ON A QUESTION OF COOPER AND KENNEDY

Helmut Prodinger

Department for Algebra and Discrete Mathematics
TU Wien, Wiedner Hauptstrasse 8-10/118, A-1040 Wien, Austria
email: Helmut.Prodinger@tuwien.ac.at
(Submitted December 1995)

In [2], Cooper and Kennedy note the following: If

$$
\begin{equation*}
x_{n}=a x_{n-1}+b x_{n-2}+c x_{n-3}, \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
x_{n}^{2}=A x_{n-1}^{2}+B x_{n-2}^{2}+C x_{n-3}^{2}+D x_{n-4}^{2}+E x_{n-5}^{2}+F x_{n-6}^{2}, \tag{2}
\end{equation*}
$$

where the coefficients A, B, C, D, E, F may be expressed in terms of a, b, c. They ask: Is there a similar formula for third powers? The answer is: YES. The reason is the following: Sequences which are solutions of linear recurrences with constant coefficients have ordinary generating functions which are rational. Conversely, if a rational function has no pole in $z=0$, its Taylor coefficients fulfill a linear recurrence with constant coefficients. If

$$
\begin{equation*}
f:=\sum_{n \geq 0} a_{n} z^{n} \text { and } g:=\sum_{n \geq 0} b_{n} z^{n} \tag{3}
\end{equation*}
$$

are two (formal) series, their HADAMARD product is defined to be

$$
\begin{equation*}
f \odot g:=\sum_{n \geq 0} a_{n} b_{n} z^{n} . \tag{4}
\end{equation*}
$$

And rational functions are closed under the Hadamard product! (See [1], p. 85.)
The larger (any maybe even more important) class of holonomic functions (solutions of linear differential equations with polynomial coefficients) is also closed under the Hadamard product. Their Taylor coefficients fulfill linear recursions with polynomial coefficients. There is a MAPLE package, GFUN, which computes (among many other things) the Hadamard product (see [4]).

There is another very useful program, EKHAD, written by Doron Zeilberger [3], which should be mentioned. With it, we find, for example, recursions for the $d^{\text {th }}$ powers of the Fibonacci numbers F_{n} in almost no time. In the following, F_{n}^{d} will be a solution of the given recursion.

$$
\begin{array}{ll}
d=1 & x_{n+2}-x_{n+1}-x_{n}=0, \\
d=2 & x_{n+3}-2 x_{n+2}-2 x_{n+1}+x_{n}=0, \\
d=3 & x_{n+4}-3 x_{n+3}-6 x_{n+2}+3 x_{n+1}+x_{n}=0, \\
d=4 & x_{n+5}-5 x_{n+4}-15 x_{n+3}+15 x_{n+2}+5 x_{n+1}-x_{n}=0, \\
d=5 & x_{n+6}-8 x_{n+5}-40 x_{n+4}+60 x_{n+3}+40 x_{n+2}-8 x_{n+1}-x_{n}=0, \\
d=6 & x_{n+7}-13 x_{n+6}-104 x_{n+5}+260 x_{n+4}+260 x_{n+3}-104 x_{n+2}-13 x_{n+1}+x_{n}=0 .
\end{array}
$$

REFERENCES

1. Louis Comtet. Advanced Combinatorics. Dordrecht: Reidel, 1974.
2. C. N. Cooper \& R. E. Kennedy. "Proof of a Result by Jarden by Generalizing a Proof of Carlitz. The Fibonacci Quarterly 33.4 (1995):304-10.
3. M. Petkovsek, H. Wilf, \& D. Zeilberger. $A=B$. A. K. Peters, Ltd, 1996.
4. Bruno Salvy \& Paul Zimmermann. "Gfun: A Maple Package for the Manipulation of Generating and Holonomic Functions in One Variable." ACM Transactions on Mathematical Software 20.2 (1994):163-67.
AMS Classification Number: 11B37

Announcement
 EIGHTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS

June 21-June 26, 1998

ROCHESTER INSTITUTE OF TECHNOLOGY
 ROCHESTER, NEW YORK, U.S.A.

LOCAL COMMITTEE
Peter G. Anderson, Chairman John Biles
Stanislaw Radziszowski

INTERNATIONAL COMMITTEE

A. F. Horadam (Australia), Co-chair
A. N. Philippou (Cyprus), Co-chair
G. E. Bergum (U.S.A.)
P. Filipponi (Italy)
H. Harborth (Germany)
Y. Horibe (Japan)
M. Johnson (U.S.A.)
P. Kiss (Hungary)
G. M. Phillips (Scotland)
J. Turner (New Zealand)
M. E. Waddill (U.S.A.)

LOCAL INFORMATION
For information on local housing, food, tours, etc., please contact:
PROFESSOR PETER G. ANDERSON
Computer Science Department
Rochester Institute of Technology
Rochester, New York 14623-0887
anderson@cs.rit.edu
Fax: 716-475-7100 Phone: 716-475-2979

CALL FOR PAPERS

Papers on all branches of mathematics and science related to the Fibonacci numbers, number theoretic facts as well as recurrences and their generalizations are welcome. The first page of the manuscript should contain only the title, name, and address of each author, and an abstract. Abstracts and manuscripts should be sent in duplicate by May 1, 1998, following the guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

PROFESSOR F. T. HOWARD, Organizer
Box 117, 1959 North Peace Havén Road
Winston-Salem, NC 27106
e-mail: howard@mthcsc.wfu.edu

