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1. INTRODUCTION 

We consider the sequence {Wn} = {W„(a,b; P,Q)} of integers defined by 

W0=a,Wx = b,Wn = PWn_x-QWn_2 (n>2), (1.1) 

where a, b, P, and Q are integers, with PQ * 0. Particular cases of {Wn} are the sequences {£/„} 
of Fibonacci and {Vn} of Lucas defined by Un = ^(0,1; P,Q) and Vn = Wn(2,P; P,Q). In the 
sequel we shall suppose that A = P2 - 4Q > 0. It is readily proven [6] that 

W.-^jf, (..2) 
a- p 

where a = (P + jA)/2, /?= (P-VA)/2 , A = b-fia9 and B = b-aa. Following Horadam [6], 
we define the number ew by ew - AB = b2 - Pab + Qa2. It is clear that eu = l and ev = - A = 
-(a-p)2, where eu and ev are associated with the Fibonacci and Lucas sequences. By means of 
the Binet form (1.2), one can easily prove the Catalan relation 

W?-K-W»i = ejrl- (1-3) 
Notice that 

a>\ and a>|/?|, if'P>0, (1.4) 

and that 
/ ? < - ! and \P\>\a\, i fP<0. (1.5) 

By (1.4) and (1.5), it is clear that U„ * 0 for n > 1 and that V„ * 0 for n > 0. More generally, 
there exists an integer p such that Wp - 0 if and only if Wn - Wp+lUn_p for every integer n. By 
(1.4) and (1.5), we obtain 

Wn^-^-z<x\ i fP>0 and Wn^^-J3\ ifP<0. (1.6) 

The purpose of this paper is to investigate the infinite sums 

2" « i r - V _ L _ ^ = Z d ! r - and Tk = % 

where k is a positive integer. We shall suppose that W„ * 0 for n > 1 (see the remark above) and 
that ew = AB*0 (which means that {Wn} is not a purely geometric sequence). By (1.4) and (1.5), 
use of the ratio test shows that the series Sk and Tk are absolutely convergent. Notice that 
Sk = Tk, when Q = l. 
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More generally, let 7u{ri) = m + sn be an arithmetical progression, with m > 0 and s > 1. We 
shall examine the sums 

+00 r)n(n) +00 -I 

\*- ~ iL e* 
»=1 "*(w)"/r(/i+fc) 

and 3iU"=X 
«=1 ^7z{riy^n{n+k) 

By the way, we shall also obtain a symmetry property (Theorem 1) that generalizes a recent 
result of Good [5]. 

Remark 1: Notice that Sk^ = Tk^ when Q = 1 and that Sk^ = {-l)mTk^ when Q = -1 and s is 
even. 

Theorem 1: We have 

where k and m are nonnegative integers. 

Theorem!; I f P > 0 , then 

2. MAIN RESULTS 

m ryi k ryi 
UklL ww

 =UmY, WW 

st = 1 
eJJk 

J^ W 

If P < 0, replace a by p in the right member. 

Theorem 2': If P > 0 or if P < 0 and 5 is even, then 

1 
Uh ir ~ Jk,7t eJJJU* 

k W 
r=\ ¥V7t(r) ^w^ s^ sk | 

If P < 0 and s is odd, replace a5 by fi* in the right member. 

Theorems: I fP>0, then 

If P < 0, replace 4 by 5 in the left member and a by (5 in the right member. 

Corollary 1: IfQ = - l , then 

> 2 , = — i — L -
^2fc r=l ^ 2 r ^ 2 r - I and 

^2A:+l ~ " # 2k+l 
3I-Z 

l 
^1 "2r"2r+l, 

Corollary 2: If (? = -1 and 5 is odd, then 

nk,n 
^2ks r=l ^ r ( 2 r ) ^ ( 2 r - l ) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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and 

hk+ln 
Uv 

ut (2k+l)s 
^"1 

r=l ^ r ( 2 r ) ^ / r ( 2 r + l ) 
(2.7) 

Remark 2: If g = - 1 , & = 1, and Wn=Un or Vn9 then Theorem 3 is Lemma 2 in [1]. 

Remark 3: Theorem 1 shows that Sk is a rational number if and only if a is rational or, equiva-
lently, if and only if A is a perfect square. Corollary 1 shows that, in the case Q = -l, T2k is 
rational, while T2k+l is rational if and only if 7J is rational. Notice that, even in the usual case 
Wn - ^ (0 ,1 ; 1,-1) = Fn, the value and the arithmetical nature of Tx is unknown. One can obtain 
similar results for the numbers SktK and Tkn. 

Theorem 1 is given by Good [5] in the case Q = -1 . Theorem 2' was first obtained by Lucas 
[8, p. 198] in the case k = l, Wn = UnorVn. The same results were rediscovered by Popov [11]. 
Brousseau [3] proved Theorem 2 for Wn -Fn and he gave numerical examples of Corollary 1. 
Good [5] proved Theorem 2 in the case 2 = - l . In [2], [7], and [9], one can find variants of 
Theorem 2' applied to Fibonacci, Lucas, Pell, and Chebyshev polynomials. 

3. PRELIMINARIES 

In the sequel, we shall need the following lemmas. 

Lemma 1: For integers n > 0 and k > 0 

\Wn+k-PkW„ = Aa"Uk, 
{Wn+k-akWn = BB"Uk. 

(3.1) 
(3.2) 

Proof: Using Binet form (1.2), the result is immediate. 

Lemma 2: For integers k > 1, 

ip- l 
r=l Wr B 

hwr A 
J^ W 
^ w 

-ka 

-hfi 

(3.3) 

(3.4) 

Proof: We prove only (3.3); the proof of (3.4) is similar. By (3.2), where n-r and k = l, 
we have 

y^=ly 
hwr B2^ 

Wr+l-aWr_ 1 
r=l Wr B 

y ^ ± i 
h wr 

-ka 

Lemma 3: If Q = - 1 , we have, for k > 1, 

1 
r=l arWr 

= ̂ Z 
r=l ^ 2 r ^ 2 r - l 

(3.5) 
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2fe+l ifc+i -i fc •% 

r=2 a fy r=1 W2rW2r+l 

One can obtain two similar formulas by replacing a by ji and 4 by B. 

Proof; We prove only (3.5). Since Q = - 1 , we have a r / f = (-l)r for k > 1; thus, 

§ _L = 1 § (-QT* = I f ( . y ^ - ^ by(32) 

(3.6) 

1 2k W 1 k 

- _L V /_ i y vvr+\ _ J_ v1 
w/ 1 k f-w^+w^ 

B ^ Wr B^\W2r_x W2r ) 

_ 1 f ^r+1^-,-^ = 1 f -^( - l ) 2 r " ' . n 3 V 
* £ *Wr-. #£ Wr-> ' ' 

* 1 

= ̂ E ww~'since *w = ^ 
r=l VV2rV¥2r-l 

Lemma 4: Let {a„} be a sequence of numbers and {b„tk} be the sequence defined by 

Kk=an-ar*k> k^°- (3-7) 
For every m > 0 and A: > 0, we then have 

/w k 

!*».* = I\„- (3-8) 

Proof: Without loss of generality, we assume m>k. By (3.7) we get 

m 

n=l 

= (a1 + -+ak) + (ak+l + -+aJ-(ak+l + ~-+am)-(am+1 + -+am+k) 
k 

= (at + ••• +at)-(a„1+i + - +<W) = X*».m-

4. PROOF OF THEOREMS 1, 2, AND 2' 

We get by (3.1) that 
Qtl+k B" B"+lc^AQ"Uk 

W„ W„+k WnWn+k 
(4.1) 

Putting a„ = B" I Wn and bnk = ^ " C / , / F ^ + / t , we see by (4.1) that bnJl = a„ -a„+k. Theorem 1 
follows immediately by this and Lemma 4. 

Assuming now that P > 0 and letting n-\,2,...,N, where N>k,we obtain 
A/ / i n A o r N+k or 

AUY y = y ^ y £-

Now, by (1.6) we have 
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Wr A U 
and since a > \B\, the last sum in the right member vanishes as N —> +00. Thus, by (3.3), 

AU^ Q" V tlr±L-ka 
r=l vvr 

and the conclusion follows from this, since ew = AB. If P < 0, replace j5 by a in the left member 
of (4.1) and A by B in the right member. Using (3.2) and (3.4) and recalling that \p\> \a\ in this 
case, the end of the proof is similar. 

Let us examine some particular cases. \iWn-Un (respectively Vn) and since eu = 1 (respec-
tively ev - -A), we get that 

Q" 

and 
w=i UnUn+k Uk 

hvnVn+k AUk 

k TT 

L~> TT 
r=l u r 

k i/ 

r=l vr 

(4.2) 

(4.3) 

when P > 0 . 
If P < 0, replace a by /? in the above formulas. 

We turn now to the proof of Theorem 2'. Let us consider a second-order recurring sequence 
{W;} (see [4] and [10]) satisfying 

Wi = P'WU-QWl» n>2, (4.4) 

where P' = as+J3s = Vs and Q = a'/?' = 0*. Notice that P ' > 0 if and only if P > 0 or ifP < 0 
and s is even. The Fibonacci sequence associated with the recurrence (4.4) is defined by 

,_asn-psn _USJ U' = 

On the other hand, we have 

W -W 
rrn{n) rrm+sn 

as-ps Us 

_A'as"-B'Bs" 

(4.5) 

a-B 

where A' = Aam and B' = BBm. If {W$ is the solution of (4.4) defined by WJ = A'a™-B'f", w e 
have 

It follows by Theorem 2 applied to {WJ} that, if P' > 0, 

a Qm i _ 
2-> ww ~Z rn n=l "n^n-¥k ew^i 

W' ^^f-kas 

(4.6) 

(4.7) 

Using (4.5) and (4.6) and noticing that ew, = A'B' = ABamBm = ewQm, we easily deduce (2.2) 
from (4.7). If P' < 0, replace as by 8s in the right member of (4.7). 
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5. PROOF OF THEOREM 3 AND COROLLARIES 1 AND 2 

Supposing first that P > 0, we get by (3.1) that 

AT>k 1 Qk _ AUk (5.1) a"W„ a"+kWn+k W„W„+k-

Letting n = 1,2,..., N, where N>fc, and summing, we obtain 
N -i k i N i Af+fc i 

n-1 W + 4 £ l a ^ r i k i l a X r=W+l OfWr 

£J arWr f^ arWr r=V+1 a W r 

The first sum in the right member converges as N —» +oo since a r ^ —~^Ra2\ where a > 1. 
We also see that the last sum vanishes when N —» +oo. This concludes the proof of Theorem 3 
when P > 0. If P < 0, the proof is similar. 

Notice that the first term in the right member of (2.3) vanishes if and only if Q - 1 (in which 
case Sk = Tk) or Q = -1 and k is even. The series Z ^ —^r seems difficult to evaluate. If Q = -1 
and if J^ = £/„ or Wn = Fw, this series can be expressed with the help of the Lambert series [1, 
Lemma 3]. If Q - 1, it does not appear in (2.3). This fact explains why Melham and Shannon [9, 
p. 199] obtain formulas that do not involve Lambert series. 

If Q = -1 and k is even, then (2.3) becomes 
2k 1 k \ 

AU2kT2k = Y —— = AY 
2k 2k L^ r w JU JIT iir 

by (3.5), when P > 0. This concludes the proof of (2.4). If P < 0, the proof is similar. 
On the other hand, put Q = -l and replace k by 2k +1 in (2.2) to obtain 

1 ^ 1 
^ ^2k+l^2k+l ~^Z^ rUr L^ 

r=larWr % arWr" 

and, using (3.6), we deduce from this 
2Jfc+l i A: t 

r=\ & Wr r=l ¥V2r¥¥2r+\ 

This concludes the proof of (2.5) when P > 0. The case in which P < 0 is similar. 
Using (4.5) and (4.6) and applying Corollary 1 to the sequence {#£}, one can easily obtain 

the proof of Corollary 2 when noticing that Qs = - 1 , since 5 is odd. 
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