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1. INTRODUCTION 

The Fibonacci polynomials un = un(x) and the Lucas polynomials vn - vn(x) are defined by 
the second-order linear recurrence relations 

un = xun_x^un_2 O0 = 0,^ = 1), 
and (1.1) 

V « = * V l + V 2 (V0=2,V1 = X), 

where x is an indeterminate. Their kth -order derivative sequences are defined as 

u^ = uik\x) = £Fun(x) and v f = vf>(x) = ^ ( x ) . 

Denote /„ - i^(l), ln = v„(l), /„<*> = i#>(l), #> - v<*>(l). P. Filipponi and A. F. Horadam 
(PL [2]) considered /w(fc) and 6k) for * = 1,2 and obtained a series of results. By the end of [2], 
seven conjectures were presented for arbitrary &. In this paper we shall consider the more general 
cases, u^ and v^k\ for arbitrary k. Our results will be generalizations of the results in [1] and [2]. 
As special cases of our results, the seven conjectures in [2] will be proved. 

Following the symbols in [ 1 ] and [2], denote A = V x2 + 4, a - (x + A) / 2, /? = (x - A) / 2, so 
that a+J3 = x, aj3 - - 1 , a - p = A. It is well known that 

un = (a" -fin)l A, vn = an+pn. (1.2) 

2. EXPRESSIONS FOR «<*> AND v<*> IN TERMS OF 
FIBONACCI AND LUCAS POLYNOMIALS 

Theorem 2.1: 
„W= * ! 

2A' 2 F K A + \ t v » ) > (2 1) 
where 

and 

/=o V ' ,=o V / 
21 it-/ 2 ^ - / 

*„,*= i f * ^ r K w ^ - ^ ) + i f^^"]At"i_'(%+^)' (2-3> 
i=0 V ' /=0 V ' 2|*-i 2 ^ - / 

where c ,̂. and dki (i = 0,l,...,k) satisfy the systems of linear equations 
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and 
ck,i+{kt%^-^{ktiyck,o=(-iy{ktiy (2.4) 

dk,i + 
(k + i\ . fk + A fk + l\ . 

A'. (2.5) , ,<*ikj-i+"-+\ . Wdkfi = , 
v 1 ) \ l ) V » y 

Furthermore, for z = 0,1,..., k, there exist polynomials pkj and ̂  in x, with integer coefficients, 
which satisfy 

Ck,i=Pk,i<x + qk.i a n d dk,i=Pk,iP + <lk,i- (2.6) 

Proof: Let the generating functions of {w„} and {w£fc)} be £/(f) = U(t, x) = X^=0 uj" and 
C/jtCO = t/k(f, x) = Z"=0 «i*^", respectively. It is well known that U(t) = t/(\-xt-t2), hence, 

Uk(t) = -^-U(t) = k\tk+1/(l-xt-t2)k+1. (2.7) 

By partial fractions we have 

tk+ll{\-xt-t2)k+l = t Q u I(1 -aO^1- ' ' + 1 R . J I(1 - p t f ^ , (2.8) 
7=0 Z=0 

where g^- andi^?/ are independent of if. Multiplying by ak+1(l-fit)k+l, we obtain 

(at)k+l I (1 - at)k+1 = (a + 0*+1£ ft,, / (1 - a0*+ W + 9{t), (2.9) 

where the function q>(t) is analytic at the point t = a - 1 under the condition that t is considered as 
a complex variable (while x Is a real constant). Since(at)k+l / (I- at)k+l = [(1 - «0_ 1 -1]^+1 and 
(a + f)*+1 = [A + fi(l - at)f+l, we can rewrite (2.9) as 

/=<A 1=0 

Because of the uniqueness of the Laurent series [4] at the point t = a~l for the function 
(atf+l I (1 - at)k+\ we can compare the coefficients of (1 - af)'(*+1~° (/ = 0,1,..., k) of the two 
sides in the last equality to get 

/=o 
Let 

i p ; 1 ) ^ 1 - ^ (2.io) 
Q,, = A ^ + 1 + \ , (1 = 0,1,...,*) (2.H) 

and substitute it into (2.10); then we get (2.4). For the same reason, it follows that 

i^-A^-vv.,.=(-iy(*;1} (2.i2) 
L e t Rk,i = (-A)-<fc+1+'>4 ,. (/ = 0,1, ...,*) (2.13) 

and substitute it into (2.12); then we get (2.5). 
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Now we shall prove (2.6). From (2.4) and (2.5), ck0 = dk0 - 1; hence, the conclusion holds 
for /' = 0. Suppose the conclusion holds for 0,1,...,?-1. Then, from (2.4) and (2.5), we have 

and 

(2.14) 

(2.15) 

From (1.2), it is easy to show that J3J = -Uja + uJ+1; hence, 

PJXPk,i-j<* + %J-J) = -Pkj-ifi1'1 +1kj-jPi 

= (Pk,i-juj-i -qk,i-juj)a + (qk,i-jUj+i- Pk,i-jUj)-

For the same reason, we have 

<XJ(Pk,,-jP + flt,/-y) = (PkJ-j«j-l ~ <lk,i-juj)P + (%,i-juj+l - Pk,i-juj•)• 

We can see that A' is a polynomial in x with integer coefficients for 2|;', but A' = A'_1(jt-2/?) and 
(-A/ = /£~\x-2a) for 2|/. By substituting the above results into (2.14) and (2.15), and by the 
inductive hypothesis, the conclusion is proved. 

Now substituting (2.11), (2.13), and (2.6) into (2.8), then into (2.7), we get 

^ « = 4 F A2' .1=0 /=o 

ft! 
A2* 

X (ckJ I (1 - a0 i + 1- ' - dkJ I (1 - /31f)k+1-')A*-1-'" 
2|fc-/ 

i+l- / \Ait - l - / + E(% /(i-«0*+1-' +dkJ/(\-/*?+")* 

Expanding the right side of the last expression into power series in t and using (2.6), we obtain 

«£*> = A 2 £ 
2|Jfc-A / 2^ - / V / 

(2.16) 

It is easy to prove that un+l = (xun + v„) / 2, vn+1 = (A2M„ + xvn) 12; hence, 

Pk,iUn+l + 1k,iUr, = ((Pk,iX + 21k,i)Un + PkJVn) ' 2 

= ((<*,, + dkJ)u„ + (ckJ - dki)A-\) 12, 

= ((<*./ ~dk,i)Aun + (Ck,i +dk,i)v„)/2. 

(2.17) 

(2.18) 

Substitute (2.17) and (2.18) into (2.16) and we are done. D 
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As an example, when k = 3 and 4, Theorem 2.1 gives the following results: 
c30 = d30 = 1, c31 = - 4 A - 4/?, d31 = 4A - 4 a , 
Cj2 = 6A2 + 16/?A + 10/?2, d32 = 6A2 - 16aA + 10a2, 
c33 = -4A3 - 24/7A2 - 40/?2A - 20/?3, d33 = 4A3 - 24aA2 + 40a2A - 20a 3 , 
c30+a30 = 2, c31+a3l — —4x, 
Cj2 + d32 = 6x2 + 4, c33 + d33 = -4x3 + 4x, 
"-30 "30 ' c3i~dn = -4A, 
C32 - ^32 = 6xA> C33 - ^33 = ( ~ 4 * 2 + 4 ) A> 

a„3 = [ 2 + "]A2(-4x) + [ ° J " ] ( -4x 3
+ 4x ) + [ 3 + w]A3.0 + [1 + "]A-6xA 

= -2(«2 + l)r ' -4(2«2-3)x, 

= -n(n2 +1 l)x2 + -n(n2 - 4), 

M(3) = [-(6(»2 + l)x3 +12(2«2 - 3)x)u„ + (n(n2 +1 l)x2 + 4n(n2 - 4))v„] / A6; (2.19) 

in particular, 
/j3> = ( « 2 - l ) « - 6 / „ ) / 2 5 . (2-20) 

c4o = d40 = !> c4i = ~5A - 5 A rf4i = 5A - 5a, 
c42 = 10A2 + 25/7A +15/?2, d*42 = 10A2 - 25aA + 15a2, 
c43 = -10A3 - 50/7A2 - 75/?2A - 35/?3, rf43 = 10A3 - 50aA2 + 75a2A - 35a3 , 
c44 = 5A4 + 50/?A3 + 150/?2A2 + 175/^A + 70/?4, 
d"44 = 5A4 - 50aA3 +150a 2 A2 - 175a3A + 70a4 , 
c 4 0 +J 4 0 = 2, c41+d4l = -5x, 
c42 +d42 = 10x2 + 10, c43 +d43 = -10x 3 - 5 x , 
C44 + a44 = 5x — 15x , c40 — «4Q = 0, 
C41 - ^41 = ~ 5 A> C42 " ^42 = ! 0 x A > 

c43 ~ ^43 = ( -1 Ox2 + 5)A, c44 - d44 = (5x3 -15x) A, 

a«4 = l 4 
4 + « \ A4 A^2 + f2^lA2(10x2

 + 10) + f°j45x4-15x2) 

-ff3 + ̂ A3(-5A) + ^wJA(-10x2
+5)A 

= — (w4 + 35??2 + 24)x4 + - ( 2 « 4 + 25n2 - 7 2 ) x 2 + - ( w 4 - l O i 2 +9) , 
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ftB4 = [4J/,JA3.0 + ̂ 2+lljA(10xA) + [0J/,JA-1(5x3-15x)A 

= - -n(n2 + 5)x3 - -n{2n2 -1 l)x, 

"«4) = t(("4 + 3 5»2 + 24)x4 + 4(2»4 + 25n2 - 72)x2 +16(«4 - 1 On2 + 9))u„ 
- (I0n(n2 + S)x3 + 20n(2n2 - 1 l)x)v„] / A8; 

(2.21) 

in particular, 
/„(4) = [(5«4 - 5«2 - 24)/„ - 2«(5»2 -17)4,] /125. (2.22) 

We observe that (2.6) can be verified by using the above results. 
From v ^ = m£*~v> (see 1° of Theorem 3.1 in the next section) and Theorem 2.1, we can 

obtain the expression for v^ in terms of un and vn. 

3. SOME IDENTITIES INVOLVING «<*> AND v<*> 

If we differentiate certain identities involving un andv„, we can get the corresponding iden-
tities involving a£k) and v£*\ 

Theorem 3.1: 

V vW=nu<f-l\ (3.1) 
2°. u^ = *i£> +uik)2+kuikT1

1\ v f = *v^> +vW + ^ 7 ' ) ; (3.2) 

3 ^ > = ««+*£>, (3-3) 
A2wf > + 2Axwf ~!) + *(* - l)Mf "2) = v * + v£>; (3.4) 

4°- «& = t f / W / M 0 + « r^ .X (3-5) 

^ = tffl(^^0+e^2.), (3.6) 
e}„=(-irt fj }or°e -«£», (3.7) 

7=(A / 

e>„ = (-iriff 1(^3°^ -«ff^i); (3-8) 
/=o V / 

in particular, 
^ = ( -1)" -^) ; (3.9) 
^ = ( - 1 ) ^ ; (3.10) 

•fi^iffk^e (3.11) 
7=0 V / 
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AV = 2±(k;l)vrVj\ (3.12) 

•e = £(JklM); (3.i3) 
v2kn+i = Zf*V»+T/)v«)-(-1),,^ifc>i (^ is the Kronecker function); (3.14) 

/=(A ^ 

5". « & + ( - D - « & = i f ? ) « r M ° ; (3.i5) 

7=(A ' 

^ . + ( - i r ^ = tffk t-°v?) ; (3-17) 
z=(A / 

v^-(-irv«n=i(f)e'w,+v«); (3.i8) 
Z=(A / 

6°. xv^)=(w-ifc + l)vf-1)-2(v^)
1+ii^71)). (3.19) 

Proof: 1°. This can be obtained by differentiating the identity v® =nun, which had been 
proved in [1]. 

2°. By differentiating (1.1). 
3° ~ 5°. By differentiating the following identities, which can be seen in [5] or can be derived 

from (1.2): 
vn = u^+l + un_x, A\ = vn+l + v„_1? 
Um+n ~ Um+lUn + UmUn-h Vm+n ~ Vm+lUn + VmUn-h 
Um~n = (-lT(UmU

n+l ~ Um+lUnl Vm-n = H ^ O W l ^ " Wn+l)* 
Um+n + (-l)W««-n = UmVm Um+n " H ) " ^ - * = V A > 
Vm+, + {-lTVm-n = VmVm Vm+n ~ ("OX-* = A ^ A = Um(Vn+l +Vl ) , 

n.n=Hr1^ v.II=(-i)x, 
U2n+l = Un+lVn ~ H ) " , ^2n+l = Vn+lVn ~ H ) " * -

6°. From the well-known identity vn = x̂ w + 2ww_1, we get xra„ = nvn - 2((w - l)ww_! + ̂ „_i), 
that is, xvjp =nvn-2(y^}l + un_l), and the proof is finished by differentiating the last expres 
sion. D 

Let x = 1 in 1°, 2°, 3°, and 6° of Theorem 3.1; then Conjectures 1-5 in [2] and [3] are proved. 

4. SOME CONGRUENCE RELATIONS AND MODULAR PERIODICITIES 

First, we introduce some concepts and lemmas. Set polynomials 

g(t) = tk-altk-i akJ-ak (4.1) 
and 

£(0 = 1-0^ ak_/-l-aktk. (4.2) 
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Obviously, g(t) - tkg(l I i) and g(t) - tkg(l 11). The set of homogeneous linear recurrence 
sequences {gn} of order k [each of which has g(t) as its characteristic polynomial] defined by 

gfH-k = alSn+k-l + ' *' + <*k-lgn+l + akEn (4-3) 

is denoted by Q(g(t)) = Q(ah ...,ak). The sequence {wn} GQ(g(t)) is called the principal 
sequence in Q(g(t)) if it has the initial values w0=wl = ~- = wk_2 = 0, wk_l - 1. 

Lemma 4.1: Let {wn} be the principal sequence in Q(g(t)); then its generating function is 

W(t) = tk~1/g(t) (4.4) 

(see [6], p. 137). 
In the following discussions, we suppose that av...,ak are all integers. Let {gn} be an inte-

ger sequence in Q(g(t)) and m be an integer greater than one. Denote the period of {gn} modulo 
m by P(m, gn). If there exists a positive integer X such that 

tx^l(modm,g{t)), (4-5) 

then the least positive integer X such that (4.5) holds is called the period of g(t) modulo m and 
is denoted by P(m, g{t)). 

We point out that 
P(m, g(0) = P(m, g(f)) for gcd(w, ak) = 1. (4.6) 

To show (4.6), it is sufficient to show that g(t)\(t*-l) (mod m) iff g(t)\(tA-l) (mod m). 
Assume that g{t)\(tx -I) (mod m). Then we have tx -l = h(t)g(t) + m-r(t), where h{t) and 
r{f) GZ(t) (the set of polynomials with integer coefficients). Replacing t with lit, we obtain 
(1 / tf -1 = /?(! / t)g{\ lt) + m-r(Ylt). Multiplying by tx, we then have -{tx -1) = ^~*/i(l / t)g{t)+ 
m-txr(l 11). Since gcd(w, a^) = 1, the degree of g(t) (mod rri) is A. This leads to tx~kh{\ 11) and 
txr(llt) sZ(t). Hence, g(t)\(tx -1) (mod m). The converse can be proved in the same way. 

Let B{f) - l/g(t) = Ẑ Lo V • Let {w„} be the principal sequence in £l(g(t)). Then, from 
(4.4), we have wn =bn_k+l; and therefore, P{mywn) = P(m,b„). Corollary 2 in [7] means that 
P(m,bn) = P(m,g(t))* Therefore, 

P(m,wn) = P(m9g(t)y (4-7) 
From (4.6) and (4.7), we obtain 

Lemma 4.2: Let {ww} be the principal sequence in Q(g(t))=Q(al, ...,ak), gcd(w, ak) = 1. Then 
P(m,w„) = P(m,g(t)). (4.8) 

Using the footnote and (4.6), Theorems 17, 21, and 15 in [7] can be rewritten as Lemmas 
4.3, 4.4, and 4.5, respectively. 

* In [7] the period of {hj modulo m is referred to as the period of its generating function B(t) = l/g(t) modulo m. 
Hence, the concept "the period of 1/^(0 modulo m" stated in [7] should be translated into " P(m, g(t))" in this 
paper. 
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Lemma 43: Let <p(t) be a monic polynomial with integer coefficients, p be a prime, p\(p(0), and 
<p(f) be irreducible modulo/?; then, for pr~l <s<pr (r > 1), 

P<J?, cpity) = p^-1 -p(P, 9{t)). (4.9) 

Lemma 4.4: Let <p(t) be a monic polynomial with integer coefficients, p be an odd prime, 
pl<p(0), and <p(t) be irreducible modulo p. Assume hT(t) = JX=l

x¥i(t), where %{{) = (p{t)s (mod 
p) (i = 1,..., T). For fixed 5, r > 1, if there exists an integer T>\ such that 

{T~l)s<pr-l<Ts<{T+l)s<pr, (4.10) 

then, for every r satisfying pr~l < TS < p\ it follows that 

i V , hT (0) = P(/?w, p(f )ff) = Z ^ " 1 ' P(P, K0)- (4-11) 

Lemma 4.5: Let #>(Y) be a monic polynomial with integer coefficients, p be an odd prime, 
p\ <p(0). If P(p, (pit)) = P(p2, <p(t)) = ••• = P{p, <p{t)) * P(pi+1, (pit)), then m > i leads to 

P(pm,<p(t)) = Pm-i-P(pi,<P(t))- (4.12) 

Lemma 4.6: Let/? be an odd prime, for j = 1,2, ^y-(0 be a monic polynomial with integer coeffi-
cients, p\<Pj(0), and ^-(0 be irreducible modulo/?. Assume hr(t) = Tl*=l

x¥i(t), where ^-(0 = 
<Pi(t)s<p2(ty (mod/?) (i = 1,..., r), gcd(^!(0, ̂ ( 0 ) = 1 (mod/?). For fixed s,r>l, if there exists 
an integer T > 1 such that (4.10) holds, then for every r satisfying pr~l <z$<pr it follows that 

P(pm, hT(t)) = P(pm, 9l(tr<p2(tr) = pm^-\Cm{P{p, 9l{t)\ P{p, 9l(f))}. (4.13) 

Proof: Denote P(p, <pj(f)) = Xj (J = 1,2), lcm{Ab X2} = X. Since hjt) = <Piit)TS (p2it)TS (mod 
/>), gcd(^(0, ?2(0) = 1 (mod p), we have P(/>, ^ (0 ) = lcm{P<>, Pi(0ra), A A ?2(0ra)} • By 
Lemma 4.3, i>(>, <Pj(ty) = prXf, hence, />(p, \it)) = prX. 

Because Tis the least x satisfying pr~x <xs<pr from (4.10), we get hTit)\hrit); therefore, 
P(pm,hTit))\P(pm,hTit))- By Lemma 4.5, P{pm, hTit))\pm'1 • P(p, hrit)) = pm+r-iX. By the same 
lemma, if we can show P(p2Mt))* P(p,hTit)) = prX, then Pipm,hTit)) = p^^X and (4.13) 
holds. 

Now we can rewrite %it) = <Pi(ty<P2(t)s - P^tif), i = \...,T. Hence, 

Mt) - 9MT<Piit)sT- P<Piit)s(T-x) • 9iity(T-l) • CiO (mod p2), where £(f) = f 0,(0• 
z=0 

Then fcKOEPiO'^COJ + K(01 = (Pi{t)sT+s(p2{t)sT+s (mod p2). Therefore, 

r / ^ _ i _ / ^ - i /?(r^-iK(Q 2 

M O " ma<p2<$r <piWT+s92(tyT+s { p h { } 

From (4.10) and Lemma 4.3, we know that P(p,<Pj(t)sT+s) = pr 'P(p,<pj(t)) = prXj\ thus, 
(Pjity^Kt^ -1) (mod/?). From gcd(^(0, <p2(t)) = 1 (mod/?), it follows that 

^ ( 0 ' r + > 2 ( 0 5 r + 1 ( ^ -1) (mod/?), 
and so 
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(Pi{t)sT+s<Pi{t)sT+s \p{tfX ~ 1) (mod p2). 
Assume that P(p2,hT(t)) = prA, then hr{i)|(7^-1) (mod/?2). From equation (4.14), we get 
<Pj{t)sTWfX-^) (mod/?2); this leads to P(p2,<pj(t)sT)\prA. But from Lemma 4.3 we have 
P(P2> VjW7) = Pr+l^j • This leads to the contradiction that pr+lA \prX. D 

In the following discussions of this section when the divisibilities of u^ and v^ are con-
sidered, we assume x takes integer values only. 

Theorem 4.1: 
i^>sv<*>sO(modifc!). (4.15) 

Proof: Denote 
Fk(t) = (t2-xt-l)k+l. (4.16) 

Let {wn} be the principal sequence in Q(Fk(t)). From Lemma 4.1, the generating function of 
W is 

W(t) = t2k+l/(l-xt-t2)k+l. (4.17) 
Comparing (2.7) to (4.17), we get 

^ = k\w„+k. (4.18) 

Because {wn} is an integer sequence, we have u^ = 0 (mod&!), and from (3.3) we get v^ = 0 
(mod£!). • 

Theorem 4.2: 
v<*>sO (modrc) (k>\). (4.19) 

This follows from (3.1). 

The results of the last two theorems are generalizations of the results of Conjectures 6-7 in 
[2]. 

Theorem 4.3: Let/? be an odd prime, p> k. 
1°. If p\ A2, then 

P(pm, 4k)) = P(P
m, v«) = pm • P(p, u„) = pm • P(p, v„). (4.20) 

2°. Ifp\A2andpr-1<2k + 2<pr (r = 1 or2), then 

P(pm,uW) = 4pm+r-\ (4.21) 
3°. Ifp\A2andpr-1<2k<pr (r = 1 or2), then 

i V , v«) = 4/?m+'-1. (4.22) 

Proof: Denote / ( / ) = /2 - xt - 1 . From Lemma 4.2, (4.18), and (4.16), for p > k, we have 
P(p, un) = P(p, f{t)) and P(p», up) = P(jr, Ft(t)). 

1°. Let p\A2. From v„ = u„+l + u„^ and A2w„ = vn+1 + v„_u it follows that P(p, u„) = PQ>, v„) 
= A. 
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When f{i) is irreducible modulo p, the conclusion Pipm,u{k))- pmX can be proved by 
letting (pit) = fit),s = k + l,r = l in Lemma 4.3. When fit) = (r-a)if -b),a±b (mod p\ the 
same conclusion can be proved by letting <pxit) = t-a,<p2it) = t-b,s = r = l,T = k + l in Lemma 
4.6. 

We now prove Pipm, v<*>) = pmX. From (3.3), we can see that P(jf9 v(
n

k))\Pipm, u(
n
k)). On 

the other hand, from un - iyn+l + vn_{) I A2, by differentiating, we can obtain 

4k)=t {\ lo&°+er^M-w / A2;+2 , (4.23) 
where M^x) is a polynomial in x with integer coefficients that are independent of n. We see that 
(3.2) implies Pipm^-l))\Pipm,vf). Hence, fori = 0,1,..., k, Pipm,v{k~i))\Pipm,v{k)). From 
(4.23), it follows that P(jT, u{

n
k))\Pipm, v<*>). Thus, P(pm, v<*>) = P(j7w, w<*>) = /?"M. 

2°. Let p|A2, then /(f) = ( r -x /2 ) 2 (modp). From x2 = -4 , we get (x / 2)2 = -1 (modp). 
Hence, P(/?, t~x/2) = ordp(x / 2) = 4. * In Lemma 4.4, if we take (pit) = t-x/2, hTit) = Fkit) = 
(pit)2k+1 (mod/?), s = 2, r = lor2,r = k + l, then we get the required result. 

3°. Using the result of 2°, it follows that Pipm,v^) = PipmMn~l))\^™{PiPm,n)9 Pipm, 
^-D)} = 4pm+r~l when pr~l < 2k < pr (r = 1 or 2). Since vn = an + 0" = 2(x/2)" (mod p), then 
4 = P(j>, vn)\Pipm, v(„k)), and we have Pipm,v^) = 4/?M. We want to show that M = rn + r - 1 = 
iw + lforr = 2, or = iw forr = 1. First, let r = 2. If it would not be the case, that is, if M <m, 
then if we replace n by n + 4pm in (3.19) we have 

xvg> ^in + 4p™-k + l)v^ -2[vik_\ + u ^ J (modp"). 

Subtracting this from xv{k) = (w-* + l)v^-1)-2[v^?1+w^.71)] (mod/?'"), we get w ^ ^ -
^ i 1 ) 5 2//f lvf"1)s0 (mod/?w). This means that Pipm,u^)\4pm for r = 2. But, by 2°, we 
should have PCp™, u{k~l)) = 4 ^ + 1 for r = 2. A contradiction! 

Next, let r = 1. The least k satisfying 1 < 2k <p is 1. Recalling that Pipm, v^)\Pipm, v^}), 
we need only prove thatM = m for k = 1. On the contrary, suppose M < m -1. then 

V« V - > " V«1} = ^ + ^ X ^ ' - nUn s 0 (mod /7™) . 

Expanding i/„ in (1.2) into the polynomial in x, A, and noting p|A2, we obtain 

and 

in + 4pm-l)u• _, = (w + 4/7w-1)E o i (^/2)w+4/?m 2/"1(A/2)2/ (modpw). (4.25) 

When TW>1, since 

* Let m and a be integers greater than one, gcd(m, a) = 1. The least positive integer X satisfying ax = 1 (mod w) is 
called the order of a modulo m and is denoted by ordm(a). Since tx - 1 = [(r - a) + of -1 = ax -1 (mod (t - a)), we 
have P(m, t~a) = ordm(a). 
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(« + 4 ^ - ^ p ^ 4 ^ p w [ 2 / ^ i j (mod^"1) and /?|A2/for/>1, 

and furthermore, (x/2)4 = 1 (mod/?) implies (x/2)4^"1 = 1 (mod/?w), (4.25) can be reduced to 

m-lf n \ 

(ft + 4pm-l)un+4ifl-l = (ft + 4/?™-1)2(* / 2)"_1 + " £ 2/ +1 F 7 2T~2i~l(A ' 2)2 / ( m o d /?W) • (4-26) 

Subtract (4.24) from (4.26) to get 

(» + 4 /^> n + 4 / ^ . , ' - /»!#„ s &¥7W-1(JC / 2)n~l # 0 (mod /?w) for/?/ft. 

This is a contradiction! 
When m = 1, from (4.24) and (4.25), we obtain 

(w + 4)un+4 - ft^„ = 8(ft + 2)(x / 2)""1 ̂  0 (mod p) 

for ft 4 -2 (mod/?). This is also a contradiction! D 

From Theorem 4.3, we can obtain many specific congruences. For this, we introduce another 
concept. Let {gn} be an integer sequence. If there exists a positive integer s, a nonnegative inte-
ger MQ, and an integer c, gcd(m, c) = l, such that 

gn+* = cg* (modm) iff ft>ftb, (4.27) 
then the least positive integer s satisfying (4.27) is called the constrained period of {gn} modulo 
m and is denoted by s = P'{m, gn). The number c is called the multiplier. 

Lemma 4.7: Let {wn} be the principal sequence in Q(Fk(t)), where Fk(t) is denoted by (4.16). 
Then P'(m,wn) = s exists and the multiplier c is equal to ws+2k+l (mod m). Furthermore, if 
r = ordm(c), then P(m, wn) = sr, and the structure of {wn (modm)} in a period is as follows: 

fO, ..., 0, 1, w2k+2, w2k+3, ..., ws_h 

(4.28) 0, ..., 0, c, cw2k+2, cw2k+3, .-., cws_h 

0, ..., 0, cr \ cr lw2k+2, cr lw2Jc+3, ..., cr lws_v 

Proof: Because {wn} is periodic, it must be constrained periodic [in the most special case, 
the multiplier c may be equal to 1 (mod m)]. We have w0 = • • • = w2k = 0 and w2k+l = 1. Replac-
ing ft by 2k +1 in the expression 

wn+sscwn (modm), (4.29) 
we obtain c = ws+2k+i (modm). By induction, from (4.29), we can get 

Wn+J,sc/wn ( m o d m ) . ( 4 . 3 0 ) 

If j = r = ord^c), then (4.30) becomes wn+rs = wn (mod m). This means that P(m, wn) = sr. In 
(4.30), lety be 0,1,..., r -1 and n be 0,1,..., s-1; then (4.28) follows. D 

From Lemma 4.7, (4.18), and (3.1), we obtain 
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Theorem 4.4: Let {wn} be the principal sequence in Q.(Fk(t)), where Fk{t) is denoted by (4.16), 
and let/? be an odd prime, p > k, P'(pm, wn) = s. If wn = 0 (modpm) for n = i (mod s), then 

u^> = 0 (mod pm) for n s i - k (mod s) 
and 

vf+1) = 0 (modpm) forn = i-k (mods) or« = 0 (mod//"). 

Furthermore, if kpr = i - k (mod s), then vj+1} = 0 (mod p7""""). 

Example 1: Let x = 1, p = 3. Then A2 = 5, /?J A2. Hence, from (4.20), we obtain P(3m, /„(fc)) = 
P(3m, £W) = 3m • P(3, /„) = 8 • 3m for * = 1,2. 

Example 2: Let x = l,,p = 5. Thenp|A2 = 5. Hence, from (4.21), we get i>(5m,/„w) = 4-5m+1 

for £ = 2,3,4, or4-5mforJfc = l and, from (4.22), we get P(5m,^fe)) = 4-5m+1 for k = 3,4 or 
4-5™ for* = l,2. 

Example 3: We show that /„(2) = 0 (mod 10) iff n = 0, ± 1, ±2 (mod 25), and 43 ) = 0 (mod 30) 
iff « = ±1, ±2 (mod 25) or n = 0 (mod 5). 

Phw/ o/ Example 3: We have F2 (?) = (*2 - 1 -1)3 = t6 - 3t5 + 5t3 - 3t - 1 = t6 - 3t5 - 3t - 1 
(mod 5) for x = 1. Let {wn} be the principal sequence in Q(F2(t)). Then wn+6 = 3wn+5 + 3wn+l+wn 

(mod 5). 
Calculate {wn (mod 5)}^ according to the last congruence: 

0,0,0,0,0,1,-2,-1,2,1,1,-2,-1,2,1,2,1,-2,-1,2,-2,-1,2,1,-2,0,0,0,0,0,-2,...(mod5). 

This implies that s = P'(5, w„) = 25 and wn = 0 (mod 5) iff n = 0,1,2,3,4 (mod 25). Hence, the 
example is proved by Theorem 4.1 and Theorem 4.4. 

5. EVALUATION OF SOME SERIES INVOLVING «<*> AND v(k) 

Lemma 5.1: 

1°. X«i = ( i W i H - l ) / * ( ^ 0 ) - (5.1) 
7=0 

2°. £v ,=(v„ + 1 +v„-2) /x + l ( x * 0 ) . (5.2) 
7=0 

3° i(rl)x'hl+r = h2n+r,where{hn}is{un}oT{v„}. (5.3) 
/=oV / 

4°- Z H ) ' ( ? ) ' W = H ) " A , + r , where {/*„} is {*/„} or {v„}. (5.4) 

5°- t(")u*+r = (x2+4fX+r for 2\n, or (x2 + 4f"1)/2v„+r for 2/n. (5.5) 
7=0 V / 

6°- Z Q v 2 / + r = (*2 +4)"/2vw+r for 2K or (x2 + r)<'*1>/2iW for 2/*. (5.6) 
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Proof: We prove only 2° and 5°. The rest can be proved in the same way. 

2°- Zv,=X(a'+/?') = (l-«"+V(l-«) + (l->9"+1)/(l-^) 
1=0 7=0 

= {l-an+l-p-an + l-/3n+l-a-/in)l{-x) = (vn^+vn-2)lx + l 

5°. We have 

JfyV 2 ' = (1 + a2)" - (-ap + d1)" = Anan. 
;=0'V ) 7=0" 

For the same reason 

/=o 
Hence, 

l (")/?2 '=(-l)"A"^. 

S (? W = S f7 V2,+r - ̂ ) /A=A"\-a"+r - ( - o v o / A 
,=oV / i=0\ / 

= A"[a"+r - /T+r) / A = (x2 + 4)"nu„+r for 21», 
or =An-1(a"+r+^"+'') = (^2+4)("_1)/2v„+r for2J». D 

Theorem 5.1: 

±u?> = £(-!)'(*),.[«&<> + «f"° SkJV^1 (x * 0); (5.7) 
;=0 /=0 

(5.10) 

Ivf) = X(-l) 'Wi^0+vr)-2<5t,,]/^1 (**0); (5.8) 
7=0 ;=0 

/=oV / /=o v j \py) 
where {/#>} is {««} or {v«} (/ = 0, . . . , * ) ; 

1=0 V S ;=<A / 

where {/?«} is {w<0} or (vf} (i = 0,..., k); 

g ( 7 ) « ^ = i ( f ) e ° ^ + 4 r / a for2|», 

= t ( / ) ^ r ) | r ^ 2 + 4 ) ( " - 1 ) / 2 for2|«; 

2 ( 7 ) ^ = t ( f ) e ° | r ( * a + 4 r / a for2K 

(5.11) 

(5.12) 
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Proof: Every one of (5.7), (5.8), (5.10)-(5.12) can be proved straightforwardly by differ-
entiating the corresponding one of (5.1), (5.2), (5.4)-(5.6). The proof of (5.9) is as follows. 

Let JL 

Then 

EnXr = g«.k.M = X f f W ? - (5-13) 
i=o\ J 

So 
SnMU = Sn,k,r-n'Sn-l,k,r+V ( 5 - 1 4 ) 

When k = 0, from (5.3), we can see that (5.9) holds. Assume that (5.9) holds for k; then 
from (5.14), we have 

) 
•i+r ' 

The second summation in the right side of the last expression can be rewritten as 

7=0 V / 

= I(-0fl-*1l(»),C^+(-l)*+1(»)t+An-(k+l)+r-
k 

\rV\i 
7 = 1 

From this, it follows that 

7=0 ^ ' 

that is, (5.9) also holds for k + l, and we are done. D 

It is known that the generating function of {u^k)} is expressed by (2.7). It is well known that 
the generating function of {vn} is 

V(t) = (2-xt)/(l-xt-t2). (5.15) 

Differentiating (5.15), we can know that the generating function of {v{k)} is 

Vk(t) = k\tk(l + i2)/(l-xt-t2)k+1 (&>1). (5.16) 

Obviously, the following identities hold: 

Vk(t) • Vr(t) = ̂ l y i t + ry t + r + I (0 (*, r > 1); 

Ukitmt)= (k+l%Vk+"l(t) (r-1); 

uk(t)-v(t) = 1±ri(2rl-x)uk+l(t); 
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Vk(t)-V(t) = -j~(2rl ~ *)*t+i(0 (* > !)• 

Equalizing the coefficients of f of the two sides in each of the above identities, we have 

Theorem 5.2: 

£* "- (k+r + l)\ " ' P } 

S ^ t V ^ = , . * l r ' n , ( v g r 1 ) + v g r 1 > ) (k,r>l); (5.18) 

tf^--^^^+r+l) ir>l); (5.19) 

S " / V , =-rxT(2«f+i1)-^ri)); (5.20) 
;=0 K + L 

Iv«v„_,= T ^ T (2vf + ! 1 ) -xvr i >) (^>1). (5.21) 

REFERENCES 

1. P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." 
In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum, A. N. Philippou, & 
A. F. Horadam. Dordrecht: Kluwer, 1991. 

2. P. Filipponi & A. F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Poly-
nomials." The Fibonacci Quarterly 31.3 (1993): 194-204. 

3. P. Filipponi & A. F. Horadam. "Addendum to "Second Derivative Sequences of Fibonacci 
and Lucas Polynomials." The Fibonacci Quarterly 32.2 (1994): 110. 

4. K. S.Miller. Advanced Complex Calculus. New York, 1960. 
5. E. Lucas. "Theorie des fonctions numeriques simplement periodiques." Amer. J. Math. 1 

(1878): 184-240, 289-321. 
6. Richard A. Brualdi. Introductory Combinatorics. The Hague: North-Holland, 1977. 
7. Y. H. Harris Kwong. "Periodicities of a Class of Infinite Integer Sequences Modulo m." J. 

Number Theory 31 (1989):64-79. 
8. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. 

Santa Clara, Calif: The Fibonacci Association, 1979. 
9. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). China: 

Hunan Science and Technology Publishing House, 1993. [MR 95m: 11027] 
AMS Classification Numbers: 11B39, 26A24, 11B83 

408 [NOV. 


