ON THE $K^{\text {th }}$-ORDER DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS

Chizhong Zhou
Yueyang University, Yueyang, P.R. China, 414000
(Submitted December 1994)

1. INTRODUCTION

The Fibonacci polynomials $u_{n}=u_{n}(x)$ and the Lucas polynomials $v_{n}=v_{n}(x)$ are defined by the second-order linear recurrence relations
and

$$
\begin{align*}
& u_{n}=x u_{n-1}+u_{n-2} \quad\left(u_{0}=0, u_{1}=1\right) \\
& v_{n}=x v_{n-1}+v_{n-2} \quad\left(v_{0}=2, v_{1}=x\right) \tag{1.1}
\end{align*}
$$

where x is an indeterminate. Their $k^{\text {th }}$-order derivative sequences are defined as

$$
u_{n}^{(k)}=u_{n}^{(k)}(x)=\frac{d^{k}}{d x^{k}} u_{n}(x) \text { and } v_{n}^{(k)}=v_{n}^{(k)}(x)=\frac{d^{k}}{d x^{k}}(x)
$$

Denote $f_{n}=u_{n}(1), \ell_{n}=v_{n}(1), f_{n}^{(k)}=u_{n}^{(k)}(1), \ell_{n}^{(k)}=v_{n}^{(k)}(1)$. P. Filipponi and A. F. Horadam ([1], [2]) considered $f_{n}^{(k)}$ and $\ell_{n}^{(k)}$ for $k=1,2$ and obtained a series of results. By the end of [2], seven conjectures were presented for arbitrary k. In this paper we shall consider the more general cases, $u_{n}^{(k)}$ and $v_{n}^{(k)}$, for arbitrary k. Our results will be generalizations of the results in [1] and [2]. As special cases of our results, the seven conjectures in [2] will be proved.

Following the symbols in [1] and [2], denote $\Delta=\sqrt{x^{2}+4}, \alpha=(x+\Delta) / 2, \beta=(x-\Delta) / 2$, so that $\alpha+\beta=x, \alpha \beta=-1, \alpha-\beta=\Delta$. It is well known that

$$
\begin{equation*}
u_{n}=\left(\alpha^{n}-\beta^{n}\right) / \Delta, \quad v_{n}=\alpha^{n}+\beta^{n} \tag{1.2}
\end{equation*}
$$

2. EXPRESSIONS FOR $u_{n}^{(k)}$ AND $v_{n}^{(k)}$ IN TERMS OF FIBONACCI AND LUCAS POLYNOMIALS

Theorem 2.1:

$$
\begin{equation*}
u_{n}^{(k)}=\frac{k!}{2 \Delta^{2 k}}\left(a_{n, k} u_{n}+b_{n, k} v_{n}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n, k}=\sum_{\substack{i=0 \\ 2 \mid k-i}}^{k}\binom{k-i+n}{k-i} \Delta^{k-i}\left(c_{k, i}+d_{k, i}\right)+\sum_{\substack{i=0 \\ 2 \nmid k-i}}^{k}\binom{k-i+n}{k-i} \Delta^{k-i}\left(c_{k, i}-d_{k, i}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n, k}=\sum_{\substack{i=0 \\ 2 \mid k-i}}^{k}\binom{k-i+n}{k-i} \Delta^{k-1-i}\left(c_{k, i}-d_{k, i}\right)+\sum_{\substack{i=0 \\ 2 \nmid k-i}}^{k}\binom{k-i+n}{k-i} \Delta^{k-1-i}\left(c_{k, i}+d_{k, i}\right) \tag{2.3}
\end{equation*}
$$

where $c_{k, i}$ and $d_{k, i}(i=0,1, \ldots, k)$ satisfy the systems of linear equations

$$
\begin{equation*}
c_{k, i}+\binom{k+1}{1} \beta c_{k, i-1}+\cdots+\binom{k+1}{i} \beta^{i} c_{k, 0}=(-1)^{i}\binom{k+1}{i} \Delta^{i} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{k, i}+\binom{k+1}{1} \alpha d_{k, i-1}+\cdots+\binom{k+1}{i} \alpha^{i} d_{k, 0}=\binom{k+1}{i} \Delta^{i} . \tag{2.5}
\end{equation*}
$$

Furthermore, for $i=0,1, \ldots, k$, there exist polynomials $p_{k, i}$ and $q_{k, i}$ in x, with integer coefficients, which satisfy

$$
\begin{equation*}
c_{k, i}=p_{k, i} \alpha+q_{k, i} \quad \text { and } \quad d_{k, i}=p_{k, i} \beta+q_{k, i} \tag{2.6}
\end{equation*}
$$

Proof: Let the generating functions of $\left\{u_{n}\right\}$ and $\left\{u_{n}^{(k)}\right\}$ be $U(t)=U(t, x)=\sum_{n=0}^{\infty} u_{n} t^{n}$ and $U_{k}(t)=U_{k}(t, x)=\sum_{n=0}^{\infty} u_{n}^{(k)} t^{n}$, respectively. It is well known that $U(t)=t /\left(1-x t-t^{2}\right)$, hence,

$$
\begin{equation*}
U_{k}(t)=\frac{\partial^{k}}{\partial x^{k}} \tilde{U}(t)=k!t^{k+1} /\left(1-x t-t^{2}\right)^{k+1} \tag{2.7}
\end{equation*}
$$

By partial fractions we have

$$
\begin{equation*}
t^{k+1} /\left(1-x t-t^{2}\right)^{k+1}=\sum_{i=0}^{k} Q_{k, i} /(1-\alpha t)^{k+1-i}+\sum_{i=0}^{k} R_{k, i} /(1-\beta t)^{k+1-i} \tag{2.8}
\end{equation*}
$$

where $Q_{k, i}$ and $R_{k, i}$ are independent of t. Multiplying by $\alpha^{k+1}(1-\beta t)^{k+1}$, we obtain

$$
\begin{equation*}
(\alpha t)^{k+1} /(1-\alpha t)^{k+1}=(\alpha+t)^{k+1} \sum_{i=0}^{k} Q_{k, i} /(1-\alpha t)^{k+1-i}+\varphi(t) \tag{2.9}
\end{equation*}
$$

where the function $\varphi(t)$ is analytic at the point $t=\alpha^{-1}$ under the condition that t is considered as a complex variable (while x is a real constant). Since $(\alpha t)^{k+1} /(1-\alpha t)^{k+1}=\left[(1-\alpha t)^{-1}-1\right]^{k+1}$ and $(\alpha+t)^{k+1}=[\Delta+\beta(1-\alpha t)]^{k+1}$, we can rewrite (2.9) as

$$
\sum_{i=0}^{k+1}(-1)^{i}\binom{k+1}{i}(1-\alpha t)^{-(k+1-i)}=\sum_{i=0}^{k+1}\binom{k+1}{i} \Delta^{k+1-i} \beta^{i}(1-\alpha t)^{i} \cdot \sum_{i=0}^{k} Q_{k, i}(1-\alpha t)^{-(k+1-i)}+\varphi(t)
$$

Because of the uniqueness of the Laurent series [4] at the point $t=\alpha^{-1}$ for the function $(\alpha t)^{k+1} /(1-\alpha t)^{k+1}$, we can compare the coefficients of $(1-\alpha t)^{-(k+1-i)}(i=0,1, \ldots, k)$ of the two sides in the last equality to get

$$
\begin{equation*}
\sum_{j=0}^{i}\binom{k+1}{j} \Delta^{k+1-j} \beta^{j} Q_{k, i-j}=(-1)^{i}\binom{k+1}{i} \tag{2.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q_{k, i}=\Delta^{-(k+1+i)} c_{k, i} \quad(i=0,1, \ldots, k) \tag{2.11}
\end{equation*}
$$

and substitute it into (2.10); then we get (2.4). For the same reason, it follows that

$$
\begin{equation*}
\sum_{j=0}^{i}\binom{k+1}{j}(-\Delta)^{k+1-j} \alpha^{j} R_{k, i-j}=(-1)^{i}\binom{k+1}{i} \tag{2.12}
\end{equation*}
$$

Let

$$
\begin{equation*}
R_{k, i}=(-\Delta)^{-(k+1+i)} d_{k, i} \quad(i=0,1, \ldots, k) \tag{2.13}
\end{equation*}
$$

and substitute it into (2.12); then we get (2.5).

Now we shall prove (2.6). From (2.4) and (2.5), $c_{k, 0}=d_{k, 0}=1$; hence, the conclusion holds for $i=0$. Suppose the conclusion holds for $0,1, \ldots, i-1$. Then, from (2.4) and (2.5), we have

$$
\begin{equation*}
c_{k, i}=(-1)^{i}\binom{k+1}{i} \Delta^{i}-\sum_{j=1}^{i}\binom{k+1}{j} \beta^{j}\left(p_{k, i-j} \alpha+q_{k, i-j}\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{k, i}=\binom{k+1}{i} \Delta^{i}-\sum_{j=1}^{i}\binom{k+1}{j} \alpha^{j}\left(p_{k, i-j} \beta+q_{k, i-j}\right) \tag{2.15}
\end{equation*}
$$

From (1.2), it is easy to show that $\beta^{j}=-u_{j} \alpha+u_{j+1}$; hence,

$$
\begin{aligned}
\beta^{j}\left(p_{k, i-j} \alpha+q_{k, i-j}\right) & =-p_{k, i-j} \beta^{j-1}+q_{k, i-j} \beta^{j} \\
& =\left(p_{k, i-j} u_{j-1}-q_{k, i-j} u_{j}\right) \alpha+\left(q_{k, i-j} u_{j+1}-p_{k, i-j} u_{j}\right)
\end{aligned}
$$

For the same reason, we have

$$
\alpha^{j}\left(p_{k, i-j} \beta+q_{k, i-j}\right)=\left(p_{k, i-j} u_{j-1}-q_{k, i-j} u_{j}\right) \beta+\left(q_{k, i-j} u_{j+1}-p_{k, i-j} u_{j}\right)
$$

We can see that Δ^{i} is a polynomial in x with integer coefficients for $2 \mid i$, but $\Delta^{i}=\Delta^{i-1}(x-2 \beta)$ and $(-\Delta)^{i}=\Delta^{i-1}(x-2 \alpha)$ for $2 \nmid i$. By substituting the above results into (2.14) and (2.15), and by the inductive hypothesis, the conclusion is proved.

Now substituting (2.11), (2.13), and (2.6) into (2.8), then into (2.7), we get

$$
\begin{aligned}
U_{k}(t)= & \frac{k!}{\Delta^{2 k}}\left[\sum_{i=0}^{k} c_{k, i} \Delta^{k-1-i} /(1-\alpha t)^{k+1-i}+\sum_{i=0}^{k} d_{k, i}(-\Delta)^{k-1-i} /(1-\beta t)^{k+1-i}\right] \\
= & \frac{k!}{\Delta^{2 k}}\left[\sum_{2 \mid k-i}\left(c_{k, i} /(1-\alpha t)^{k+1-i}-d_{k, i} /(1-\beta t)^{k+1-i}\right) \Delta^{k-1-i}\right. \\
& \left.+\sum_{2 \nmid k-i}\left(c_{k, i} /(1-\alpha t)^{k+1-i}+d_{k, i} /(1-\beta t)^{k+1-i}\right) \Delta^{k-1-i}\right]
\end{aligned}
$$

Expanding the right side of the last expression into power series in t and using (2.6), we obtain

$$
\begin{equation*}
u_{n}^{(k)}=\frac{k!}{\Delta^{2 k}}\left[\sum_{2 \mid k-i}\binom{k-i+n}{k-i} \Delta^{k-i}\left(p_{k, i} u_{n+1}+q_{k, i} u_{n}\right)+\sum_{2 \mid k-i}\binom{k-i+n}{k-i} \Delta^{k-1-i}\left(p_{k, i} v_{n+1}+q_{k, i} v_{n}\right)\right] . \tag{2.16}
\end{equation*}
$$

It is easy to prove that $u_{n+1}=\left(x u_{n}+v_{n}\right) / 2, v_{n+1}=\left(\Delta^{2} u_{n}+x v_{n}\right) / 2$; hence,

$$
\begin{align*}
p_{k, i} u_{n+1}+q_{k, i} u_{n} & =\left(\left(p_{k, i} x+2 q_{k, i}\right) u_{n}+p_{k, i} v_{n}\right) / 2 \tag{2.17}\\
& =\left(\left(c_{k, i}+d_{k, i}\right) u_{n}+\left(c_{k, i}-d_{k, i}\right) \Delta^{-1} v_{n}\right) / 2 \\
p_{k, i} v_{n+1}+q_{k, i} v_{n} & =\left(p_{k, i} \Delta^{2} u_{n}+\left(p_{k, i} x+2 q_{k, i}\right) v_{n}\right) / 2 \tag{2.18}\\
& =\left(\left(c_{k, i}-d_{k, i}\right) \Delta u_{n}+\left(c_{k, i}+d_{k, i}\right) v_{n}\right) / 2
\end{align*}
$$

Substitute (2.17) and (2.18) into (2.16) and we are done.

As an example, when $k=3$ and 4 , Theorem 2.1 gives the following results:

$$
\begin{array}{rlrl}
c_{30} & =d_{30}=1, & & c_{31}=-4 \Delta-4 \beta, d_{31}=4 \Delta-4 \alpha, \\
c_{32} & =6 \Delta^{2}+16 \beta \Delta+10 \beta^{2}, & d_{32}=6 \Delta^{2}-16 \alpha \Delta+10 \alpha^{2}, \\
c_{33} & =-4 \Delta^{3}-24 \beta \Delta^{2}-40 \beta^{2} \Delta-20 \beta^{3}, & & d_{33}=4 \Delta^{3}-24 \alpha \Delta^{2}+40 \alpha^{2} \Delta-20 \alpha^{3}, \\
c_{30} & +d_{30}=2, & c_{31}+d_{31}=-4 x, \\
c_{32}+d_{32}=6 x^{2}+4, & c_{33}+d_{33}=-4 x^{3}+4 x, \\
c_{30}-d_{30}=0, & c_{31}-d_{31}=-4 \Delta, \\
c_{32}-d_{32}=6 x \Delta, & c_{33}-d_{33}=\left(-4 x^{2}+4\right) \Delta, \\
a_{n 3} & =\binom{2+n}{2} \Delta^{2}(-4 x)+\binom{0+n}{0}\left(-4 x^{3}+4 x\right)+\binom{3+n}{3} \Delta^{3} \cdot 0+\binom{1+n}{1} \Delta \cdot 6 x \Delta \\
& =-2\left(n^{2}+1\right) x^{3}-4\left(2 n^{2}-3\right) x, & \\
b_{n 3} & =\binom{2+n}{2} \Delta(-4 \Delta)+\binom{0+n}{0} \Delta^{-1}\left(-4 x^{3}+4\right) \Delta+\binom{3+n}{3} \Delta^{2} \cdot 2+\binom{1+n}{1}\left(6 x^{2}+4\right) \\
& =\frac{1}{3} n\left(n^{2}+11\right) x^{2}+\frac{4}{3} n\left(n^{2}-4\right), & \\
u_{n}^{(3)} & =\left[-\left(6\left(n^{2}+1\right) x^{3}+12\left(2 n^{2}-3\right) x\right) u_{n}+\left(n\left(n^{2}+11\right) x^{2}+4 n\left(n^{2}-4\right)\right) v_{n}\right] / \Delta^{6} ;
\end{array}
$$

in particular,

$$
\begin{equation*}
f_{n}^{(3)}=\left(n^{2}-1\right)\left(n \ell_{n}-6 f_{n}\right) / 25 \tag{2.20}
\end{equation*}
$$

$$
\begin{array}{rlrl}
c_{40} & =d_{40}=1, & c_{41}=-5 \Delta-5 \beta, d_{41}=5 \Delta-5 a, \\
c_{42} & =10 \Delta^{2}+25 \beta \Delta+15 \beta^{2}, & d_{42}=10 \Delta^{2}-25 \alpha \Delta+15 \alpha^{2}, \\
c_{43} & =-10 \Delta^{3}-50 \beta \Delta^{2}-75 \beta^{2} \Delta-35 \beta^{3}, & d_{43}=10 \Delta^{3}-50 \alpha \Delta^{2}+75 \alpha^{2} \Delta-35 \alpha^{3}, \\
c_{44} & =5 \Delta^{4}+50 \beta \Delta^{3}+150 \beta^{2} \Delta^{2}+175 \beta^{3} \Delta+70 \beta^{4}, \\
d_{44}=5 \Delta^{4}-50 \alpha \Delta^{3}+150 \alpha^{2} \Delta^{2}-175 \alpha^{3} \Delta+70 \alpha^{4}, \\
c_{40}+d_{40}=2, & c_{41}+d_{41}=-5 x, \\
c_{42}+d_{42}=10 x^{2}+10, & c_{43}+d_{43}=-10 x^{3}-5 x, \\
c_{44}+d_{44}=5 x^{4}-15 x^{2}, & c_{40}-d_{40}=0, \\
c_{41}-d_{41}=-5 \Delta, & c_{42}-d_{42}=10 x \Delta, \\
c_{43}-d_{43}=\left(-10 x^{2}+5\right) \Delta, & c_{44}-d_{44}=\left(5 x^{3}-15 x\right) \Delta, \\
a_{n 4} & =\binom{4+n}{4} \Delta^{4} \cdot 2+\binom{2+n}{2} \Delta^{2}\left(10 x^{2}+10\right)+\binom{0+n}{0}\left(5 x^{4}-15 x^{2}\right) \\
& +\binom{3+n}{3} \Delta^{3}(-5 \Delta)+\binom{1+n}{1} \Delta\left(-10 x^{2}+5\right) \Delta \\
& =\frac{1}{12}\left(n^{4}+35 n^{2}+24\right) x^{4}+\frac{1}{3}\left(2 n^{4}+25 n^{2}-72\right) x^{2}+\frac{4}{3}\left(n^{4}-10 n^{2}+9\right),
\end{array}
$$

ON THE $K^{\text {th }}$-ORDER DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS

$$
\begin{align*}
b_{n 4}= & \binom{4+n}{4} \Delta^{3} \cdot 0+\binom{2+n}{2} \Delta(10 x \Delta)+\binom{0+n}{0} \Delta^{-1}\left(5 x^{3}-15 x\right) \Delta \\
& +\binom{3+n}{3} \Delta^{2}(-5 x)+\binom{1+n}{1}\left(-10 x^{3}-5 x\right) \\
= & -\frac{5}{6} n\left(n^{2}+5\right) x^{3}-\frac{5}{3} n\left(2 n^{2}-11\right) x, \\
u_{n}^{(4)}= & {\left[\left(\left(n^{4}+35 n^{2}+24\right) x^{4}+4\left(2 n^{4}+25 n^{2}-72\right) x^{2}+16\left(n^{4}-10 n^{2}+9\right)\right) u_{n}\right.} \tag{2.21}\\
& \left.-\left(10 n\left(n^{2}+5\right) x^{3}+20 n\left(2 n^{2}-11\right) x\right) v_{n}\right] / \Delta^{8} ;
\end{align*}
$$

in particular,

$$
\begin{equation*}
f_{n}^{(4)}=\left[\left(5 n^{4}-5 n^{2}-24\right) f_{n}-2 n\left(5 n^{2}-17\right) \ell_{n}\right] / 125 \tag{2.22}
\end{equation*}
$$

We observe that (2.6) can be verified by using the above results.
From $v_{n}^{(k)}=n u_{n}^{(k-1)}$ (see 1° of Theorem 3.1 in the next section) and Theorem 2.1, we can obtain the expression for $v_{n}^{(k)}$ in terms of u_{n} and v_{n}.

3. SOME IDENTITIES INVOLVING $u_{n}^{(k)}$ AND $v_{n}^{(k)}$

If we differentiate certain identities involving u_{n} and v_{n}, we can get the corresponding identities involving $u_{n}^{(k)}$ and $v_{n}^{(k)}$.

Theorem 3.1:

1. $v_{n}^{(k)}=n u_{n}^{(k-1) ;}$
$\mathbf{2}^{\circ} . u_{n}^{(k)}=x u_{n-1}^{(k)}+u_{n-2}^{(k)}+k u_{n-1}^{(k-1)}, v_{n}^{(k)}=x v_{n-1}^{(k)}+v_{n-2}^{(k)}+k v_{n-1}^{(k-1)}$;
in particular,

$$
\begin{align*}
& u_{-n}^{(k)}=(-1)^{n-1} u_{n}^{(k)} \tag{3.9}\\
& v_{-n}^{(k)}=(-1)^{n} v_{n}^{(k)} \tag{3.10}\\
& u_{2 n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} u_{n}^{(k-i)} v_{n}^{(i)} \tag{3.11}
\end{align*}
$$

$$
\begin{align*}
& v_{2 n}^{(k)}=2 \sum_{i=0}^{k-1}\binom{k-1}{i} v_{n}^{(k-i)} v_{n}^{(i)} ; \tag{3.12}\\
& u_{2 n+1}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} u_{n+1}^{(k-i)} v_{n}^{(i)} ; \tag{3.13}\\
& v_{2 n+1}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} v_{n+1}^{(k-i)} v_{n}^{(i)}-(-1)^{n} \delta_{k, 1}(\delta \text { is the Kronecker function }) ; \tag{3.14}\\
& \mathbf{5}^{\circ} . u_{m+n}^{(k)}+(-1)^{n} u_{m-n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} u_{m}^{(k-i)} v_{n}^{(i) ;} \tag{3.15}\\
& u_{m+n}^{(k)}-(-1)^{n} u_{m-n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} v_{m}^{(k-i)} u_{n}^{(i) ;} \tag{3.16}\\
& v_{m+n}^{(k)}+(-1)^{n} v_{m-n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} v_{m}^{(k-i)} v_{n}^{(i) ;} \tag{3.17}\\
& v_{m+n}^{(k)}-(-1)^{n} v_{m-n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} u_{m}^{(k-i)}\left(v_{n+1}^{(i)}+v_{n-1}^{(i)}\right) ; \tag{3.18}\\
& \mathbf{6}^{\circ} . \tag{3.19}
\end{align*} v_{n}^{(k)}=(n-k+1) v_{n}^{(k-1)}-2\left(v_{n-1}^{(k)}+u_{n-1}^{(k-1)}\right) . ~ \$
$$

Proof: 1°. This can be obtained by differentiating the identity $v_{n}^{(1)}=n u_{n}$, which had been proved in [1].
2°. By differentiating (1.1).
$3^{\circ} \sim 5^{\circ}$. By differentiating the following identities, which can be seen in [5] or can be derived from (1.2):

$$
\begin{array}{ll}
v_{n}=u_{n+1}+u_{n-1}, & \Delta^{2} u_{n}=v_{n+1}+v_{n-1}, \\
u_{m+n}=u_{m+1} u_{n}+u_{m} u_{n-1}, & v_{m+n}=v_{m+1} u_{n}+v_{m} u_{n-1}, \\
u_{m-n}=(-1)^{n}\left(u_{m} u_{n+1}-u_{m+1} u_{n}\right), & v_{m-n}=(-1)^{n}\left(u_{m+1} v_{n}-u_{m} v_{n+1}\right), \\
u_{m+n}+(-1)^{n} u_{m-n}=u_{m} v_{n}, & u_{m+n}-(-1)^{n} u_{m-n}=v_{m} u_{n}, \\
v_{m+n}+(-1)^{n} v_{m-n}=v_{m} v_{n}, & v_{m+n}-(-1)^{n} v_{m-n}=\Delta^{2} u_{m} u_{n}=u_{m}\left(v_{n+1}+v_{n-1}\right), \\
u_{-n}=(-1)^{n-1} u_{n}, & v_{-n}=(-1)^{n} v_{n}, \\
u_{2 n}=u_{n} v_{n}, & v_{2 n}=v_{n}^{2}-2(-1)^{n}, \\
u_{2 n+1}=u_{n+1} v_{n}-(-1)^{n}, & v_{2 n+1}=v_{n+1} v_{n}-(-1)^{n} x .
\end{array}
$$

6°. From the well-known identity $v_{n}=x u_{n}+2 u_{n-1}$, we get $x n u_{n}=n v_{n}-2\left((n-1) u_{n-1}+u_{n-1}\right)$, that is, $x v_{n}^{(1)}=n v_{n}-2\left(v_{n-1}^{(1)}+u_{n-1}\right)$, and the proof is finished by differentiating the last expres sion.

Let $x=1$ in $1^{\circ}, 2^{\circ}, 3^{\circ}$, and 6° of Theorem 3.1; then Conjectures 1-5 in [2] and [3] are proved.

4. SOME CONGRUENCE RELATIONS AND MODULAR PERIODICITIES

First, we introduce some concepts and lemmas. Set polynomials

$$
\begin{equation*}
g(t)=t^{k}-a_{1} t^{k-1}-\cdots-a_{k-1} t-a_{k} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{g}(t)=1-a_{1} t-\cdots-a_{k-1} t^{k-1}-a_{k} t^{k} \tag{4.2}
\end{equation*}
$$

Obviously, $g(t)=t^{k} \widetilde{g}(1 / t)$ and $\widetilde{g}(t)=t^{k} g(1 / t)$. The set of homogeneous linear recurrence sequences $\left\{g_{n}\right\}$ of order k [each of which has $g(t)$ as its characteristic polynomial] defined by

$$
\begin{equation*}
g_{n+k}=a_{1} g_{n+k-1}+\cdots+a_{k-1} g_{n+1}+a_{k} g_{n} \tag{4.3}
\end{equation*}
$$

is denoted by $\Omega(g(t))=\Omega\left(a_{1}, \ldots, a_{k}\right)$. The sequence $\left\{w_{n}\right\} \in \Omega(g(t))$ is called the principal sequence in $\Omega(g(t))$ if it has the initial values $w_{0}=w_{1}=\cdots=w_{k-2}=0, \dot{w}_{k-1}=1$.

Lemma 4.1: Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega(g(t))$; then its generating function is

$$
\begin{equation*}
W(t)=t^{k-1} / \widetilde{g}(t) \tag{4.4}
\end{equation*}
$$

(see [6], p. 137).
In the following discussions, we suppose that a_{1}, \ldots, a_{k} are all integers. Let $\left\{g_{n}\right\}$ be an integer sequence in $\Omega(g(t))$ and m be an integer greater than one. Denote the period of $\left\{g_{n}\right\}$ modulo m by $P\left(m, g_{n}\right)$. If there exists a positive integer λ such that

$$
\begin{equation*}
t^{\lambda} \equiv 1(\bmod m, g(t)), \tag{4.5}
\end{equation*}
$$

then the least positive integer λ such that (4.5) holds is called the period of $g(t)$ modulo m and is denoted by $P(m, g(t))$.

We point out that

$$
\begin{equation*}
P(m, g(t))=P(m, \tilde{g}(t)) \text { for } \operatorname{gcd}\left(m, a_{k}\right)=1 \tag{4.6}
\end{equation*}
$$

To show (4.6), it is sufficient to show that $g(t) \mid\left(t^{\lambda}-1\right)(\bmod m)$ iff $\widetilde{g}(t) \mid\left(t^{\lambda}-1\right)(\bmod m)$. Assume that $\widetilde{g}(t) \mid\left(t^{\lambda}-1\right)(\bmod m)$. Then we have $t^{\lambda}-1=h(t) \widetilde{g}(t)+m \cdot r(t)$, where $h(t)$ and $r(t) \in Z(t)$ (the set of polynomials with integer coefficients). Replacing t with $1 / t$, we obtain $(1 / t)^{\lambda}-1=h(1 / t) \widetilde{g}(1 / t)+m \cdot r(1 / t)$. Multiplying by t^{λ}, we then have $-\left(t^{\lambda}-1\right)=t^{\lambda-k} h(1 / t) g(t)+$ $m \cdot t^{\lambda} r(1 / t)$. Since $\operatorname{gcd}\left(m, a_{k}\right)=1$, the degree of $\widetilde{g}(t)(\bmod m)$ is k. This leads to $t^{\lambda-k} h(1 / t)$ and $t^{\lambda} r(1 / t) \in Z(t)$. Hence, $g(t) \mid\left(t^{\lambda}-1\right)(\bmod m)$. The converse can be proved in the same way.

Let $B(t)=1 / \widetilde{g}(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$. Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega(g(t))$. Then, from (4.4), we have $w_{n}=b_{n-k+1}$; and therefore, $P\left(m, w_{n}\right)=P\left(m, b_{n}\right)$. Corollary 2 in [7] means that $P\left(m, b_{n}\right)=P(m, \widetilde{g}(t)) .^{*}$ Therefore,

$$
\begin{equation*}
P\left(m, w_{n}\right)=P(m, \widetilde{g}(t)) . \tag{4.7}
\end{equation*}
$$

From (4.6) and (4.7), we obtain
Lemma 4.2: Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega(g(t))=\Omega\left(a_{1}, \ldots, a_{k}\right), \operatorname{gcd}\left(m, a_{k}\right)=1$. Then

$$
\begin{equation*}
P\left(m, w_{n}\right)=P(m, g(t)) . \tag{4.8}
\end{equation*}
$$

Using the footnote and (4.6), Theorems 17, 21, and 15 in [7] can be rewritten as Lemmas $4.3,4.4$, and 4.5 , respectively.

[^0]Lemma 4.3: Let $\varphi(t)$ be a monic polynomial with integer coefficients, p be a prime, $p \nmid \varphi(0)$, and $\varphi(t)$ be irreducible modulo p; then, for $p^{r-1}<s \leq p^{r}(r \geq 1)$,

$$
\begin{equation*}
P\left(p^{m}, \varphi(t)^{s}\right)=p^{m+r-1} \cdot P(p, \varphi(t)) \tag{4.9}
\end{equation*}
$$

Lemma 4.4: Let $\varphi(t)$ be a monic polynomial with integer coefficients, p be an odd prime, $p \nmid \varphi(0)$, and $\varphi(t)$ be irreducible modulo p. Assume $h_{\tau}(t)=\prod_{i=1}^{\tau} \Psi_{i}(t)$, where $\Psi_{i}(t) \equiv \varphi(t)^{s}(\bmod$ p) $(i=1, \ldots, \tau)$. For fixed $s, r \geq 1$, if there exists an integer $T>1$ such that

$$
\begin{equation*}
(T-1) s \leq p^{r-1}<T s<(T+1) s \leq p^{r}, \tag{4.10}
\end{equation*}
$$

then, for every τ satisfying $p^{r-1}<\tau \leq \leq p^{r}$, it follows that

$$
\begin{equation*}
P\left(p^{m}, h_{\tau}(t)\right)=P\left(p^{m}, \varphi(t)^{\tau s}\right)=p^{m+r-1} \cdot P(p, \varphi(t)) . \tag{4.11}
\end{equation*}
$$

Lemma 4.5: Let $\varphi(t)$ be a monic polynomial with integer coefficients, p be an odd prime, $p \nmid \varphi(0)$. If $P(p, \varphi(t))=P\left(p^{2}, \varphi(t)\right)=\cdots=P\left(p^{i}, \varphi(t)\right) \neq P\left(p^{i+1}, \varphi(t)\right)$, then $m>i$ leads to

$$
\begin{equation*}
P\left(p^{m}, \varphi(t)\right)=p^{m-i} \cdot P\left(p^{i}, \varphi(t)\right) \tag{4.12}
\end{equation*}
$$

Lemma 4.6: Let p be an odd prime, for $j=1,2, \varphi_{j}(t)$ be a monic polynomial with integer coefficients, $p \nmid \varphi_{j}(0)$, and $\varphi_{j}(t)$ be irreducible modulo p. Assume $h_{\tau}(t)=\prod_{i=1}^{\tau} \Psi_{i}(t)$, where $\Psi_{i}(t) \equiv$ $\varphi_{1}(t)^{s} \varphi_{2}(t)^{s}(\bmod p)(i=1, \ldots, \tau), \operatorname{gcd}\left(\varphi_{1}(t), \varphi_{2}(t)\right)=1(\bmod p)$. For fixed $s, r \geq 1$, if there exists an integer $T>1$ such that (4.10) holds, then for every τ satisfying $p^{r-1}<\tau s \leq p^{r}$ it follows that

$$
\begin{equation*}
P\left(p^{m}, h_{\tau}(t)\right)=P\left(p^{m}, \varphi_{1}(t)^{\tau s} \varphi_{2}(t)^{\tau s}\right)=p^{m+r-1} \cdot \operatorname{lcm}\left\{P\left(p, \varphi_{1}(t)\right), P\left(p, \varphi_{2}(t)\right)\right\} \tag{4.13}
\end{equation*}
$$

Proof: Denote $P\left(p, \varphi_{j}(t)\right)=\lambda_{j}(j=1,2), \operatorname{lcm}\left\{\lambda_{1}, \lambda_{2}\right\}=\lambda$. Since $h_{\tau}(t) \equiv \varphi_{1}(t)^{\tau s} \varphi_{2}(t)^{\tau s}(\bmod$ $p), \operatorname{gcd}\left(\varphi_{1}(t), \varphi_{2}(t)\right)=1(\bmod p)$, we have $P\left(p, h_{\tau}(t)\right)=\operatorname{lcm}\left\{P\left(p, \varphi_{1}(t)^{t s}\right), P\left(p, \varphi_{2}(t)^{t s}\right)\right\}$. By Lemma 4.3, $P\left(p, \varphi_{j}(t)^{r s}\right)=p^{r} \lambda_{j}$; hence, $P\left(p, h_{\tau}(t)\right)=p^{r} \lambda$.

Because T is the least τ satisfying $p^{r-1}<\tau s \leq p^{r}$ from (4.10), we get $h_{T}(t) \mid h_{\tau}(t)$; therefore, $P\left(p^{m}, h_{T}(t)\right) \mid P\left(p^{m}, h_{\tau}(t)\right)$. By Lemma 4.5, $P\left(p^{m}, h_{\tau}(t)\right) \mid p^{m-1} \cdot P\left(p, h_{\tau}(t)\right)=p^{m+r-1} \lambda$. By the same lemma, if we can show $P\left(p^{2}, h_{T}(t)\right) \neq P\left(p, h_{T}(t)\right)=p^{r} \lambda$, then $P\left(p^{m}, h_{T}(t)\right)=p^{m+r-1} \lambda$ and (4.13) holds.

Now we can rewrite $\Psi_{i}(t)=\varphi_{1}(t)^{s} \varphi_{2}(t)^{s}-p \theta_{i}(t), i=1, \ldots, T$. Hence,

$$
h_{T}(t) \equiv \varphi_{1}(t)^{s T} \varphi_{2}(t)^{s T}-p \varphi_{1}(t)^{s(T-1)} \cdot \varphi_{2}(t)^{s(T-1)} \cdot \zeta(t)\left(\bmod p^{2}\right), \text { where } \zeta(t)=\sum_{i=0}^{T} \theta_{i}(t)
$$

Then $h_{T}(t)\left[\varphi_{1}(t)^{s} \varphi_{2}(t)^{s}+p \zeta(t)\right] \equiv \varphi_{1}(t)^{s T+s} \varphi_{2}(t)^{s T+s}\left(\bmod p^{2}\right)$. Therefore,

$$
\begin{equation*}
\left.\frac{t^{p^{\gamma} \lambda}-1}{h_{T}(t)} \equiv \frac{t^{p^{\prime} \lambda}-1}{\varphi_{1}(t)^{s T}-1}+\frac{p\left(t^{p} \lambda\right.}{} \varphi_{2}(t)^{s T}-1\right) \zeta(t) \quad\left(\bmod p^{2}\right) . \tag{4.14}
\end{equation*}
$$

From (4.10) and Lemma 4.3, we know that $P\left(p, \varphi_{j}(t)^{s T+s}\right)=p^{r} \cdot P\left(p, \varphi_{j}(t)\right)=p^{r} \lambda_{j}$; thus, $\varphi_{j}(t)^{s T+s} \mid\left(t^{p^{r} \lambda}-1\right)(\bmod p)$. From $\operatorname{gcd}\left(\varphi_{1}(t), \varphi_{2}(t)\right)=1(\bmod p)$, it follows that

$$
\varphi_{1}(t)^{s T+s} \varphi_{2}(t)^{s T+s} \mid\left(t^{p^{r} \lambda}-1\right)(\bmod p),
$$

and so

$$
\varphi_{1}(t)^{s T+s} \varphi_{2}(t)^{s T+s} \mid p\left(t^{p t \lambda}-1\right)\left(\bmod p^{2}\right)
$$

Assume that $P\left(p^{2}, h_{T}(t)\right)=p^{r} \lambda$, then $h_{T}(t) \mid\left(t^{p^{r} \lambda}-1\right)\left(\bmod p^{2}\right)$. From equation (4.14), we get $\varphi_{j}(t)^{s T} \mid\left(t^{p^{r} \lambda}-1\right)\left(\bmod p^{2}\right)$; this leads to $P\left(p^{2}, \varphi_{j}(t)^{s T}\right) \mid p^{r} \lambda$. But from Lemma 4.3 we have $P\left(p^{2}, \varphi_{j}(t)^{s T}\right)=p^{r+1} \lambda_{j}$. This leads to the contradiction that $p^{r+1} \lambda \mid p^{r} \lambda$.

In the following discussions of this section when the divisibilities of $u_{n}^{(k)}$ and $v_{n}^{(k)}$ are considered, we assume x takes integer values only.

Theorem 4.1:

$$
\begin{equation*}
u_{n}^{(k)} \equiv v_{n}^{(k)} \equiv 0(\bmod k!) \tag{4.15}
\end{equation*}
$$

Proof: Denote

$$
\begin{equation*}
F_{k}(t)=\left(t^{2}-x t-1\right)^{k+1} \tag{4.16}
\end{equation*}
$$

Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega\left(F_{k}(t)\right)$. From Lemma 4.1, the generating function of $\left\{w_{n}\right\}$ is

$$
\begin{equation*}
W(t)=t^{2 k+1} /\left(1-x t-t^{2}\right)^{k+1} \tag{4.17}
\end{equation*}
$$

Comparing (2.7) to (4.17), we get

$$
\begin{equation*}
u_{n}^{(k)}=k!w_{n+k} \tag{4.18}
\end{equation*}
$$

Because $\left\{w_{n}\right\}$ is an integer sequence, we have $u_{n}^{(k)} \equiv 0(\bmod k!)$, and from (3.3) we get $v_{n}^{(k)} \equiv 0$ $(\bmod k!)$.

Theorem 4.2:

$$
\begin{equation*}
v_{n}^{(k)} \equiv 0(\bmod n)(k \geq 1) \tag{4.19}
\end{equation*}
$$

This follows from (3.1).
The results of the last two theorems are generalizations of the results of Conjectures 6-7 in [2].

Theorem 4.3: Let p be an odd prime, $p>k$.
1°. If $p \nmid \Delta^{2}$, then

$$
\begin{equation*}
P\left(p^{m}, u_{n}^{(k)}\right)=P\left(p^{m}, v_{n}^{(k)}\right)=p^{m} \cdot P\left(p, u_{n}\right)=p^{m} \cdot P\left(p, v_{n}\right) \tag{4.20}
\end{equation*}
$$

$\mathbf{2}^{\circ}$. If $p \mid \Delta^{2}$ and $p^{r-1}<2 k+2<p^{r} \quad(r=1$ or 2$)$, then

$$
\begin{equation*}
P\left(p^{m}, u_{n}^{(k)}\right)=4 p^{m+r-1} \tag{4.21}
\end{equation*}
$$

3°. If $p \mid \Delta^{2}$ and $p^{r-1}<2 k<p^{r} \quad(r=1$ or 2$)$, then

$$
\begin{equation*}
P\left(p^{m}, v_{n}^{(k)}\right)=4 p^{m+r-1} \tag{4.22}
\end{equation*}
$$

Proof: Denote $f(t)=t^{2}-x t-1$. From Lemma 4.2, (4.18), and (4.16), for $p>k$, we have $P\left(p, u_{n}\right)=P(p, f(t))$ and $P\left(p^{m}, u_{n}^{(k)}\right)=P\left(p^{m}, F_{k}(t)\right)$.
1°. Let $p \nmid \Delta^{2}$. From $v_{n}=u_{n+1}+u_{n-1}$ and $\Delta^{2} u_{n}=v_{n+1}+v_{n-1}$, it follows that $P\left(p, u_{n}\right)=P\left(p, v_{n}\right)$ $=\lambda$.

When $f(t)$ is irreducible modulo p, the conclusion $P\left(p^{m}, u_{n}^{(k)}\right)=p^{m} \lambda$ can be proved by letting $\varphi(t)=f(t), s=k+1, r=1$ in Lemma 4.3. When $f(t) \equiv(t-a)(t-b), a \neq b(\bmod p)$, the same conclusion can be proved by letting $\varphi_{1}(t)=t-a, \varphi_{2}(t)=t-b, s=r=1, \tau=k+1$ in Lemma 4.6.

We now prove $P\left(p^{m}, v_{n}^{(k)}\right)=p^{m} \lambda$. From (3.3), we can see that $P\left(p^{m}, v_{n}^{(k)}\right) \mid P\left(p^{m}, u_{n}^{(k)}\right)$. On the other hand, from $u_{n}=\left(v_{n+1}+v_{n-1}\right) / \Delta^{2}$, by differentiating, we can obtain

$$
\begin{equation*}
u_{n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i}\left(v_{n+1}^{(k-i)}+v_{n-1}^{(k-i)}\right) M_{i}(x) / \Delta^{2 i+2} \tag{4.23}
\end{equation*}
$$

where $M_{i}(x)$ is a polynomial in x with integer coefficients that are independent of n. We see that (3.2) implies $P\left(p^{m}, v_{n}^{(i-1)}\right) \mid P\left(p^{m}, v_{n}^{(i)}\right)$. Hence, for $i=0,1, \ldots, k, P\left(p^{m}, v_{n}^{(k-i)}\right) \mid P\left(p^{m}, v_{n}^{(k)}\right)$. From (4.23), it follows that $P\left(p^{m}, u_{n}^{(k)}\right) \mid P\left(p^{m}, v_{n}^{(k)}\right)$. Thus, $P\left(p^{m}, v_{n}^{(k)}\right)=P\left(p^{m}, u_{n}^{(k)}\right)=p^{m} \lambda$.
2°. Let $p \mid \Delta^{2}$, then $f(t) \equiv(t-x / 2)^{2}(\bmod p)$. From $x^{2} \equiv-4$, we get $(x / 2)^{2} \equiv-1(\bmod p)$. Hence, $P(p, t-x / 2)=\operatorname{ord}_{p}(x / 2)=4$. ${ }^{*}$ In Lemma 4.4, if we take $\varphi(t)=t-x / 2, h_{\tau}(t)=F_{k}(t) \equiv$ $\varphi(t)^{2 k+2}(\bmod p), s=2, r=1$ or $2, \tau=k+1$, then we get the required result.
3°. Using the result of 2°, it follows that $P\left(p^{m}, v_{n}^{(k)}\right)=P\left(p^{m}, n u_{n}^{(k-1)}\right) \| \operatorname{cm}\left\{P\left(p^{m}, n\right), P\left(p^{m}\right.\right.$, $\left.\left.u_{n}^{(k-1)}\right)\right\}=4 p^{m+r-1}$ when $p^{r-1}<2 k<p^{r}(r=1$ or 2$)$. Since $v_{n}=\alpha^{n}+\beta^{n} \equiv 2(x / 2)^{n}(\bmod p)$, then $4=P\left(p, v_{n}\right) \mid P\left(p^{m}, v_{n}^{(k)}\right)$, and we have $P\left(p^{m}, v_{n}^{(k)}\right)=4 p^{M}$. We want to show that $M=m+r-1=$ $m+1$ for $r=2$, or $=m$ for $r=1$. First, let $r=2$. If it would not be the case, that is, if $M \leq m$, then if we replace n by $n+4 p^{m}$ in (3.19) we have

$$
x v_{n}^{(k)} \equiv\left(n+4 p^{m}-k+1\right) v_{n}^{(k-1)}-2\left[v_{n-1}^{(k)}+u_{n+4 p^{m}-1}^{(k-1)}\right]\left(\bmod p^{m}\right)
$$

Subtracting this from $x v_{n}^{(k)} \equiv(n-k+1) v_{n}^{(k-1)}-2\left[\nu_{n-1}^{(k)}+u_{n-1}^{(k-1)}\right]\left(\bmod p^{m}\right)$, we get $u_{n+4 p^{m}-1}^{(k-1)}-$ $u_{n-1}^{(k-1)} \equiv 2 p^{m} v_{n}^{(k-1)} \equiv 0\left(\bmod p^{m}\right)$. This means that $P\left(p^{m}, u_{n}^{(k-1)}\right) \mid 4 p^{m}$ for $r=2$. But, by 2°, we should have $P\left(p^{m}, u_{n}^{(k-1)}\right)=4 p^{m+1}$ for $r=2$. A contradiction!

Next, let $r=1$. The least k satisfying $1<2 k<p$ is 1 . Recalling that $P\left(p^{m}, v_{n}^{(1)}\right) \mid P\left(p^{m}, v_{n}^{(k)}\right)$, we need only prove that $M=m$ for $k=1$. On the contrary, suppose $M \leq m-1$. then

$$
v_{n+4 p^{m-1}}^{(1)}-v_{n}^{(1)}=\left(n+4 p^{m-1}\right) u_{n+4 p^{m-1}}-n u_{n} \equiv 0\left(\bmod p^{m}\right)
$$

Expanding u_{n} in (1.2) into the polynomial in x, Δ, and noting $p \mid \Delta^{2}$, we obtain

$$
\begin{equation*}
n u_{n}=n \sum_{i=0}^{[n-1 / 2]}\binom{n}{2 i+1}(x / 2)^{n-2 i-1}(\Delta / 2)^{2 i} \equiv n \sum_{i=0}^{m-1}\binom{n}{2 i+1}(x / 2)^{n-2 i-1}(\Delta / 2)^{2 i}\left(\bmod p^{m}\right) \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(n+4 p^{m-1}\right) u_{n+4 p^{m-1}} \equiv\left(n+4 p^{m-1}\right) \sum_{i=0}^{m-1}\binom{n+4 p^{m-1}}{2 i+1}(x / 2)^{n+4 p^{m-1}-2 i-1}(\Delta / 2)^{2 i}\left(\bmod p^{m}\right) \tag{4.25}
\end{equation*}
$$

When $m>1$, since

[^1]$$
\left(n+4 p^{m-1}\right)\binom{n+4 p^{m-1}}{2 i+1} \equiv n\binom{n}{2 i+1}\left(\bmod p^{m-1}\right) \quad \text { and } \quad p \mid \Delta^{2 i} \text { for } i \geq 1,
$$
and furthermore, $(x / 2)^{4}=1(\bmod p)$ implies $(x / 2)^{4 p^{n-1}} \equiv 1\left(\bmod p^{m}\right),(4.25)$ can be reduced to
\[

$$
\begin{equation*}
\left(n+4 p^{m-1}\right) u_{n+4 p^{m-1}} \equiv\left(n+4 p^{m-1}\right)^{2}(x / 2)^{n-1}+n \sum_{i=1}^{m-1}\binom{n}{2 i+1}(x / 2)^{n-2 i-1}(\Delta / 2)^{2 i}\left(\bmod p^{m}\right) . \tag{4.26}
\end{equation*}
$$

\]

Subtract (4.24) from (4.26) to get

$$
\left(w_{1}+4 p^{m-1}\right) u_{n+4 p^{m-1}}-n u_{n} \equiv 8 n p^{m-1}(x / 2)^{n-1} \equiv 0\left(\bmod p^{m}\right) \text { for } p \nmid n .
$$

This is a contradiction!
When $m=1$, from (4.24) and (4.25), we obtain

$$
(n+4) u_{n+4}-n u_{n} \equiv 8(n+2)(x / 2)^{n-1} \equiv 0(\bmod p)
$$

for $n \neq-2(\bmod p)$. This is also a contradiction!
From Theorem 4.3, we can obtain many specific congruences. For this, we introduce another concept. Let $\left\{g_{n}\right\}$ be an integer sequence. If there exists a positive integer s, a nonnegative integer n_{0}, and an integer $c, \operatorname{gcd}(m, c)=1$, such that

$$
\begin{equation*}
g_{n+s} \equiv c g_{n}(\bmod m) \quad \text { iff } n \geq n_{0}, \tag{4.27}
\end{equation*}
$$

then the least positive integer s satisfying (4.27) is called the constrained period of $\left\{\boldsymbol{g}_{n}\right\}$ modulo m and is denoted by $s=P^{\prime}\left(m, g_{n}\right)$. The number c is called the multiplier.

Lemma 4.7: Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega\left(F_{k}(t)\right)$, where $F_{k}(t)$ is denoted by (4.16). Then $P^{\prime}\left(m, w_{n}\right)=s$ exists and the multiplier c is equal to $w_{s+2 k+1}(\bmod m)$. Furthermore, if $r=\operatorname{ord}_{m}(c)$, then $P\left(m, w_{n}\right)=s r$, and the structure of $\left\{w_{n}(\bmod m)\right\}$ in a period is as follows:

$$
\left\{\begin{array}{llll}
0, \ldots, 0,1, & w_{2 k+2}, & w_{2 k+3}, & \ldots, w_{s-1} \tag{4.28}\\
0, \ldots, & 0, c, & c w_{2 k+2}, & c w_{2 k+3},
\end{array} \cdots, c w_{s-1}, ~ 子 \begin{array}{lll}
\ldots & & \\
0, \ldots, & 0, c^{r-1}, c^{r-1} w_{2 k+2}, & c^{r-1} w_{2 k+3}, \ldots, c^{r-1} w_{s-1}
\end{array}\right.
$$

Proof: Because $\left\{w_{n}\right\}$ is periodic, it must be constrained periodic [in the most special case, the multiplier c may be equal to $1(\bmod m)]$. We have $w_{0}=\cdots=w_{2 k}=0$ and $w_{2 k+1}=1$. Replacing n by $2 k+1$ in the expression

$$
\begin{equation*}
w_{n+s} \equiv c w_{n}(\bmod m), \tag{4.29}
\end{equation*}
$$

we obtain $c \equiv w_{s+2 k+1}(\bmod m)$. By induction, from (4.29), we can get

$$
\begin{equation*}
w_{n+j s} \equiv c^{j} w_{n}(\bmod m) . \tag{4.30}
\end{equation*}
$$

If $j=r=\operatorname{ord}_{m}(c)$, then (4.30) becomes $w_{n+r s} \equiv w_{n}(\bmod m)$. This means that $P\left(m, w_{n}\right)=s r$. In (4.30), let j be $0,1, \ldots, r-1$ and n be $0,1, \ldots, s-1$; then (4.28) follows.

From Lemma 4.7, (4.18), and (3.1), we obtain

Theorem 4.4: Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega\left(F_{k}(t)\right)$, where $F_{k}(t)$ is denoted by (4.16), and let p be an odd prime, $p>k, P^{\prime}\left(p^{m}, w_{n}\right)=s$. If $w_{n} \equiv 0\left(\bmod p^{m}\right)$ for $n \equiv i(\bmod s)$, then

$$
u_{n}^{(k)} \equiv 0\left(\bmod p^{m}\right) \text { for } n \equiv i-k(\bmod s)
$$

and

$$
v_{n}^{(k+1)} \equiv 0\left(\bmod p^{m}\right) \text { for } n \equiv i-k(\bmod s) \text { or } n \equiv 0\left(\bmod p^{m}\right) .
$$

Furthermore, if $\lambda p^{r} \equiv i-k(\bmod s)$, then $v_{\lambda p^{r}}^{(k+1)} \equiv 0\left(\bmod p^{m+r}\right)$.
Example 1: Let $x=1, p=3$. Then $\Delta^{2}=5, p \nmid \Delta^{2}$. Hence, from (4.20), we obtain $P\left(3^{m}, f_{n}^{(k)}\right)=$ $P\left(3^{m}, \ell_{n}^{(k)}\right)=3^{m} \cdot P\left(3, f_{n}\right)=8 \cdot 3^{m}$ for $k=1,2$.
Example 2: Let $x=1, p=5$. Then $p \mid \Delta^{2}=5$. Hence, from (4.21), we get $P\left(5^{m}, f_{n}^{(k)}\right)=4 \cdot 5^{m+1}$ for $k=2,3,4$, or $4 \cdot 5^{m}$ for $k=1$ and, from (4.22), we get $P\left(5^{m}, \ell_{n}^{(k)}\right)=4 \cdot 5^{m+1}$ for $k=3,4$ or $4 \cdot 5^{m}$ for $k=1,2$.
Example 3: We show that $f_{n}^{(2)}=0(\bmod 10)$ iff $n \equiv 0, \pm 1, \pm 2(\bmod 25)$, and $\ell_{n}^{(3)} \equiv 0(\bmod 30)$ iff $n \equiv \pm 1, \pm 2(\bmod 25)$ or $n \equiv 0(\bmod 5)$.

Proof of Example 3: We have $F_{2}(t)=\left(t^{2}-t-1\right)^{3}=t^{6}-3 t^{5}+5 t^{3}-3 t-1 \equiv t^{6}-3 t^{5}-3 t-1$ $(\bmod 5)$ for $x=1$. Let $\left\{w_{n}\right\}$ be the principal sequence in $\Omega\left(F_{2}(t)\right)$. Then $w_{n+6} \equiv 3 w_{n+5}+3 w_{n+1}+w_{n}$ $(\bmod 5)$.

Calculate $\left\{w_{n}(\bmod 5)\right\}_{0}^{\infty}$ according to the last congruence:

$$
0,0,0,0,0,1,-2,-1,2,1,1,-2,-1,2,1,2,1,-2,-1,2,-2,-1,2,1,-2,0,0,0,0,0,-2, \ldots(\bmod 5) .
$$

This implies that $s=P^{\prime}\left(5, w_{n}\right)=25$ and $w_{n} \equiv 0(\bmod 5)$ iff $n \equiv 0,1,2,3,4(\bmod 25)$. Hence, the example is proved by Theorem 4.1 and Theorem 4.4.

5. EVALUATION OF SOME SERIES INVOLVING $u_{n}^{(k)}$ AND $v_{n}^{(k)}$

Lemma 5.1:

1. $\sum_{i=0}^{n} u_{i}=\left(u_{n+1}+u_{n}-1\right) / x(x \neq 0)$.
2°. $\sum_{i=0}^{n} v_{i}=\left(v_{n+1}+v_{n}-2\right) / x+1 \quad(x \neq 0)$.
2. $\sum_{i=0}^{n}\binom{n}{i} x^{i} h_{i+r}=h_{2 n+r}$, where $\left\{h_{n}\right\}$ is $\left\{u_{n}\right\}$ or $\left\{v_{n}\right\}$.
4°. $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{2 i+r}=(-1)^{n} x^{n} h_{n+r}$, where $\left\{h_{n}\right\}$ is $\left\{u_{n}\right\}$ or $\left\{v_{n}\right\}$.
3. $\sum_{i=0}^{n}\binom{n}{i} u_{2 i+r}=\left(x^{2}+4\right)^{n / 2} u_{n+r}$ for $2 \mid n$, or $\left(x^{2}+4\right)^{(n-1) / 2} v_{n+r}$ for $2 \nmid n$.
$\mathbf{6}^{\circ}$. $\sum_{i=0}^{n}\binom{n}{i} v_{2 i+r}=\left(x^{2}+4\right)^{n / 2} v_{n+r}$ for $2 \mid n$, or $\left(x^{2}+r\right)^{(n+1) / 2} u_{n+r}$ for $2 \nmid n$.

Proof: We prove only 2° and 5°. The rest can be proved in the same way.

$$
\begin{aligned}
\mathbf{2}^{\circ} . \sum_{i=0}^{n} v_{i}=\sum_{i=0}^{n}\left(\alpha^{i}+\beta^{i}\right) & =\left(1-\alpha^{n+1}\right) /(1-\alpha)+\left(1-\beta^{n+1}\right) /(1-\beta) \\
& =\left(1-\alpha^{n+1}-\beta-\alpha^{n}+1-\beta^{n+1}-\alpha-\beta^{n}\right) /(-x)=\left(v_{n+1}+v_{n}-2\right) / x+1
\end{aligned}
$$

5°. We have

$$
\sum_{i=0}^{n}\binom{n}{i} \alpha^{2 i}=\left(1+\alpha^{2}\right)^{n}=\left(-\alpha \beta+\alpha^{2}\right)^{n}=\Delta^{n} \alpha^{n}
$$

For the same reason

$$
\sum_{i=0}^{n}\binom{n}{i} \beta^{2 i}=(-1)^{n} \Delta^{n} \beta^{n}
$$

Hence,

$$
\begin{aligned}
& \begin{aligned}
\sum_{i=0}^{n}\binom{n}{i} u_{2 i+r} & =\sum_{i=0}^{n}\binom{n}{i}\left(\alpha^{2 i+r}-\beta^{2 i+r}\right) / \Delta=\Delta^{n}\left[\alpha^{n+r}-(-1)^{n} \beta^{n+r}\right) / \Delta \\
& =\Delta^{n}\left[\alpha^{n+r}-\beta^{n+r}\right) / \Delta=\left(x^{2}+4\right)^{n / 2} u_{n+r} \text { for } 2 \mid n, \\
& =\Delta^{n-1}\left(\alpha^{n+r}+\beta^{n+r}\right)=\left(x^{2}+4\right)^{(n-1) / 2} v_{n+r} \text { for } 2 \nmid n .
\end{aligned}
\end{aligned}
$$

Theorem 5.1:

$$
\begin{align*}
& \sum_{i=0}^{n} u_{i}^{(k)}=\sum_{i=0}^{k}(-1)^{i}(k)_{i}\left[u_{n+1}^{(k-i)}+u_{n}^{(k-i)}-\delta_{k, i}\right] / x^{i+1} \quad(x \neq 0) ; \tag{5.7}\\
& \sum_{i=0}^{n} v_{i}^{(k)}=\sum_{i=0}^{k}(-1)^{i}(k)_{i}\left[v_{n+1}^{(k-i)}+v_{n}^{(k-i)}-2 \delta_{k, i}\right] / x^{i+1} \quad(x \neq 0) ; \tag{5.8}\\
& \sum_{i=0}^{n}\binom{n}{i} x^{i} h_{i+r}^{(k)}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(n)_{i} h_{2 n-i+r}^{(k-i)}, \tag{5.9}\\
& \text { where }\left\{h_{n}^{(i)}\right\} \text { is }\left\{u_{n}^{(i)}\right\} \text { or }\left\{v_{n}^{(i)}\right\}(i=0, \ldots, k) \text {; } \\
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} h_{2 i+r}^{(k)}=(-1)^{n} \sum_{i=0}^{k}\binom{k}{i}(n)_{i} x^{n-i} h_{n+r}^{(k-i)}, \tag{5.10}\\
& \text { where }\left\{h_{n}^{(i)}\right\} \text { is }\left\{u_{n}^{(i)}\right\} \text { or }\left\{v_{n}^{(i)}\right\}(i=0, \ldots, k) ; \\
& \sum_{i=0}^{n}\binom{n}{i} u_{2 i+r}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} u_{n+r}^{(k-i)} \frac{d^{i}}{d x^{i}}\left(x^{2}+4\right)^{n / 2} \text { for } 2 \mid n, \tag{5.11}\\
& \text { or } \quad=\sum_{i=0}^{k}\binom{k}{i} v_{n+r}^{(k-i)} \frac{d^{i}}{d x^{i}}\left(x^{2}+4\right)^{(n-1) / 2} \text { for } 2 \nmid n \text {; } \\
& \sum_{i=0}^{n}\binom{n}{i} v_{2 i+r}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} v_{n+r}^{(k-i)} \frac{d^{i}}{d x^{i}}\left(x^{2}+4\right)^{n / 2} \text { for } 2 \mid n, \tag{5.12}\\
& \text { or } \quad=\sum_{i=0}^{k}\binom{k}{i} u_{n+r}^{(k-i)} \frac{d^{i}}{d x^{i}}\left(x^{2}+r\right)^{(n+1) / 2} \text { for } 2 \nmid n \text {. }
\end{align*}
$$

Proof: Every one of (5.7), (5.8), (5.10)-(5.12) can be proved straightforwardly by differentiating the corresponding one of (5.1), (5.2), (5.4)-(5.6). The proof of (5.9) is as follows.

Let

$$
\begin{equation*}
g_{n, k, r}=g_{n, k, r}(x)=\sum_{i=0}^{k}\binom{n}{i} x^{i} h_{i+r}^{(k)} \tag{5.13}
\end{equation*}
$$

Then

$$
g_{n, k, r}^{\prime}=\sum_{i=0}^{k}\binom{n}{i} x^{i} h_{i+r}^{(k+1)}+\sum_{i=1}^{n}\binom{n}{i} i x^{i-1} h_{i+r}^{(k)}=g_{n, k+1, r}+n \cdot g_{n-1, k, r+1}
$$

So

$$
\begin{equation*}
g_{n, k+1, r}=g_{n, k, r}^{\prime}-n \cdot g_{n-1, k, r+1} \tag{5.14}
\end{equation*}
$$

When $k=0$, from (5.3), we can see that (5.9) holds. Assume that (5.9) holds for k; then from (5.14), we have

$$
g_{n, k+1, r}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(n)_{i} h_{2 n-i+r}^{(k+1-i)}-n \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(n-1)_{i} h_{2 n-1-i+r}^{(k-i)}
$$

The second summation in the right side of the last expression can be rewritten as

$$
\begin{aligned}
& -n \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(n-1)_{i} h_{2 n-1-i+r}^{(k-i)}-n(-1)^{k} \cdot(n-1)_{k} h_{2 n-1-k+r} \\
& =\sum_{i=1}^{k}(-1)^{i}\binom{k}{i-1}(n)_{i} h_{2 n-i+r}^{(k+1-i)}+(-1)^{k+1}(n)_{k+1} h_{2 n-(k+1)+r} .
\end{aligned}
$$

From this, it follows that

$$
g_{n, k+1, r}=\sum_{i=0}^{k+1}(-1)^{i}\binom{k+1}{i}(n)_{i} h_{2 n-i+r}^{(k+1-i)},
$$

that is, (5.9) also holds for $k+1$, and we are done.
It is known that the generating function of $\left\{u_{n}^{(k)}\right\}$ is expressed by (2.7). It is well known that the generating function of $\left\{v_{n}\right\}$ is

$$
\begin{equation*}
V(t)=(2-x t) /\left(1-x t-t^{2}\right) \tag{5.15}
\end{equation*}
$$

Differentiating (5.15), we can know that the generating function of $\left\{v_{n}^{(k)}\right\}$ is

$$
\begin{equation*}
V_{k}(t)=k!t^{k}\left(1+t^{2}\right) /\left(1-x t-t^{2}\right)^{k+1} \quad(k \geq 1) \tag{5.16}
\end{equation*}
$$

Obviously, the following identities hold:

$$
\begin{gathered}
U_{k}(t) \cdot U_{r}(t)=\frac{k!r!}{(k+r+1)!} U_{k+r+1}(t) \\
V_{k}(t) \cdot V_{r}(t)=\frac{k!r!}{(k+r+1)!}\left(t+t^{-1}\right) V_{k+r+1}(t) \quad(k, r \geq 1) \\
U_{k}(t) \cdot V_{r}(t)=\frac{k!r!}{(k+r+1)!} V_{k+r+1}(t) \quad(r \geq 1) \\
U_{k}(t) \cdot V(t)=\frac{1}{k+1}\left(2 t^{-1}-x\right) U_{k+1}(t)
\end{gathered}
$$

$$
V_{k}(t) \cdot V(t)=\frac{1}{k+1}\left(2 t^{-1}-x\right) V_{k+1}(t) \quad(k \geq 1) .
$$

Equalizing the coefficients of t^{n} of the two sides in each of the above identities, we have
Theorem 5.2:

$$
\begin{align*}
& \sum_{i=0}^{n} u_{i}^{(k)} u_{n-i}^{(r)}=\frac{k!r!}{(k+r+1)!} u_{n}^{(k+r+1)} ; \tag{5.17}\\
& \sum_{i=0}^{n} v_{i}^{(k)} v_{n-i}^{(r)}=\frac{k!r!}{(k+r+1)!}\left(v_{n-i}^{(k+r+1)}+v_{n+1}^{(k+r+1)}\right) \quad(k, r \geq 1) ; \tag{5.18}\\
& \sum_{i=0}^{n} u_{i}^{(k)} v_{n-i}^{(r)}=\frac{k!r!}{(k+r+1)!} v_{n}^{(k+r+1)} \quad(r \geq 1) ; \tag{5.19}\\
& \sum_{i=0}^{n} u_{i}^{(k)} v_{n-i}=\frac{1}{k+1}\left(2 u_{n+1}^{(k+1)}-x u_{n}^{(k+1)}\right) ; \tag{5.20}\\
& \sum_{i=0}^{n} v_{i}^{(k)} v_{n-i}=\frac{1}{k+1}\left(2 v_{n+1}^{(k+1)}-x v_{n}^{(k+1)}\right) \quad(k \geq 1) . \tag{5.21}
\end{align*}
$$

REFERENCES

1. P. Filipponi \& A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. Dordrecht: Kluwer, 1991.
2. P. Filipponi \& A. F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 31.3 (1993): 194-204.
3. P. Filipponi \& A. F. Horadam. "Addendum to "Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 32.2 (1994):110.
4. K. S. Miller. Advanced Complex Calculus. New York, 1960.
5. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-240, 289-321.
6. Richard A. Brualdi. Introductory Combinatorics. The Hague: North-Holland, 1977.
7. Y. H. Harris Kwong. "Periodicities of a Class of Infinite Integer Sequences Modulo m." J. Number Theory 31 (1989):64-79.
8. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif.: The Fibonacci Association, 1979.
9. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). China: Hunan Science and Technology Publishing House, 1993. [MR 95m:11027]
AMS Classification Numbers: 11B39, 26A24, 11B83

[^0]: ${ }^{*}$ In [7] the period of $\left\{b_{n}\right\}$ modulo m is referred to as the period of its generating function $B(t)=1 / \widetilde{g}(t)$ modulo m. Hence, the concept "the period of $1 / \widetilde{g}(t)$ modulo m " stated in [7] should be translated into " $P(m, \widetilde{g}(t))$ " in this paper.

[^1]: ${ }^{*}$ Let m and a be integers greater than one, $\operatorname{gcd}(m, a)=1$. The least positive integer λ satisfying $a^{\lambda} \equiv 1(\bmod m)$ is called the order of a modulo m and is denoted by ord ${ }_{m}(a)$. Since $t^{2}-1=[(t-a)+a]^{2}-1 \equiv a^{2}-1(\bmod (t-a))$, we have $P(m, t-a)=\operatorname{ord}_{m}(a)$.

