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1. INTRODUCTION 

In [12] we showed how to algorithmically prove all polynomial Identities involving a certain 
class of elements from second-order linear recurrences with constant coefficients. In this paper, 
we attempt to extend these results to third-order linear recurrences. 

Let (Sn) be a sequence defined by the third-order linear recurrence 

S„ = pSn_1+qS„_2+rS„_3, (1) 
where r * 0. We will consider three special such sequences, (Xn\ (Yn), and (Z„), given by the 
following initial conditions: 

X0 = 0, * 1 = 0, X2 = l; 
YQ = 0, Yx = \ Y2=0; (2) 
Z0 = \ Z1 = 0, Z2=0. 

These initial conditions were chosen so that the three sequences form a basis for the set of all 
third-order linear recurrences with constant coefficients, and because they will allow us (in a 
future paper) to generalize our results to higher-order recurrences. These three sequences also 
have nice Binet forms. 

Given any sequence (Sn) that satisfies recurrence (1), we can write its elements as a linear 
combinaition of Xn, Yn, and Zw, namely, 

S^S^+S^ + SoZ,,. (3) 

Thus, it suffices to show that we can algorithmically prove any identity involving Xn, Yn, and Zn. 
The sequence (Sn) can be defined for negative values of n by using recurrence (1) to extend 

the sequence backwards or, equivalently, by using the recurrence 

S_„ = (-qS.^ - pS^2 + S_„+3) IT. (4) 

A short table of values for Xn, Yn, and Zn for small values of n is given below: 

n 
xn 
Yn 

zn 

-2 
-qlr2 

{pq + r)lr2 

(q2 - pr) 1 r2 

-1 
\lr 

-pi r 
-qlr 

0 
0 
0 
1 

1 
0 
1 
0 

2 
1 
0 
0 

3 
P 
(I 
r 

4 
p2+q 
pq+r 

pr 

5. 
p3 + 2pq + r 
p2q + pr + q2 

r(p2+q) 

The characteristic equation for recurrence (1) is 

x3-px2-qx-r = 0. (5) 

Let the roots of this equation be rhr2, and r3? which we shall assume are distinct. The condition 
that these roots are distinct is that A, the discriminant, is nonzero. That is, 
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A2 = Oi -r2)2(r2 -r3)2(r3 -rj2 = p2q2-21r2 + 4q3-4p3r-ISpqr > 0. (6) 

The Binet forms for our sequences are given by: 

X„ = Atf + Brf + Crf, 
Y^Atf+Btf + Crf, (7) 

where 

i~~ i \t \> i — i \i \ ' i— 

(ri - ri)(r\ ~ h)' (r2 ~ rs)(r2 ~ ri)' (r3 -1)03 - h)' 
A = -(%+%) B = -fe+rj) c = -fo+fr) . ( 8 ) 

(l-'iX'i-'s)' 2 (r2-'3)(jr2-'i)' 2 ( r 3 - r l ) ( r 3 - r 2 ) ' 

^ _ r2r3 £ _ r3rl £ _ V2 
3 (n-r2)(ri-r3y 3 (r2-r3)(r2-rx)' 3 (r3 - r^ - r2)' 

Another sequence of interest is 
^, = *„+2 +Yn+l + Z„ = pXn+1 +2qXn + ?>rXn_x = (p2 + 2q)X„ + pYn + 3Z„ 

because W„ has the Binet form 
Wn=r"+r2"+r3". (9) 

We can solve the equations in (7) for the r". We get 

r2» = r2
2Xn+r2Yn + Zn, (10) 

This idea was suggested by Murray Klamkin. It also follows from Lemma 1 of [11]. These 
equations let us convert an expression involving powers of ri, where a variable n occurs in the 
exponents, to expressions involving Xn, Yn, and Zn. 

From the relationship between the roots and coefficients of a cubic, we have 
rl+r2+r3 = p, 

rfi+rft+rf^-q, (11) 
W 3 = r. 

Thus, any symmetric polynomial involving rl9r2, and r3 can be expressed in terms ofp, q, and r. 
An algorithmic method (Waring's Algorithm) for performing this transformation can be found on 
page 14 in [5]. 

An explicit formula for Xn in terms of/?, q, and r was given in [13], namely, 

fa + b + c\„a„b„c 
a+2b+3c=n 

*n+2= I \aZVcWfr- (^ 

Similar formulas for Yn and Zn can be obtained from the fact that Yn = Xn+l - pXn and Zn - rXn_l. 
Matrix formulations were given in [17] and [20]: 
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(s^A ( Jn+2 

V S" J 

-\ P <7 
1 0 0 
0 1 0 

"fs2 
(13) 

w Y 
\z») 

-
(p i ô  
q 0 1 

[r 0 Oj 

n-2 (\\ 
0 

W 
and 

X, 
«+2 

n+1 
x„ 

ln+2 7 ^ 
^n+2 Zn+l 
ZJ 

= 
(P 

l 
1° 

q r^ 
0 0 
1 Oj 

n 

(14) 

(15) 

2. THE BASIC ALGORITHMS 

Algorithm "TribEvaluate" 
Given an Integer constant n, to evaluate Xn, Yn, orZn numerically, apply the following algo-

rithm: 
Step 1. [Make subscript positive.] If n < 0, apply Algorithm "TribNegate!! given below. 
Step 2. [Recurse.] If n > 2, apply the recursion: Sn = pSn_t+qSn_2 +rSn_3. This reduces 

the subscript by 1, so the recursion must eventually terminate. If w is 0, 1, or 2, use the values in 
display (2). 

Note: While this may not be the fastest way to evaluate Xm Yn, and Zn, it is nevertheless an 
effective algorithm. 

The key idea to algorithmically proving identities involving polynomials in Xan+b, Yan+b, and 
Zarj+b is to first reduce them to polynomials in Xn, Yn, and Zn. To do that, we need reduction 
formulas for Xm Ym+n, and Zm+n. Such formulas can be obtained from equations (7), (8), (10), 
and (11). 

From (10), we can compute r"+m by multiplying together r" and /;.w. Then (7) gives us Xm+ri. 
Therefore, Xn+m = 4 ( ^ , + ^ + ̂ ^ ^ ^ 
ci(r3Xn + rJn + Zn)(r3Xm + hYm + Zm)• Substituting in the values of the Al9 Bh and Q from (8) 
gives us an expression that is symmetric in rl3r2, and r3. Applying Waring's Algorithm allows us 
to express this in terms of/?, q, and r using (11). We can do the same for Yn+m and Zn+m. The 
results obtained are given by the following algorithm. 

Algorithm "TribReduce" To Remove Sums in Subscripts 
Use the identities 

*n»n = (P2 + 4)XmXn + p(XJm + XJJ + X„ZW + XWZ, + I X 
i^„ = ipq+r) JrM J r n + ? ( « + « )+ r n z w +Y m z n , (16) 
^ n - prXmXn+r{XnYm + XmYn)+ZmZn. 

These are also known as the addition formulas. 
From the table of initial values, we find that the reduction formulas can also be written in the 

form 
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Xm+„ = XAXmXn + X3(XnYm + XmYn) + XnZm + XmZn + YmYn, 
Ym+rl = Y4XmXn + Y3(XnYm + XmYn) + YnZm + 1̂ Z„, (17) 

The matrix formulation is 

y — /x, 
» 7 , 

fx4 x3 x2Yxt 
x3 x2 xx 

\%2 X X oy V
z«y 

(18) 

with similar expressions for Ym+n and Zm+n. 
If we allow subscripts on the right other than "«" and "/w", simpler forms of the reduction 

formula can be found. For example, [18] gives the following: 

\+m ~~ ^STAH-2 + ^m^n+l + A A • 
Similar expressions can be found in [7] and [17]. In matrix form, they can be expressed as 

un+m 

V 
= 

-^ro+1 

xm 
\Xm-l 

*m+l 
Ym 
Ym-1 

7 } 
7 

m Zm-iJ 

(s„+A 
k V>n-l) 

(19) 

(20) 

These formulations come from [18] and [20]. 
Algorithm "TribReduce" allows us to replace any term of the form San+b, where a and b are 

positive integers by terms of the form S„. To allow a and b to be negative integers as well, we 
can also use equation (16); however, then we will obtain expressions of the form S_„. Since we 
would like to express these in the form S„, we must find formulas for S_„. The same procedure 
we used before works again. For example, from (10), we can compute r~" as \lr". Equation (7) 
then gives X_„ = Al/(^X„+r1Y„ + Zn) + B1/(riX„+r2Yn + Zn) + C1/(r3

2Xn+r3Yn + Zn). Again we 
apply Waring's Algorithm and we get the following result. 

Algorithm "TribNegate" To Remove Negative Subscripts 
Use the identities 

X_ = PXnYn-qX2„+Y2-XnZn 

r" 
= (pq + r)X2„ -p2X„Y„ ~pY2 -Y„Z„ 

r" 
^ (q2-pr)X2-(pq + r)XnYn~qY2 +(p2 + 2q)XnZn + pYnZn +Z2 

r" 

(21) 

If we allow subscripts on the right other than W, simpler forms can be found. For example, 

X_„ = (X„+lYn - X„Yn+l) I r , 

Y-n = {XnYM-Xn+2Yn)lr\ (22) 
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3. THE FUNDAMENTAL IDENTITY CONNECTING X, Y3 AND Z 
The Fibonacci and Lucas numbers are connected by the fundamental Identity 

L2
n = SF^4(-\y. (23) 

Furthermore, it can be shown that, if f(Fn, Ln) is any nonconstant polynomial [with coefficients 
that are constants or of the form (-ff ] that is 0 for all integral values of n, then this polynomial 
must be divisible by L2

n - 5F„2 - 4(-lf. That Is, (23) is the unique Identity connecting Fn and Ln. 
A similar result holds for arbitrary second-order linear recurrences. For third-order linear re-

currences, we believe there is also exactly one fundamental identity connecting Xn, Yn, and Zn. In 
this section, we will find such an identity, but we do not prove that this Identity is unique. 

To obtain an identity connecting X„, Yn, and Z„, we can multiply together the equations in 
display (10). The result Is a symmetric polynomial in rx,r2, andr3 and can thus be expressed In 
terms of/?, q, and r. The result Is the following. 

The Fundamental Identity: 

r" = r2X3„ + rYl + Z3
n + (q2 - 2pr)X2Zn ~qrX2Jn + prXJ2 

+ (p2 +2q)XnZ2-qY2Zn +pYnZ2
n-(pq + 3r)X„Y„Zn. 

If we allow subscripts on the right other than W, simpler forms of the fundamental identity 
can be found. For example, [15] gives the following equivalent formulation: 

= rn. (25) 
Xn+2 

Ki+2 
^n+2 

Xn+\ 

Kt+l 
A i + i 

x, 
Y„ 
Zn 

4. THE SIMPLIFICATION ALGORITHM 

Let us be given a polynomial function of elements of the form Xw, Yw, and Zw, where the 
subscripts ofX, 7, and Z are of the form a^\ + a2«2 + ---+aknk +b, where b and the at are integer 
constants and the nt are variables. To put this expression in "canonical form,11 we apply the fol-
lowing algorithm. 

Algorithm f?TribSimplifyff To Transform an Expression to Canonical Form 
Step 1. [Remove sums in subscripts.] Apply Algorithm "TrlbReduce" to remove any sums 

(or differences) In subscripts. 
Step 2, [Make multipliers positive.] All subscripts are now of the form en, where c Is an 

integer. For any term in which the multiplier c is negative, apply Algorithm "TribNegate". 
Step 3* [Remove multipliers.] All subscripts are now of the form en, where c is a positive 

Integer. For any term In which the multiplier c is not 1, apply Algorithm 'TrlbReduce11 succes-
sively until all subscripts are variables. 

Step 4. [Remove powers of Z.] If any term Involves an expression of the form Z%, where 
k >2, reduce the exponent by 1 by replacing Z^ by Its equivalent value as given by the funda-
mental identity (24), namely, 
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Zl=r" -r2Xl-rY"n -{q2 -2pr)X2
nZn+qrX2

nYn-prXnYZ 
- (p2

+2q)XnZ2 +qY2Zn-pY„Z2+(pq + 3r)XriYrlZn. 

Continue doing this until no Zn term has an exponent larger than 2. 

Proving Identities 
To prove that an expression is identically 0, it suffices to apply Algorithm "Trib Simplify". If 

the resulting canonical form is 0, then the expression is identically 0. We believe that the converse 
is true as well; that is, an expression is identically 0 if and only if Algorithm 'TribSimplify" trans-
forms it to 0. A formal proof can probably be given along the lines of [18]; however, we do not 
do so. Suffice it to say that Algorithm "TribSimplify" was checked on about 100 identities culled 
from the literature and it worked every time. x A selection of these identities is given in the appen-
dix. See also [6] for a related algorithm for trigonometric polynomials. 

5. OTHER ALGORITHMS 

These algorithms can be verified by applying Algorithm "TribSimplify." 

Algorithm ffConvertToXff To Change Fs and Z*s to Xs 
Use the identities 

Yn = -pXn + X„+l9 

Algorithm f?ConvertToYf? To Changers a n d ^ s to Fs 
Use the identities 

Algorithm "ConvertToZ" To Changers and Fs toZ*s 
Use the identities 

X„ = Z„+i I r, 
Y„ = Z„-x+qZJr. 

(27) 

(28) 

(29) 

Algorithm ffRemovepqrff To Remove j?fs9 f\ and r?s 
Use the identities 

P = (X„+l-Yn)/X„, 
q = {Yn+l-Zn)IXn, (30) 
r -Zn+\l Xn. 

Algorithm "TribShiftDownl" To Decrease a Subscript by 1 
Use the identities 

Yn+l=qXn + Zn, (31) 
Zfl+l - T^n 

These can be found in [10]. 
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Algorithm ?TribStiiftUplff To Increase a Subscript by 1 
Use the identities 

Y»-i = Xn~pZJr, 
-qZJr. 

(32) 
7 - Y 

Subtraction Formulas 
Use the identities 

Xm_n = (rX„(XJm - XJ„) - {qXn + Zn)(XnZm - XmZ„) 
+ (pXn+Yn)(YnZm-YmZ„))lr\ 

Ym-n = (r(PX„ + Yn)(XJ„ - XnYm) + (pq + r)X„(XnZm - XmZ„) 
-(p(p + l)X„ - Z„)(YnZm - YmZ„)) Ir", (33) 

Zm-„ = (r2XmX2 -qrXX + prX„YJ„ + rYJ2 + q2X2Zm - prX2Zm 

~ PqXJnZm ~ rXnY
nZm ~ qY2Zm - prXmX„Z„ - rX„YmZ„ 

- rXJ„Z„ + p2XnZmZn + 2qXnZmZ„ + pYnZmZ„ + ZmZ2
n)l r". 

If we allow subscripts on the right other than simple variables, simpler subtraction formulas 
can be found. For example, [2] gives the following equivalent formulation: 

lr\ X — 
m-n 

Y = 

7 

zm 
z„ 

Zn+i 

zm 
z„ 

Ai+2 

7 
Art-1 
^n+2 

Ym 

Y„ 
K+l 

Ym 
Yn 

V f 2 

Ym 

K+i 
*n+2 

%m 

%n 

^ n + l | 

Xm 

xn 
Xn+2 

Xm 

X„+\ 
Xn+2 

Ir", 

Ir". 

(34) 

Double Argument Formulas 
Letting m = n in equation (16) gives us the following: 

X2n = (P1 + q)X2 + 2pXX +1? + 2X„Z„, 
Y2n = (pq+r)X2+2qXnY„+2Y„Z„, 
Z2„ = prX2+2rXnY„+Z2. 

(35) 

To Remove Scalar Multiples of Arguments In Subscripts 
An expression of the form Skn, where k is a positive integer, can be thought of as being of the 

form Sn+n+...+n, where there are k terms in the subscript. This can be expanded out in terms of Sn 

by k -1 repeated applications of the reduction formula (16). For example, for k = 3, we get the 
following identities: 
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X3„ = (p4 + 3p2q + q2 +2pr)X3„+3(p3 +2pq + r)X2Yn + 3(p2 +q)XJ? 
+ PY3+3(p2

 +q)X2
nZn + 6pXnY„Zn+3YX+3X„Zl 

Y3n = (P3q + 2pq2 + p2r + 2qr)X3„ +3(p2q + q2+ pr)X2
nYn +3(pq+r)XJ2 

+ qY3 + 3 (pq+r)X2Zn + 6qX„Y„Z„ + 3Y„Z2, 
Z3„ = (jtr + 2pqr + r2)X\ + 3r(p2 + q)X2Y„ + 3prXJ2 + rY3 

+ 3prX2Zn+6rXnY„Zn + Zl 

In general, we have 

Skn ~ 2~, 
a+b+c=k 

a h c 2a+byLnIn ^n? (36) 

where (a % c) denotes the trinomial coefficient -
k. 

Formula (36) can be proven by induction on 

CHANGE OF BASIS (Shift Formulas) 

Algorithm "TribShift" To Transform an Expression Involving 
xm Ym zn I s l t 0 0 s l e Evolving Xn+a, Yn+b, Zn+C 

Use identities such as 

" D 

where 

qXb+Zb 

D = 

y _ pXa+Ya Xa 
rX„ Z. U + PXa+Ya Xa 

qxb+zb Yb 

{p2+q)Xa+PYa+Za pXa+Ya Xa 
(pq + r)Xb+qYb 

prXc+rYc 

qxb+zb 
rX„ 

Yb (37) 

which can be obtained by solving the linear equations 

Xn+a = (P2 + q)XaXn +p(X„Ya + XaYn) + XnZa + XaZn + YJ„, 
Yn+b = (pq + r)XbX„ +q(XnYb+XbYn) + Y„Zb +YbZ„, 
Zn+C = prXcX„ +r{XnYc + XX) + ZCZ„, 

for Xn, Y„, andZ„. 
One can change from the basis (Xn,Yn9Zn)to the basis (Xn+a, Xn+b, Xn+C) in a similar man-

ner. Other combinations can be found in the same way. To change from one arbitrary basis to 
another, apply Algorithm "TribReduce" to transform the given expression to the basis (Xn,Yn9 
Zn). Then use one of the above formulas. 

6. TURNING SQUARES INTO SUMS 

For Lucas numbers, there is the well-known formula, 

L2
n = L,n-2{-\)\ (38) 
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which allows us to replace the square of a term with a sum of terms. To find an analog for third-
order recurrences, we can proceed as follows. 

Combining equations (21) and (35) gives us six equations in the six variables XJn, YnZn, 
XnZn, X2, Y2, and Z2. We can then solve these equations for X2, Y2, and Z2 in terms of X2n, 
Y2n, Z2m X__m Y_m and Z_n. We get the following (computer-generated) result. 

Algorithm "TribExpandSquares" To Turn Squares Into Sums 

dX2
n = rn{2(pA + 5p2q + 4q2 + 6pr)X_n + 2{p3 + 4pq + 9r)Y_n + 2(p2 + 3q)Z_ J 

+ 2(3pr - q2)X2n +(pq + 9r)Y2n - 2{p2 + 3q)Z2n, 

dY2 = rn[2(p6 4- 6 / g + 8 p V 4- 8pV 4-16pqr + 9r2)X_n 

+ 2(>5 + 5p3^ 4- 4 ^ 2 + lp2r + 3gr)y_w + 2{p4 + 4p2^ + g2 4- 6/?r)Z_ J 
4- (9r2 - p2q2 - 2q3 + 2p3r + 4pqr)X2n + (p3q + 3 M

2 + p2r + 3gr)72„ 
- 2 ( / + 4 | 7 2

9 + 9
2+6pr)Z2w? 

(39) 

(40) 

dZ2
n = rn[2r(p5 + 6p3g 4- 8/?g2 4- lp2r + \2qr)X_n + 2 r ( / 4- 5p2g + 4g2 + 6pr)Y_n 

+ 2r(p3 + 4pq + 9r)Z_n]-2r2(p2 + 3q)X2„ + r(p2q + 4q2 -3pr)Y2n (41) 
4-(9r2 - p2q2 - 4 ^ 3 + 2/?3r 4- \Qpqr)Z2m 

where J = 27r2 - p2q2 -4q3 + 4p3r + \%pqr. 
These formulas are a bit outrageous. Are there any simpler formulas? Can these be put in 

simpler form? To be more specific, we ask the following. 
Query: Is there a simpler formula than formula (41) that allows us to express Z2 as a linear 

combination'of terms, each of the form Xan+b, Yan+b, orZan+bl The coefficients may include the 
constants p, q, and r as well as the nonlinear expression rn. 

7, TURNING PRODUCTS INTO SIMPLER PRODUCTS 

For Lucas numbers, there is the well-known formula, 

LmLn = Lm+n+{-\)"Lm_n, (42) 

which allows us to turn products into sums. For third-order recurrences, there probably is no 
corresponding formula. However, there is a formula that allows us to turn products of three or 
more terms into sums of products consisting of just two terms. 

To find a formula for XmXnXS9 we can proceed as follows. From equation (7), we have 

XmXnXs = (Atf 4- A?? + Af^iM" + Atf 4- AtfXM' + **i + 4* ' ) • 

After expanding this out, replace any term of the form r/V2V3
c (with a, b, c> 0) by rsr"~sr2~sr3~s, 

which is equivalent because rxr2r3 = r. Since one of a, b, or c is equal to s, this substitution turns 
this termi into one involving the product of only two powers of the rt. Use equation (10) to 
convert powers of rhr2, and r3 back to expressions involving Xy 7, and Z. Then use Waring's 
Algorithm and equations (8) and (11) to replace Al9 A2, A3, rl9 r2, and r3 by p, q, and r. We get the 
following (computer-generated) result. 
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where 

XmXnXs - \~c%Xm+nXs — csXnXm+s - c%XmXn+s + c6Xm+n+s - CjXn+sim 

~ Cl^m+s*n ~ C3^s*m+n ~~ C7^m+rTs ~ C6*m+n*s ~ C3^n*m+s 

~~ C6*n*m+s ~ C3^m*n+s ~ C6*m*n+s ~ C5*m+n+s ~~ C6^n+s^m 
+ C5^n+s^m ~ C6^m+s^n + C5hn+s^n ~ C2^-s^m+n + C5^s^m+n 

+ 3clZnZm+s - c2XmZn+s + c5YmZn+s + 3clZmZn+s 

~-3clZm+n+s-r (-2c$Xm_sXn_s+c9Xn_sYm_s 

+ c9Xm_sYn_s - 2c6Ym_sYn_s 4- 2c4Xn_sZm_s + 2c5Yn_sZm_s 

+ 2c4Xw_,Zw_5 + 2c57w_,Zw_, + 6c1Zw_,Z„_,)]/J2
? 

q = /72^2 + 4g3 - 4p3r -18/?gr - 27r2, 
c2 = - 2 p V ~ 1 3 ^ V ~ 20g4 + Sp5r + 5 6 p V + 9 0 ^ 2 r + 54p2r2 + 135^r2, 
c3 = p3q3 + 4/?g4 - 4p4qr ~ 12/>V r + 24g3r - 24p3r2 -13 5pqr2 -162r3, 
c4 = p4q2 + 6/? V + %p4 - 4p5r - 21p3qr - 36pq2r - 21p2r2 - 54qr2, 
c5 = pch 

c6 = qcx, 
c7 - -3cxr, 
% = -p2q4 - 4q5 + 6p3q2r + 26pq3r - Sp4r2 - 36p2qr2 + 21q2r2 - 54pr3, 
c9 = -p3q3 - 4pq4 + 4p4qr +15p2q2r - I2q3r + I2p3r2 + 8 Ipqr2 + 8 lr3, 

and 
rf = 21r2 - /? V - 4<y3 + 4pV +1 %pqr. 

These formulas can be simplified. Using the first formula in display (16), we can remove any 
terms of the form YmYn. Using the second formula in display (16), we can remove any terms of the 
form YnZm + YmZn. Using the third formula in display (16), we can remove any terms of the form 
ZmZn. Upon doing this, we get the following: 

dXmXnXs - 2(q - 3pr)[XsXm+n + XnXs+m + XmX„+s - 2r Xm_sXn_s] 
- 2q[Xm+n+s -r Xm+n_2sl + 2p[Ym+n+s -r Ym+n_2s\ 4- b[Zm+r}+s — r Zm+n_2s\ 
- (pq + 9r)[XsYm+„ + X„Ys+m + XJn+s - r\Xm_sYn_s + Xn_sYm_s)] 

+ XnZs+m + XmZn+s r {_Xm_sZn_s + Xn_sZm_s)\. 

This can also be expressed in the following form: 

Algorithm f?TribShortemProdiictsff To Turn Products of 
Many Terms Into Products of Two Terms 

XmXnXs = [XsCm+n + XnCs+m + XmCn+s - rs{Xm_sCn_s + Xn_sCm_s) 
~ 2qXn»n+, + 2P^m+n+s + 6Zm+n+s - rs(-2qXm+rt_2s + 2pYm+n_2s + 6Zm+r!_2s)} I d, 

where d = 21r2 - p2q2 - 4q3 + 4p3r +1 Spqr and 

Cn = 2(q2-3pr)Xn-(pq + 9r)Yn+2(p2 + 3q)Zn. 

(43) 

(44) 
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For products of three terms not all Involving X's, first apply Algorithm "ConvertToX", formula 
(27), to change any Y or Z terms to X terms. For products of more than three terms, this pro-
cedure can be repeated, three terms at a time, until only products of two terms remain. 

Formula (44) is still pretty messy. Can it be simplified? Gan it be made to look symmetric 
under permutations of (m, n, $)? 

8* SIMSONfS FORMULA 

For Fibonacci numbers, there is the well-known Simson formula, Fn+lFn_ 
can be written in the form 

• w + l K = -(-!> W - l 

Fn Fn-l 

The generalization of this to third-order recurrences is 

x„ 
Xn-i 

Xn_x Xn_2 

= -r 
n-2 

which can be further generalized to 

J«+4 Jn+3 

^n+3 * V H 2 ^n+l 

\+2 \ + l 

^n+2 

= r 
S4 O3 b2 

O3 4J2 iJ j 

O^ AJI On 

These formulas come from [15]. 

.p2 = (-!)". This 

(45) 

(46) 

(47) 

9, SUMMATIONS 

We can perform indefinite summations of expressions involving Xn,Yn, and Zn any time we 
can perform such summations with an instead since, by (7), these terms are actually exponentials 
with bases r1? r2, and r3. 

First, the expression is converted to exponential form using equation (7). Then it is summed. 
The result is converted back to Xs, Fs, and Zs by using equation (10). Then rbr2, and r3 are 
converted to p, q, and r using equation (11). The following summations were found using this 
method. 

Yxkx = ~x + x"+ ^Xn+X+xYn+l+x Z"+l^ 
£i' k -1 + px + qx2 +rx3 

t Xak+t = [(Ya+b - V I H ) ^ + Wa + Ya)(Za ' 0 } 

+ (%au ~ X{n+l)a,b){{Za - I)2 - rZJa 

+ qXa(Za -1)} + (Za+b -Z(n+l)a+b){(pXa + Ya)Ya -qX2 

-Xa(Za~l)}]/lr2X3
a+ri:+(Za--lf-qYZ(Za-l) 

+ X2
a((q2 -2pr)(Za -1)-qrYa) + pYQ(Za -1)2 

+ Xa((p2 + 2q)(Za -1)2 + prY2 -Ya(pq + 3r)(Za -1))], 

(48) 

(49) 
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^kXk=[2-p+r-{n + \){2r + q + \)Xn^+n{2r + q + \)Xn+2 

+ (n + \){p-r-2)Yri+l-n(P-r-2)Y„+2 (50) 
+ (» + \){2p + q- 3)Zn+l - n{2p + q~ 3)Z„+2]/ (p + q + r-l)\ 

fjk2Xk=[(l + 3q-pq + 7r-3pr+r2){-(n + l)2Xn+l+(2n2
 + 2n-l)Xn+2-n2Xn+3} 

+ ( 3 „ 3 p + p2+ q + 6r _ 3 p r _^){- (« + lfYn+l + {2n2 + 2» -\)Yn+2 -n%+3} (51) 
+ (6 - 8/7 + 3p2 -3q + 3pq + q2+3r- pr){-(n + 1)2Z„+1 

+ (2n2 + 2n-\)Zn+2-n2Zn+3}]l(p + q+r-lf, 

k=i 

Z xkX„-k = [-(» + l)prXn + (9r ~ "PI ~ 3nr)Xn+1 + q(n - \)Xn+2 - 3r(n + l)Y„ 

+ (np2-p2-3q + r,q)Yn+1-p(n-l)Yn+2+(n + l)(j>2+4q)Zn (52) 
+ 2npZn+l -3(#i- l)Zn+2]/(p2q2 + 4q3 -21r2 -4p3r - ISpqr). 

Most of the above formulas are special cases of formula (5.2) in [22]. 

10. THE TRIBONACCI SEQUENCE 

The Tribonacci sequence, (Tn), may be defined by 
Tn = Tn_l + T„_2 + Tn_3, (53) 

with initial conditions T0 = 0, TY = 1, and T2 = 1. A basis can be formed from (T„, Tn+1, Tn+2). 
For this sequence, we have Tn = Xn+l with p-q = r = 1. To convert Ts, J \ and Zs to 2 \ 

use the identities 
y _ T _ r _ T7 

^ « ~~ An+2 An+l An^ 

Y„ = 2T„ + T„+1-Tn+2, (54) 
y -IT -T 

The reduction formulas are 

Vl-/w ~ An\^^m+\ ~ AH+2/ + 4+1 (^ Aw + 4 H - 1 ~ *m+2) 

~ 4+2 V4J ~T~ 4 H - 1 ~~ 4 H - 2 / 

and 

4 - w ~~ 4 v 4 i + l ~ 4 I 4 H - 2 / ~*~ 4+ l l4 j+2 ~ 4 I 4 I + 1 ~ *m+2*m ~ *m+2*m+l) 

+ 4+2 (4J + 4*4i+l + 4*+l ~~ 4i+l4i+2)' 

A form of the addition formula was first found by Agronomof in 1914 [1]. 
The double argument formula is 

hn ~ 4+2 + 4+1 + ^44+1 "~ ̂ 4^+2 ~ ̂ 4+i4+2 . (57) 
A form of this can also be found in [1]. 

The negation formula is 

T-„ = T2
+2 + T2

+1+ T2- T„+2(2Tn+1 + T„). (58) 
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The fundamental Identity connecting T„, Tn+h and Tn+2 is 

T* + 2Tlx +1;3
+2 + 2TJn+l(Tn + rw+1) + TJn+2(Tn - Tn+2 - 2Tn+l) - 2T„+lT?+2 = 1. (59) 

The formula to expand squares is 

^=(5T2n+2-3T2n+l-4T2n+4Tn + lOT„_l-2Tn_2)/22. (60) 

The analog of Simson's formula is 

T T T 
4+i 4 4-i 
4 4-i 4-2 

(61) 

which was found by Mies [9] along with generalizations to higher-order recurrences. 
Miles [9] also generalized the relationship between Fibonacci numbers and binomial coeffi-

cients from Pascal's triangle, 

*«= i ("*> 
a+2b=nV / 

to the following formula which relates Tribonacci numbers and trinomial coefficients from Pas-
cal's pyramid: 

^- z {aA+c\ («> 
a+2b+3c=nv ' 

The following summation was found using the methods of Section 9: 

X^=[i+4r„r„+I-(rn+1-r„_1)2]/4. (63) 
k=l 

APPENDIX 1: SELECTED IDENTITIES 

We now present some selected identities culled from the literature. All these identities were 
successfully checked by Algorithm "TribSimplify". Recall that Wn is defined by equation (9). 

The following six identities come from Jarden [7]: 

X2n=(2rXn_l+qX„)Xn + X2„+l, 

X2„ = X„Wn + r"X_„, 
W2n = Wt-2r"W_n, 

The following three identities come from Yalavigi [21]: 

2W3n = Wn(3W2n-W') + 6r", 

W4n = WnW,n-W2n{Wn-W2n)ll + r"Wn, 

+ W2r}(W* -2W2n)l2 + r»(Wn,m-Wn). 
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The following three identities come from Yalavigi [20]: 

Sm+n ~ Xm+2S„ + Ym+2Sn_l + Zm+2Sn_2, 
$2n ~ Xn+2Sn +Yn+2$n-l + Zn+2S„_2, 

^m+n ~ Xm+h+2^n-h + ^m+h+2^n-h-l + ^m+h+2^n-h-2 • 

The following two identities come from Shannon and Horadam [14]: 

(SnSn+4) + (2 (^7+1+ ^+2)^1+3) ~ ( A + 2($„+i + ^ + 2 ) ^ 1 + 3 ) > 

The following identity comes from Shannon and Horadam [15]: 

^ = ^ - 1 + ^ - 2 -

The following ten identities come from Carlitz [4] (both pn and an satisfy third-order linear 
recurrences with r = 1 and the same p and q with initial conditions p0 = 1, px - p2 = 0, cr0 = 3, 
(jj = p, G2 - p2 + 2q. In particular, with r = 1, we have <jn = Wn and /?„ = Zw): 

2 Af iAi ~ An+lAi-1 ~ Pm-lPn+l = °' m-3°'n-3 ~ ^m+n-S ~ ^m-jPm-3 ~ an-3Pm-3 + 2Pm+n-6, 

°m+3n - (Jm+2nCrn + °m±rP-n "CTm=°9 

&2n = (Jl-2<J-n, 
°r3«=0"«-3°"«C7-«+3

? 

Pl-pr,+lPn-l:=P3-n> 
Pi ~ Pn+lPn-l = A/7-6 - Ai-3^/1-3 + ^3-n> 

/ V 7 * = AH+W + Pm-rP-n - pm_2„, 
®mGn = Vm+n + °m-na-n " °"m-2«? 

The following nine identities come from Waddill [17] (in their notation, Un - Xn+l)\ 

^n+m ~ Un-kSm+k+i +Yn_k+lSm+k +run_k_1bm+k_l, 

bn+m ~ ^m-kbn+k+l +Ym_k+lbn+k +rUm_k_lbn+k_h 

S2„ + qSl, + IrS^S^ = S2S2n_2 + (qS1 + rS0)S2n_3 + rS{S2n_,, 

U^^Ul+qUU+lrU^U^, 

U2n-i = Un+lU„^ +rUn_xUn_2 +U2
n-pU„Un_l, 

qU^^Ult-pU^ + ir-pqW^+qUl-priU^+UU) 

-qrU^U^-rW^U^+Ul,), 

U^ = U^QJly + Y^U,, +rUn_1U„) + Y„(UnU„+l + Yn+1Un +rC/„2_1) 
+ rUn_2{U„_p„+l + Y„Un +rU„_2Un_1), 
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°n+m+h 
V 

V un+m 

^5n \ n ^3n 

^n+j+h 
V 

un+j+k 
Sn+j 

°n+h 

$n+k 

s„ 
= r" Uk.x Uk 

^m+2 ^w+1 °m 

$j+2 Sj+1 $j 
O7 Oi On 

J4w $3n ^2n 

$3n $2n ^n 

u2, 
u, n-\ 

u2, ^2n+2 ^2n+l ^2n 

&2 ^ i \ 

^3\o2 

The following five identities were found by Zeitlin [23]: 

S2
n+6 = (P2+ q)S2

n+5 + (q2 +qp2+ rp)S2
+4 + (2r2 + rf + Apqr - q')^ 

+ (r2p2 -rpq2-r2q)S2
n+2 +(r2q2 -r3p)S2

+l-r4S2, 

S2n+e ~ (P2 + 2q)S2n+4 + (q2 - 2rp)S2n+2 - r2&,, J2n 

r"S_„ = S0(W2 ~W2n)l2-WnSn + S2n, 

n+2 n+1 n 

(n - l)Xn+l = p^ XjXn*-j + 2?X XjXn^j + 3rX XjX^j9 
j=Q j=0 J=0 

A _ (?r + pq)(n - l)Xn+l - (6q 4- 2p2)nYn+l + (4q2 - 3pr + p2q){n + \)Xn 

k=0 

kn+l 
27r2 - p2q2 - 4q3 + 4p3r +1 %pqr 

See [19] for other identities. 

APPENDIX 2. SELECTED TMBONACCI IDENTITIES 

We present below selected identities from the literature in which p = q = r = 1. All these 
identities were successfully checked by Algorithm "TribSimplify". 

The following three identities come from Agronomof [1]: 

Tin ~ T„-\ + Tn{Tn+i -I- Tn_x + iw_2), 
T2n^ = T2 + Tn_x{Tn_x + 2Tn_2). 

The following three identities come from Lin [8] (in their notation, we have U„ = Y„+2, with 
p = q = r = \): 

V4n+l^4n+3 + ^4n+2^'4n+4 = Mn+4 "" •'4(7+2' 

U2
+l + U2_l = 2(T: + T^), 
T2 -T2 - 11 11 

The following five identities were found by Zeitlin [23]: 
T* j 1 _ O T 7 T7 

1«+6+a1«+6+fc ~ *1n+5+a1n+5+b 
+ 3In+4+aIn+4+b + 61n+3+aln+3+b 

, T T - T T 
1n+2+a1n+2+h 1n+a±n+b-> 
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_(1 _ 2x - 3x2 - 6x3 + x4
 + x 6 ) X T?xk = T?+lx"+1 + ( # 2 - 2T*+l)x> ,n+2 

k=0 

+ (T^4-2T2
+3-3T'+2-6T'+1)X' 

-Tlxxn+$ - T2x"+e -x + x2+x3+x4, 

n+4 

%jL,*k -Tn+5 Tn+4 4Tn+3 lOTn+2 9Tn+l- •zr+2, 
k=0 

*-n ~ Wnln + l2rn 

n-2 
2 2 I TJT^-J = * " " 1)2^ - 2(» - 1) A-i - *nTn_ 

j=0 

The following eleven identities come from Waddill and Sacks [16] (in their notation, we have 
Kn = Xn+l> A = Yn+l> m d K> = ^ - 1 + ^ _ 2 , with/? = ? = T = 1): 

•2? A - Kn_x+Kn_ 
$n+h = Kh+iSn + Lh+lSn_l -f KhSn_2, 
Sin ~ Kn+iSn + Ln+lSn_x + KnSn_2, 

S2n-l = KnSn+(Kn-l + Kn-l)Sn-\ + Kn-lSn-2> 

^n+h = ^h+m+l^n-m + A+w+l\-m-l + &h+m^n-m-2> 

$n +Sn_l+2Sn_lSn_2 = S2S2n_2 + ̂ 2S2n_3 + SxS2n_4, 

Jn+h Jn+h+k 
un+h+t un+h+k+t 
Jn+h+n Jn+h+k+m 

Ki, Ki 

uh+l 

h+k 

A+fc+1 
s, s, t+l 

^m+l 

u r+2 

-W2 

A: 

A; 

n+h 

n+h+t 

n+h+m 

K„. 
n+h+k 

^n+h+k+t 

•^n+h+k+m 

Kt 

^h+k ^h+k-l •m-\ 

K, 
•n+l 

K. 
n+h+l 

K. 
K, 
K, 

n+h 

n+2h 

^n+h 

^n+2h 
K 77+3/7 

- Kh-\' 
Kh Kh_x 
v2h K, -2/7-1 

vn+h 
K„ 

K. 
K 

K 

n+h 
77+2/7 

n+h+m 
n+h+m 

n+2m 

Kh Km 

n+h+k+t 

Ki+h+t 
^n+t 

^n+h+k 

K+h 
Sn 

V 
un+h+k+m 
*Si+h+m 

V 
un+m 

zn ^h+k-l 

Ai-i 
^h+k 

h 
• 

s, 
$m 

So 

Sf+l 

$m+l 

Si 

$t+2 

^m+2 

s2 

Errata: Computer verification of the various identities encountered in the references consulted 
during this research revealed a number of typographical errors in the literature. We list the cor-
rections below to set the record straight. 
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In [4], equation (1.15) should be the same as equation (4.1). Also, equation (1.16) should be 
the same as equation (3.14). 

In [10], equation (2.1) should read " Jn+l = PJn + Kn". 
In [13], in equation (1.4), nt2 = P2 + Q" should be "t, = P2 + 2Q". Equation (2.2) should read 

In [16], the last term of equation (21) should be "Kh+kPn_2", not nKn+kPn_x
n. Also, the final 

subscript in equation (41) should be "h-V\ not "n-V\ In equation (42), "Pn+h+m" should be 
" i ^ + w " and "X„+," should be «Kh+k\ 
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