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1. INTRODUCTION 

In this paper we consider the general sequences U„ and Vn satisfying the recurrences 

Un+2=mUn+l + Un, Vn+2=mV„+l+V„, (1.1) 

where m is a given positive integer, and UQ = 0, Ux = 1, V0 = 2, V1 = m. 
We shall occasionally refer to these sequences as U(m) and V(m) to emphasize their depen-

dence on the parameter m. They can be represented by the Binet forms 

Un = {an-ni{a-P\ Vn = an+f3\ (1.2) 

where a+j3 = mmd aj3=-l, and we define A = 82 = (a-fl)2 = (a + /3)2-4aj3 = m2 +4. When 
m = 1, these sequences reduce to F„ and Ln, with A = 5. 

Using (1.2), we can derive the identities (1.3) through (1.7), which correspond to well-
known formulas that are proved, for instance, in [11]: 

U2„=U„V„, (1.3) 

V2n = K2-2(-iy, (1.4) 
AU2„=V„2-4(-i)\ (1.5) 
2Un+s = U„Vs+V„Us, (1.6) 
2Vn+s = V„Vs + AU„Us. (1.7) 

When «is a prime/?, we have 

Vp = ap+Pp = (a+P)p = mp (mod/?), 

and using Fermat's "little theorem," this gives the well-known result 
Vp = m (mod p), when p is prime. (1.8) 

Any composite numbers n satisfying the corresponding equation 
Vn=m(moAri) (1.9) 

are called pseudoprimes. Di Porto and Filipponi [7] have called such numbers Fibonacci Pseudo-
primes of the m* kind (m-F.Psps), whereas Bruckman [2] has called them Lucas Pseudoprimes. 
As a compromise, we shall call them V(m)-pseudoprimes or V(m)-psp. In the case of m= 1, 
when V„ becomes Ln, it has been proved that all V(l)-psp's are odd: see {14], [5], and [3 J. In the 
more general case, since the interest in V(/w)-psp!s relates to tests for primality, only odd V(/w)-
psp's will be considered, as in [7], and we shall restrict the definition of pseudoprimes to odd 
composite n satisfying (1.9). 
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Suppose now that n satisfies (1.9). Then, for any prime factor p ofn, 
V„^m(modp), (1.10) 

or, if the factorization of n contains a prime power pe, with e>l, 

Vn = m(modpe). (1.11) 

Now it is well-known that the sequence V modulo a prime power pe is periodic. We shall 
denote the corresponding period of repetition by R(pe) or i?, defined as the smallest positive inte-
ger R for which wc have VR = 2 and VR+l = m (mod pe). Since V2R=VR = V0 = 2 (mod pe\ (1.4) 
shows that, if/7 is odd, the period R must be even. The sequence U modulo pe is also periodic, 
and is known to have the same period R as the corresponding F-sequence, except when A = 0 
(mod/?). 

We also note that the entry point Z of pe in the sequence U is defined as the smallest positive 
Z such that Uz s 0 (mod pe). It is well known that pe divides U„ if and only if Z divides n. Also 
Ur divides Un if and only if r divides n. Vinson [12] established the relationship between Z and 
the period R of the sequence U for the case m = 1, and we can easily prove that, for odd p, the 
same holds for any m, namely: 

ifZisodd,thentf = 4Z; (1.12) 
ifZ = 2 (mod 4), then R = Z; (1.13) 
if Z = 0 (mod 4), then R = 2Z. (1.14) 

In Sections 2 and 4, we shall derive relationships between n and R giving necessary and suffi-
cient conditions for a number n to be a pseudoprime. In Section 3, we shall find conditions for 
the occurrence of square factors in such pseudoprimes, and present some numerical examples. 
Finally, in Section 5, we shall prove certain theorems concerning special forms of V(/w)-pseudo-
primes, Theorems 7-10 being generalizations of results proved by Di Porto and Filipponi for the 
case m = \ in [7]. 

2. PSEUDOPRIMES AND THE PERIODICITY OF THE LUCAS SEQUENCE 

Using (1.2), we can define U and Fwith negative subscripts, giving 

U_„ = -(-iyUn and V.n = (-l)"V„. (2.1) 

Putting $=1 and then s = -l, equation (1.7) gives the identities 
2Vn+1 = AU„+mVn and 2V„_X = AU„-mV„, (2.2) 

and multiplying the two parts of (2.2) and using (1.5) gives the well-known identity 

Vn+lVn-x = VyK-\)n. (2.3) 
We shall now derive an important identity. Using (2.3) when n is odd, we have 

(^+i+2)(Fw.1-2) = F n X. 1 -2(F w + 1 - r w _0-4 
= Vn

2 + A-2mVn-4, 
and since A = m2 + 4 this reduces to 
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(F„+i + 2)(V„_l-2) = (Vn-m)2 (Wodd); (2.4) 

we shall call this the key identity, as it provides the basis for the proofs of several theorems in this 
paper. Our first theorem examines at what points of the periodic cycle we might find an odd 
n satisfying Vn = m (mod /?*), and is a generalization of the result proved for the case e = 1 by 
Di Porto in [6]. 

Theorem 1: Ifn is odd and Vn = m (mod p% where p > 2 is prime and e > 1, and if R = R(pe) 
is the period of the sequence V(m) modulo pe, then we have 

either n = 1 (modR) or n=\R-l (modi?); (2.5) 

since n is odd, the second alternative can occur only when yi? is even. 

Proof: Putting Vn = m (mod pe) in the key identity (2.4), we find that the right side of the 
identity is divisible by (pe)2, and it follows that at least one of the two factors on the left must be 
divisible by pe. Thus, we have 

either Vn_x = 2 (mod/?*) or Vn+l = -2 (mod/?*). (2.6) 

Taking the first alternative, we have Vn_x = 2 and Vn = m (mod/?6), showing that n-\ is a 
multiple of the period R in this case. Taking the second alternative, we have Vn = m, together 
with V„+l = -2 , so that the recurrence relation (1.1) gives Vn+2 = -rn (mod/?*). It follows from 
(1.1) that 

Vn+l+t^-Vt, fort = 0,1,2,..., 
showing that in this case n +1 is an odd multiple of half the period. Therefore, one or the other of 
the alternatives in (2.5) is true. Q.E.D. 

Theorem 2: Let n be an odd V(/w)-psp divisible by a prime power /?e, and let R be the period of 
the sequence V(m) modulo pe, e>l. Then, for each suchR, we have 

either n = 1 (modR) or n = ±R-l (modR). (2.7) 

Notes If/? is an odd prime and if R is the period of V(m) modulo/?, then using (1.8) and Theorem 
1 with n - p and e = 1 gives 

either p = l (modR) or p = }R-l(modR); (2.8) 

this is equivalent to the well-known result that R divides either /? - 1 or 2(/? +1) when (A, /?) = 1; 
our derivation shows that (2.8) remains true also when A = 0 (mod/?). 

3. ON THE OCCURRENCE OF SQUARE FACTORS IN A V(m)-PSEUDOPRIME 

Theorem 3: Ifn is an odd V(m)-psp divisible by a prime power pe, where e > 1, then the periods 
of the sequence V(m) modulo pe and modulo/? are the same. 

Proof: Let R(pe) be the period modulo pe, and R(p) the period modulo /?. Then R(pe) = 
pfR(p)y with 0<f<e, as was proved by E. Lucas [11], and for m-\ by Wall [13]. But 

1997] 37 



ON PSEUDOPRIMES RELATED TO GENERALIZED LUCAS SEQUENCES 

Theorem 2 shows that R(pe) and n have no common factor; therefore, p does not divide R(pe). 
Hence, / = 0 and R(pe) = R(p). 

Corollary: If a V(/w)-psp is divisible by /?e, where e > 1, and if/? does not divide A, then pe and 
/? have the same entry point Z in the sequence U(m). 

Proof: This follows from Theorem 3 by Vinson's rules, as stated in (1.12)-(1.14). Note that 
when pe divides A the period of V(m) modulo pe is 4, whereas that of U(m) is 4pe. 

Note: Bruckman ("1] has proved a result equivalent to Theorem 3 for the case m- 1. Further-
more, it has also been shown that, for m = 1, R(p2) = pR(p) for all p < 104 by Wall [13], for all 
p < 106 by Dresel [10], and for all p < 109 by H. C. Williams [15]. It then follows from Theorem 
3 that any V(l)-psp less than 1018 must be square-free. 

The situation for m > 1 is rather different. Thus, for m = 2,we obtain the Pell sequence with 
U7 = P7 = 169 = 132, while P30 is divisible by 312. Correspondingly, we find that among the first 
seven V(2)-psp's there are three containing square factors, namely, 132,312, and 132 x 29. 

Let us call a prime/? divalent in U(m) if the entry points ofp and p2 in the U(m) -sequence 
are the same. For most of the values of /w<25, we can find examples of divalent primes with 
p < 300, the exceptional cases being m = 1,8,10,11,16, and 17. In the case of m - 24, we have 
five such primes, namely, 7, 11, 17, 37, and 41, and among the first 21 V(24)-psp's there are ten 
containing square factors, namely, 72,112,172,73,72 x 17,3 x 172,72 x 23,113, 372, and 412. 

4. SUFFICIENT CONDITIONS FOR A V(m)-PSEUDOPRJME 

We shall use the key identity (2.4) to prove the following lemma. 

Lemma 1: If R is the period of the sequence F modulo pe, where p > 2 is prime and e>\, and if 
pc is the highest power of/? that divides A, where 0 < c < e, then 

(i) VR = 2 (mod/?2*-'), and 
(ii) conversely, \£V2t=2 (mod p2e~c), then R divides 2t. 

(Hi) If, further, jR is even, then we also have VlR = -2 {modp2e~c) and VlR_x = m (mod/?*). 

Proof: By the definition of R, we have VR = 2 and VR+l =m (mod/?0). Since R is even, 
putting n - R +1 in the key identity (2.4), we obtain 

(FR - 2)(VR+2 + 2 ) - 0 (mod />*) (4.1) 
while 

(FR+2 + 2) - (FR ~ 2) = mVR+l+4^m2+4 = A (mod /?«). (4.2) 

(i) Since pe divides (f^-2) and pc divides A, (4.2) shows that pc is the highest power of/? 
dividing (FR+2 + 2 ) ; hence, (4.1) gives VR = 2 (mod/?2*'c). 
(ii) Given V2t =2 (modp2e~c) and putting n = 2t in (1.5), we obtain A(C/2,)2 = 0 (mod/?2e_c) 

and, therefore, (AC/2f)2 = 0 (mod/?2*), giving A£/2, =0 (mod/?e). Finally, substituting in (2.2), 
we obtain 2^2r+1 = 2m = 2V{ (mod pe\ so that 2t is a multiple of the period 7? modulo pe. 
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(in) If ~i? is even, then (1.4) together with (i) above gives 

hence, V±R = -2 (modp2e~c), since ViR = 2 would contradict (ii). Then (1.5) gives A(UiR)2 = 0 

{moAp2e~c) and, therefore, (AUiRf = 0 (modp2e), giving AUiR = 0 (mod pe); finally, (2.2) 
gives ViR_x = /w (mod pe). 

Note: If c = e, so that /?e divides A, we have V2 - m1 +2 = -2 (mod /?g) and F3 = -m, giving 
i? = 4, and we have both VR = 2 and VR+2 = -2 (mod pe). 

We shall now prove the converse of Theorem 2, namely, 

Theorem 4: Let w be odd and composite, and let R be the period of the sequence V(m) modulo a 
prime power pe, e > 1. If, for each pe dividing n, we have 

e/Y/ier ws 1 (modi?) or n=\R-\ (modi?), (4.3) 

then n is a V(m)-psp. 

Proof: If the first alternative in (4.3) is true, then by definition of R we have Vn =VkR+l = 
Vl = m (modpe); if the second alternative in (4.3) applies, then by Lemma l(iii) we again have 
Vn=ViR_l = m (mod pe). Thus, (1.11) is satisfied for each prime power pe which divides n. 
Hence, (1.9) is true, showing that n is a V(m)-psp. 

Note: Theorems 2 and 4 together give necessary and sufficient conditions for n to be a V(m)-psp 
and provide the basis for the proofs given in the next section. A different approach by Di Porto, 
Filipponi, and Montolivo [9] gives a sufficient (but not a necessary) condition expressed in terms 
of the prime factors of n. 

We shall now prove a converse of Theorem 3, namely, 

Theorem 5: If there is an odd prime p for which the sequence V(ni) has the same period R 
modulo/? and pe, e > 1, then pe is a V(m)-psp. 

Proof: By (2.8), we have either p = l (mod R) or p = | R -1 (mod R). If the first alterna-
tive applies, we have pe = 1 (mod R\ and Theorem 4 shows that pe is a V(m)-psp. If the second 
alternative applies, we have yi? even (as p is odd) and pe = (~R~l)e (mod i?), so that pe = 1 
(mod R) if e is even, and pe = (y R -1) (mod R) if e is odd. Since R = i?(p*), Theorem 4 com-
pletes the proof. 

Examples: For m = 2, we have 132 and 312 as V(2)-psp's. 

Corollary: If e > 1 and pe divides A, then pe is a V(w)-psp. 

Proof: If /?* divides A, F(w) has the period 4 both modulo p and modulo /?e, so that the 
conditions of Theorem 5 are satisfied. 
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Examples: For wi = l l , we have A = m2+4 = 125 = 53, and both 25 and 125 are V(ll)-psp's. 
Similarly, for m = 14, A = 200, so that 25 is a V(14)-psp. 

Note: Theorem 5 may be regarded as a special case of Theorem 6 below. 

5. SOME SPECIAL FORMS OF V(m)-PSEUDOPRIMES 

Theorem 6: If n is odd, composite, and such that all its prime or prime power factors have the 
same period R in the sequence V(m), then n is a V(/w)-psp. 

Proof: If yiv is odd, then by (2.8) n is the product of primes pj satisfying pj = Rkj +1. It is 
easily seen that the product of two or more such primes satisfies n = kR + l, and the result then 
follows from Theorem 4. In the same way, if jR is even, n is the product of primes of the form 
Pj = Rkj +1 or of the form q. =±Rhi-1, where ty is odd. The product of such primes is again of 
one or other of these forms, depending on whether the number of primes of the form qt is even or 
odd. The result then follows from Theorem 4 as before. 

Example: The sequence V(2) has the same period 40 modulo the primes 19 and 59; therefore, 
their product 1121 is a V(2)-psp. 

Corollary: Ifn is an odd composite number dividing A, then n is a V(#?)-psp. 

Proof: The period of'V(m) modulo any prime or pe that divides A is 4. Q.E.D. 

We shall use Theorems 4 and 6 to show that certain expressions are V(w)-psp, thus general-
izing some results proved for the special case m = \ by Di Porto and Filipponi in [7], and by 
Bruckman in [2], [4]. First, we shall state some basic facts. 

Lemma 2: (i) Un and Vn have no odd common factors. 
(ii) Ifp is an odd prime dividing A, then (p,Vn) = l for all n. 

These well-known results are easily proved by reductio adabsurdum from (2.2). 

Lemma 3: For all m, we have 

U2s = sm (mod/w3) and U2s+l = 1 (mod/w2), (5.1) 

V2s = 2 (mod/w2) and V2s+ls(2s + l)m (mod™3). (5.2) 

This is easily proved by induction on s. 

Lemma 4: (i) When m is odd, then U„ and Vn are odd if and only if 3 does not divide n. 
(ii) When m is even, then U„ and Vnlm are odd if/? is odd. 

Theorem 7: If q > 3 (or, when m is even, q > 3) is prime and (A, q) - 1, and if Uq is composite, 
then Uq is a V(/w)-psp. 

Proof: Since q is prime, all the factors of Uq have q as their entry point in the sequence 
U{m) and, by (1.12), their period is 4q. Since (A, q) = l, they have the same period in the r e -
sequence. Also, by Lemma 4, Uq is odd. Hence, Theorem 6 applies. 

40 [FEB. 



ON PSEUDOPRIMES RELATED TO GENERALIZED LUCAS SEQUENCES 

Examples; For m = 1, see [8]; for m = 2, the following Pell numbers are V(2)-psp's: TJ1 = 169 = 
132, UX1 = 137x8297, Ul9 = 37x179057, and U23 = 229x982789. 

Theorem 8: (i) IfT = 2k,k> 1, and m is odd, then VT, if composite, is a V(m)-psp. 
(ii) If m is even, and T = 2k, k > 1, then Fr / 2, if composite, is a V(m)-psp. 

Proof: Ifm is odd, then Fr is odd since T = 2k is not divisible by 3. But if m is even, (5.2) 
gives VT s 2 (modm2), so that Fr /2 is odd. Next, consider any odd prime p that divides VT; 
then, by Lemma 2, neither UT nor A are divisible by p. Also, £/2r = UTVT; therefore, any odd p 
or p e that divides VT has the entry point 27 in the [/-sequence and, therefore, the period 4T by 
(1.14). Since (p, A) .= 1, the period is the same for the F-sequence, and the results then follow 
from Theorem 6. 

Examples: For m = 11,F2 = 123 = 3 x41 and V4 = 15127 = 7 x2161 are V(ll)-psp. For m = 24, 
V2 12 = 289 = 172 and V412 = 167041 = 73 x 487 are V(24)-psp. 

Theorem 9: If q > 3 (or, when w is even, q > 3) is prime and (#2, g) = 1, and \iVqlm is com-
posite, then Vq Im is a V(m)-psp. 

Proof: We have C/29 = f̂ ?̂ and F̂  and C/̂  have no odd common factor. Hence, any odd 
prime/? which divides Vq has entry point 2 or 2q in the [/-sequence. But U2-m, and (5.2) gives 
Vq Im^q (modm2), so that Vq Im is odd and prime to m. Therefore, anyp or pe dividing Vq Im 
has entry point 2q. By (1.13), the corresponding period is R = 2q, and this is also the period in 
the V(m) -sequence, since (p, A) = 1 by Lemma 2(ii). Hence, Theorem 6 applies. 

Notes By (2.8), any factor ofVq/m would be of the form 2qk -hi. 

Example: When m = 2, Vn 12 = 8119 = 23 x 353 is a V(2)-psp. 

Theorem 10: If n is a V(w)-psp which is odd (and not divisible by 3 when m is odd), and if 
(n, m) = 1, then the same is true for N = Vn I m. 

Proof: We have U2n = UnVn; therefore, any odd prime p or pe which divides V„ also divides 
U2n but not Un9 and by (1.13) the corresponding period R divides In. Since n is V(w)-psp, 
Vn = m (modn), and since (w, m) = 1, we have Vn Im = 1 (mod n). But Vn Im is odd by Lemma 4, 
hence Vnlm=l (mod 2w). Since R divides 2w, we have Vnlm=\ (mod i?); fiirthermore, since w 
is the product of odd numbers, say n - pq, Vn is divisible by Vp so that Fn / m is divisible hyVp/m 
and, therefore, F„ / wi is composite. Hence, Theorem 4 shows that N = J^ / wi is a V(/w)-psp. It 
remains to show that JV satisfies (N, m) = l and that (N, 3) = 1 if (w, 3) = 1. 

Since « is odd, (5.2) shows that Vnlm = n (modw2), and since (n,m) = l, it follows that 
Vn Im also is prime to m. Furthermore, the entry point of 3 in U(m) is 2 if 3 divides m and 4 
otherwise. In the first case, since Vnlm = n (modw2), 3 does not divide Vnlm if it does not 
divide n. In the second case, since 2w is not divisible by 4, it follows that UnVn is not divisible by 
3; therefore, (N, 3) = 1. Q.E.D. 
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Corollary: Given one V(w)-psp satisfying the conditions of this theorem, we can find infinitely 
may such V(m)-psp. 

Example: Since 169 is a V(2)-psp, there are infinitely many V(2)-psp's. 
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