moreover, it 
was shown that {gn}, n > 2, is a sequence of irrational numbers. He also guessed that this result 
may be generalized in the sense that there exists a real number taking the place of 3/2 for other 
kinds of Fibonacci polynomial sequences defined by (1) with given G0(x) and Gx(x). 

Here we generalize Moore's result by showing that, for Fibonacci polynomial sequences de-
fined by (1) with G0(x) = -a, Gx(x) = x-a, where a is a positive real number, a(a + 2)/(a +1) is 
just the limit of the maximal real roots of G„(x). 

It is noteworthy that the demonstration here is different from Moore's in that it does not rely 
on the previous knowledge of {Gn(x)} on the limit point of gn. In other words, we shall proceed 
here in a "deductive" rather than a "confirmative" way. 

2e EXISTENCE OF {gj 

Let {Gn(x)} be defined by (1) with G0(x) = -a, Gx(x) = x-a, with a > 0. It can be checked 
easily by induction that each Gn(x) is monic with degree n and constant term - a . Therefore, for 
each n>l, G„(x) will tend to positive infinity for x large enough. 

Note that Gx(a) = 0, G2(a) = -a<07 G3(a) = -a2 = aG2(a) < 0, G4(a) = -a3-a< aG3(a) < 0, 
by induction; suppose that Gk(a) < aGk_x(a) < 0 for k > 2. Then, from (1), Gk+l(a) = aGk(a) + 
Gk^ia) < 0, and the induction is completed. Therefore, for each n>l, there exists at least one 
real root of Gn(x) on [a, +oo) and, by definition, gn>a. 

On the other hand, it can be checked readily using the recursive relation (1) and by an induc-
tion argument that we have G„(x) > 0 for x e [a +1, +QO) . 

Therefore, each G„(x) (w>2) has at least one root on the interval [a,a + l). In particular, 
g„e[a9a + l). 

Lemma 2.1:W If r is the maximal real root of a function/with positive leading coefficient, then 
f(x) > 0 for all x > r. Conversely, if f(x) > 0 for all x > t, then r<t. If f(s) < 0, then s < r. 
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Remark 2.2: If a > 1 is an Integer, then a standard algebraic argument may be applied to show 
that the maximal real root of Gn{x) is actually irrational. 

3. THE MONOTONICTTY OF {g2n_t} AND {g2J 

To illustrate the monotonicity of {g2n-i) and {&«}> w e n e ed a formula of [2] which may be 
verified by induction. 

Formula3.1: Gn+k(gn) = (~lf+lGn_k(gn) forn>k. 

Proposition 3.2: {g2ri-i} Is a monotonically Increasing sequence and {g2n} Is a monotonically 
decreasing sequence. Moreover, g2n_l < g2n. 

Proof: 
Odd-Indexed Sequence. It can be checked readily that G3(a) = -a2 < 0; thus, g3 > a = gv 

Assume that, by induction, gx <g3 <--<g2k-3 <g2k-i- Then, by Lemma 2.1, G2k_3(g2k_l) > 
G2k-3(g2k-3) - ° • Using Formula 3.1, we get 

G2k+l(g2k-l) = G(2k-l)+2(g2k-l) = (~lfG(2k-l)-2(S2k-l) <0' 

It follows from Lemma 2.1 that G2k+l has a real root greater than g2k_ly
 a n^ t^ms Sik-i < Sik+i-

Even-Indexed Sequence. Using recursive formula (1), one obtains 

S2k+l(S2k-l) ~ S2k-lG2k(S2k-l) + G2k-l(S2k-l) = S2k-lG2k(S2k-l) • 

Since g2k_l < g2k, it follows from Lemma 2.1 that G2k_x{g2k) > 0, thus G2k_2{g2k) < 0, and it fol-
lows from Lemma 2.1 again that g2k < g2k_2. • 

4. THE CONVERGENCE OF g2n_t AND g2n 

It is known now that {g2n-i} 'ls monotonically Increasing, bounded above by a + 1, and {g2n} 
is monotonically decreasing, bounded below by a. Thus, limits exist for both of the sequences. 
Denote by goM =: l i m ^ g2n_x, gQVQn =: l i m ^ g2n. Then Proposition 3.2 implies ^odd < ^even. 
Our aim, here is to show that godd = gGVmy which is included in the following theorem. 

Theorem 4.1: Both (g^-i) and {g2n} converge to £ = a(a + 2) / (a +1) when n tends to Infinity. 

Remark 4.2: If a is an integer, then, from Proposition 3.2, gn Is a sequence of irrationals that 
converges to a rational number a(a + 2)/(a + V). This reduces to Moore's result in [2] when 
a = l. 

Proof: Since Gn{x) may be expressed in terms of roots of Its characteristic equation as 

G„(x) = Cx(x)X,{xT + C2{x)X2{x)n, (2) 
where 

. ( . x + Vx^+4 . , . x -Vx 2 +4 ... 
^i(*) = o >l2(x) = , - (3) 

and 
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QO) = [l(x -a)+ax- Wx 2 +4] / 2V*2+4, 

C2(x) = [-2(x-a)-ax-ajx2+4]/2y/x2+4. 

It is seen readily that Xx(x) > Xx(a) > 1, |X2(x) \ - 1 / Xx{x) < 1 / Xx(a) for x e [a, a +1]. Therefore, 
lim^^^ Xx(x)n - +oo, lim^^^ X2(x)n = 0 uniformly for x e[a, a +1], 

Now, setting n - 2k -1 and x = g2k_l in (2), we obtain 

QC&t-iMiC&t-i)2*"1+Q(&t-iM2(&t-i)2t"1 = o-
Since Q(x) and C2(x) are continuous on the interval [a, a-hi], this implies that \Cx(x)\ and 
| C2(x) | are bounded below and above on [a, a + l]. Therefore, we have 

BmQ(&t-i) = Q(8Podd) = 0, 
£-»oo 

and it follows that godd = l im^^ g2k_x - a(a + 2) / (a +1) by the continuity of Cx(x). 
On the other hand, by taking n = 2k in (2), a similar argument can be applied to show that 

Note that limw_>00 #B = 1 if and only if a = (V5 -1) / 2, the original golden number. 

In conclusion, we remark that it may be shown easily that the maximal real root of G^(x), 
denoted by g'n, also exists on the interval (a,a + l) for n>4. It seems, from numerical analysis, 
that the sequence {g'n} is monotonically increasing and converges to £ = a(a + 2)/(a + l). This 
implication deserves further exposition. 

REFERENCES 

1. G. Moore. "A Fibonacci Polynomial Sequence Defined by Multidimensional Continued Frac-
tions; and Higher-Order Golden Ratios." The Fibonacci Quarterly 31.4 (1993):354-64. 

2. G. A. Moore. "The Limit of the Golden Numbers Is 3/2." The Fibonacci Quarterly 32.3 
(1993):211-17. 

AMS Classification Numbers: 11B39, 11B37 

322 [AUG. 


