CONSTRUCTION OF 2*n CONSECUTIVE n-NIVEN NUMBERS

Brad Wilson

Dept. of Mathematics, SUNY College at Brockport, Brockport, NY 14420 E-mail: bwilson@acsprl.acs.brockport.edu (Submitted July 1995)

1. INTRODUCTION

Fix a natural number, $n \ge 2$, as our base. For *a* a natural number, define s(a) to be the sum of the digits of *a* written in base *n*. Define v(a) to be the number of digits of *a* written in base *n*, i.e., $n^{v(a)-1} \le a < n^{v(a)}$. For *a* and *b* natural numbers, denote the product of *a* and *b* by a * b. For *a* and *b* natural numbers written in base *n*, let *ab* denote the concatenation of *a* and *b*, i.e., $ab = a * n^{v(b)} + b$. Denote concatenation of *k* copies of *a* by a_k , i.e.,

$$a_k = a + a * n^{\nu(a)} + a * n^{2*\nu(a)} + \dots + a * n^{(k-1)*\nu(a)} = a * \frac{n^{k*\nu(a)} - 1}{n^{\nu(a)} - 1}.$$

Definition: We say a is an *n*-Niven number if a is divisible by its base n digital sum, i.e., s(a)|a.

Example: For n = 11, we have 15 = 1*11+4*1, so s(15) = 1+4=5. Since 5|15, 15 is an 11-Niven number.

It is known that there can exist at most 2*n consecutive *n*-Niven numbers [3]. It is also known that, for n = 10, there exist sequences of twenty consecutive 10-Niven numbers (often just called Niven numbers) [2]. In [1], sequences of six consecutive 3-Niven numbers and four consecutive 2-Niven numbers were constructed. Mimicking a construction of twenty consecutive Niven numbers in [4], we can prove Grundman's conjecture.

Conjecture: For each $n \ge 2$, there exists a sequence of 2 * n consecutive *n*-Niven numbers.

Before giving a constructive proof of this conjecture, we give some notation and results that will give us necessary congruence conditions for a number, α , to be the base *n* digital sum of the first of 2*n consecutive *n*-Niven numbers, β .

For any prime p, let a(p) be such that $p^{a(p)} \le n$ but $p^{a(p)+1} > n$. For any prime p, let b(p) be such that $p^{b(p)}|(n-1)$ but $p^{b(p)+1}|(n-1)$. Let $\mu = \prod_p p^{a(p)-b(p)}$.

Theorem 1: A sequence of 2*n consecutive *n*-Niven numbers must begin with a number congruent to $n^{\mu*m} - n$ modulo $n^{\mu*m}$ (but not congruent to $n^{\mu*m+1} - n$ modulo $n^{\mu*m+1}$) for some positive integer *m*.

Proof: It is shown in [3] that the first of 2*n consecutive *n*-Niven numbers, β , must be congruent to 0 modulo *n*. Suppose $\beta \equiv n^{m'} - n \mod n^{m'}$ but $\beta \neq n^{m'+1} - n \mod n^{m'+1}$. We will show that $\mu | m'$. It is enough to show $p^{a(p)-b(p)} | m'$ for all *p*. Among the *n* consecutive numbers $s(\beta)$, $s(\beta+1), \ldots, s(\beta+n-1)$, there is a multiple of $p^{a(p)}$. Similarly for $s(\beta+n)$, $s(\beta+n+1), \ldots$, $s(\beta+2*n-1)$. By the definition of an *n*-Niven number, this means $p^{a(p)} | s(\beta+i), s(\beta+i) | (\beta+i), p^{a(p)} | s(\beta+n+j), and <math>s(\beta+n+j) | (\beta+n+j)$ for some *i*, *j* in 0, 1, ..., *n*-1. But $s(\beta+i) = S(\beta) + i$

[MAY

and $s(\beta + n + j) = s(\beta) + n + j - m' * (n-1)$. So, $p^{a(p)}|(n + j - i)$ and $p^{a(p)}|(n + j - i - m' * (n-1))$, and therefore, $p^{a(p)}|m' * (n-1)$. Since $p^{b(p)}$ is the highest power of p dividing n-1, we obtain $p^{a(p)-b(p)}|m'$. \Box

Corollary 1: A sequence of 2*n consecutive *n*-Niven numbers must consist of numbers having at least μ digits written in base *n*.

Another result of this theorem is to get restrictions on the digital sum, α , of the first of 2*n consecutive *n*-Niven numbers.

Corollary 2: If $\alpha = s(\beta)$ for β the first of 2*n consecutive *n*-Niven numbers, then for *m* as in Theorem 1 and for

and

Y'

$$\gamma = \operatorname{lcm}(\alpha, \alpha + 1, \dots, \alpha + n - 1) \tag{1}$$

$$= \operatorname{lcm}(\alpha + n - \mu * m * (n - 1), \alpha + n + 1 - \mu * m * (n - 1), ..., \alpha + 2 * n - 1 - \mu * m * (n - 1)),$$

we have $gcd(\gamma, \gamma') | \mu * m * (n-1)$.

Proof: For β the first of 2 * n consecutive *n*-Niven numbers and for α the base *n* digital sum of β , since $\beta \equiv 0 \mod n$, we get

$$(\alpha + i)|(\beta + i)$$
 for $i = 0, 1, ..., n-1$

and, by Theorem 1, we get

$$(\alpha + n + j - \mu * m * (n - 1)) | (\beta + n + j)$$
 for $j = 0, 1, ..., n - 1$.

These imply $\beta \equiv \alpha \mod \gamma$ and $\beta \equiv \alpha - \mu * m * (n-1) \mod \gamma'$. These two congruences are compatible if and only if $gcd(\gamma, \gamma') | \mu * m * (n-1)$. \Box

Finally, we will need the following three lemmas in our construction.

Lemma 1: For $\delta = \operatorname{lcm}(\gamma, \gamma')$ there exist positive integer multiples of δ , say $k * \delta$ and $k' * \delta$ so that $\operatorname{gcd}(s(k * \delta), s(k' * \delta)) = n - 1$. Further, this is the smallest the greatest common divisor of the digital sums of any two integral multiples of δ can be.

Proof: Since $(n-1)|\delta$, we see that $(n-1)|k*\delta$ for any $k \in \mathbb{Z}$. Since n-1 is one less than our base, $(n-1)|s(k*\delta)$, so the smallest the greatest common divisor can be is n-1.

Now let $aab0_{\ell}$ be the base *n* expansion of δ with *a* and *b* nonzero digits and **a** a block of digits of length ℓ' . We can suppose without loss of generality that **a** ends in a digit other than n-1, for if it does end in n-1 we can consider $(n+1)*\delta$ in place of δ . Since $\delta < n^{\ell+\ell'+2}$, there is a multiple of δ between any two multiples of $n^{\ell+\ell'+2}$, so there is some multiple of δ between $(n-1)*n^{\ell+\ell'+2}$ and $n^{\ell+\ell'+3}$, i.e., some κ so that the base *n* representation of $\kappa * \delta$ is (n-1)a' with $\nu(a') = \ell + \ell' + 2$. Then, for $k = \kappa * n^{\ell+\ell'+2} + 1$ and $k' = (n^{\ell+2*\ell'+4} + 1)*k$, we get $(n-1)a'aab0_{\ell}$ as the base *n* representation of $k * \delta$ and $(n-1)a'a(a+1)(b-1)a'aab0_{\ell}$ as the base representation of $k'*\delta$. Then we see $s(k*\delta) = n-1+s(a')+s(a)+s(a)+s(b)$, while $s((k'*\delta)) = n-1+2*s(a')+2*s(a)+1+2*s(b)-1$; thus, $s(k'*\delta) = 2*s(k*\delta) - (n-1)$. This means $gcd(s(k*\delta), s(k'*\delta)) = n-1$.

Remark 1: It follows from the proof that we can choose k, k' in the lemma with $v(k*\delta) \le 5+2*\ell+2*\ell'$ and $v(k'*\delta) \le 9+3*\ell+4*\ell'$ when δ [or $(n+1)*\delta$ if a ends in n-1] has

1997]

(2)

 $\ell + \ell' + 2$ digits in base *n*. Since ℓ is the number of terminal zeros in δ and ℓ' is the number of digits strictly between the first and last nonzero digit of δ , we have

$$\nu(k * \delta) \le 5 + 2 * (\ell + \ell') \le 5 + 2 * (\nu(\delta) - 1).$$

Since $\delta < (\alpha + n - 1)^{2*n}$, we have $\nu(\delta) \le 2*n*(\log_n(\alpha + n - 1) + 1)$. This inequality leads to

$$\nu(k*\delta) \le 5 + 2*(2*n*(\log_n(\alpha+n-1)+1)-1) \le 5 + 4*n*(\log_n(\alpha+n-1)+1).$$

Similarly,

$$v(k * \delta) \le 2 * (5 + 4 * (n * (\log_n(\alpha + n - 1) + 1))).$$

This comes into play in constructing a "growth condition" in the next section.

Lemma 2: For any positive integer z, if $\alpha \equiv z \mod \gamma$, then $(n-1)|(\alpha - s(z))$.

Proof: This is equivalent to showing $\alpha \equiv s(z) \mod (n-1)$. We know $z \equiv s(z) \mod (n-1)$ as n-1 is one less than our base. Since $(n-1)|\gamma$, we get $z \equiv \alpha \mod (n-1)$ which, taken with the previous congruence, gives the result. \Box

Lemma 3: For positive integers x, y, z, if gcd(x, y)|z and $z \ge x * y$, then we can express z as a nonnegative linear combination of x and y.

Proof: That we can write z as a linear combination of x and y follows from the extended Euclidean algorithm. To see that we can obtain a nonnegative linear combination, suppose z = r*x+t*y. Since x, y, z > 0, at least one of r and t is positive. If they are both nonnegative, we are done, so suppose without loss of generality that r < 0. Then z = z + (y*x - x*y) = (r+y)*x + (t-x)*y. We can repeat this until we have a nonnegative coefficient on x, so assume without loss of generality that $r + y \ge 0$. If $t - x \ge 0$, then we have a nonnegative linear combination and so are done. This means we are left to consider $r < 0, t > 0, r + y \ge 0$, and t - x < 0. However, if z = r*x + t*y with r < 0, x > 0, then t*y > z so that $(t-x)*y > z - x*y \ge 0$ by hypothesis. But y > 0 and $(t-x)*y \ge 0$ means $t-x \ge 0$, a contradiction. \Box

2. CONSTRUCTION

In this section we shall construct an α that can serve as the digital sum of the first of 2*n consecutive *n*-Niven numbers. We then use this α to actually construct the first of 2*n consecutive *n*-Niven numbers, β , with $\alpha = s(\beta)$. We present the construction using the results of the previous section. In that section, we derived congruence restrictions on the digital sum of the first of 2*n consecutive *n*-Niven numbers (if such a sequence exists). We now use these restrictions to construct such a sequence.

Let a(p), b(p), and μ be as in the previous section. For our construction, we specifically fix $m = \prod_{p|n} p$. For p a prime, define c(p) by

$$p^{c(p)}|(\mu * m * (n-1) - i)$$
 for some $i = 1, 2, ..., 2 * n - 1$

and

$$p^{c(p)+1}$$
 $(\mu * m * (n-1) - i)$ for any $i = 1, 2, ..., 2 * n - 1$

To produce an α satisfying $gcd(\gamma, \gamma')|\mu * m * (n-1)$, we impose the following condition.

124

[MAY

Congruence Condition I: For all $p \nmid n$ with c(p) > a(p), we require

$$\alpha \equiv 1, 2, ..., p^{a(p)+1} - n \mod p^{a(p)+1}$$

or

$$\alpha + n - \mu * m * (n - 1) \equiv 1, 2, \dots, p^{a(p) + 1} - n \mod p^{a(p) + 1}.$$
(3)

This assures that the "prime to n" part of $gcd(\gamma, \gamma')$ will divide $\mu * (n-1)$. But, for p|n, we require stronger conditions in order to have an α for which $gcd(\gamma, \gamma')|\mu * m * (n-1)$.

Congruence Condition II: For all p|n, we require both of the following:

$$\alpha + n - \mu * m * (n - 1) \equiv 1, 2, \dots, p^{a(p)+2} - n \mod p^{a(p)+2};$$
(4)

$$\alpha \equiv p^{a(p)+1} - n \mod p^{a(p)+1}.$$
(5)

Remark 2: There exist α simultaneously satisfying these conditions. It is clear we can find an α satisfying Condition I for every p. For Condition II, (5) is equivalent to

$$\alpha \equiv p^{a(p)+1} - n, 2 * p^{a(p)+1} - n, \dots, p * p^{a(p)+1} - n \mod p^{a(p)+2}.$$
(6)

Then (4) restricts α to one of $p^{a(p)+2} - n$ consecutive residue classes modulo $p^{a(p)+2}$, but at least one of these must also be a solution to (6) since those solutions are spaced every $p^{a(p)+1}$. and $p^{a(p)+1} > n$ implies $p^{a(p)+2} - n > p^{a(p)+1}$.

Finally, as there are infinitely many α satisfying Congruence Conditions I and II, we are free to choose one as large as we like. We choose α large enough to satisfy the following

Growth Condition:

$$\alpha \ge (n-1)*(\mu*m+2*n*(\log_n(\alpha+n-1)+1)) + (n-1)^2*2*(5+4*n*(\log_n(\alpha+n-1)+1))^2.$$
(7)

Again, it is possible to find such an α because the left-hand side grows linearly while the right-hand side grows logarithmically in α .

Theorem 2: Any α satisfying Congruence Conditions I and II and the Growth Condition is the digital sum of the first of 2*n consecutive *n*-Niven numbers. In particular, for each $n \ge 2$, there exists a sequence of 2*n consecutive *n*-Niven numbers.

Proof: We start with an α satisfying Congruence Conditions I and II and the Growth Condition. For $\gamma = \text{lcm}(\alpha, \alpha+1, ..., \alpha+n-1)$ and $\gamma' = \text{lcm}(\alpha+n-\mu*m*(n-1), ..., \alpha+2*n-1-\mu*m*(n-1))$, we can solve

$$b \equiv \alpha \mod \gamma$$
 and $b \equiv \alpha - \mu * m * (n-1) \mod \gamma'$. (8)

To see this, note that, for $p \nmid n$, we have $v_p(\mu * m * (n-1)) = a(p)$ and Congruence Condition I assures that $v_p(gcd(\gamma, \gamma')) \le a(p)$. For $p \mid n$, we have $v_p(\mu * m * (n-1)) = a(p) + 1$ and, by (5), $v_p(gcd(\gamma, \gamma')) \le a(p)$.

Let b be the least positive solution to (8). Any other solution to (8) differs from the minimal positive one by a multiple of $\delta = \text{lcm}(\gamma, \gamma')$. We can modify b by adding multiples of δ to create a number, b', so that

1997]

CONSTRUCTION OF 2 * n CONSECUTIVE *n*-NIVEN NUMBERS

$$b' \equiv n^{\mu * m} - n \mod n^{\mu * m}$$

$$b' \equiv n^{\mu * m + 1} - n \mod n^{\mu * m + 1}.$$
(9)

This is possible by Congruence Condition II: For p|n, Condition II assures that $\alpha \equiv p^{a(p)+1} - n$ mod $p^{a(p)+1}$. Since $\mu * m * (n-1) \equiv 0 \mod p^{a(p)+1}$, we have $\alpha + n - \mu * m * (n-1) \equiv 0 \mod p^{a(p)+1}$. Now (8) assures $b + n \equiv 0 \mod p^{a(p)+1}$. By Condition II, $v_p(\delta) \leq a(p) + 1 = v_p(\mu * m)$, so

$$b \equiv n^{\mu * m} - n \mod \prod_{p|n} p^{v_p(\delta)}.$$

This means we can add multiples of δ to b to get b' as above.

Our next task is to modify b' by concatenating copies of multiples of δ so that we obtain a number, β , with $s(\beta) = \alpha$. Since δ is less than the product of the 2*n numbers $\alpha, \alpha+1, ..., \alpha+2*n-1-\mu*m*(n-1)$, the largest of which has $\nu(\alpha+n-1) \leq \log_n(\alpha+n-1)+1$, we get

$$\nu(\delta) \le 2 * n * (\log_n(\alpha + n - 1) + 1).$$

Since b was the minimal solution to (8), we have $v(b) \le v(\delta)$. We created b' by adding multiples of δ to b. Keeping track of the digits, we see that

$$\nu(b') \le \mu * m + \nu(\delta) + 1$$

as we modify b to get a terminal 0 with $\mu * m - 1$ penultimate (n-1)'s. To do this by adding multiples of δ , we will be left with not more than $v(\delta) + 1$ digits in front of the penultimate (n-1)'s, since we can first choose a multiple of δ less than $n * \delta$ to change the second base n digit (from right) of b to n-1 and then choose a multiple of $n * \delta$ less than $n^2 * \delta$ to change the third base n digit (from right) to n-1, and so on. We continue until we add a multiple of $n^{\mu * m - 2} * \delta$ less than $n^{\mu * m - 1} * \delta$ to change the $\mu * m$ base n digit to n-1. A final multiple of $n^{\mu * m - 1} * \delta$ may need to be added to assure that the $\mu * m + 1$ digit is not n-1.

Since each digit can contribute at most n-1 to the digital sum, we get

$$s(\delta) \le 2 * n * (\log_n(\alpha + n - 1) + 1) * (n - 1)$$

and

$$s(b') \le (\mu * m + 2 * n * (\log_n(\alpha + n - 1) + 1)) * (n - 1)$$

Since $b' \equiv b \equiv \alpha \mod \gamma$, Lemma 2 gives $(n-1)|(\alpha - s(b'))|$. By Lemma 1, there exist k and k' so that $gcd(s(k * \delta), s(k' * \delta)) = n-1$; thus,

$$gcd(s(k * \delta), s(k' * \delta))|(\alpha - s(b'))|$$

Remark 1 says that our k and k' may be chosen so that

$$s(k * \delta) \le (n-1) * (5 + 2 * (2 * n * (\log_{(n)}(\alpha + n - 1) + 1)))$$

and

$$s(k'*\delta) \le (n-1)*2*(5+2*(2*n*(\log_{(n)}(\alpha+n-1)+1)))$$

These two inequalities and the Growth Condition assure $\alpha - s(b') \ge s(k * \delta) * s(k' * \delta)$, so we can use Lemma 3 with $z = \alpha - s(b')$, $x = s(k * \delta)$, and $y = s(k' * \delta)$. We conclude that there are non-negative integers r and t such that $\alpha - s(b') = r * s(k * \delta) + t * s(k' * \delta)$. But then

[MAY

but

126

$$\alpha = r * s(k * \delta) + t * s(k' * \delta) + s(b'), \text{ so}$$
$$\alpha = s((k * \delta), (k' * \delta), b').$$

Using $(k * \delta)_r (k' * \delta)_r b' \equiv n^{\mu * m} - n \mod n^{\mu * m}$, we get

$$\alpha + i = s((k * \delta)_r (k' * \delta)_t b' + i)$$
(10)

and

$$\alpha + n + i - \mu * m * (n - 1) = s((k * \delta)_r (k' * \delta)_t b' + n + i)$$

for i = 0, 1, ..., n-1. Since $(k * \delta)_r (k' * \delta)_t b' \equiv b \mod \delta$, (8) assures

and

$$(\alpha+i)|((k*\delta)_r(k'*\delta)_tb'+i)$$
(11)

$$(\alpha + n + i)|((k * \delta)_r(k' * \delta)_t b' + n + i)$$

for all i = 0, 1, ..., n-1. By (10), (11), and the definition of an *n*-Niven number, $(k * \delta)_r (k' * \delta)_t b'$ is the first of 2 * n consecutive *n*-Niven numbers. \Box

Remark 3: We note that we have proved something stronger than the theorem, namely, that there exist infinitely many sequences of 2*n consecutive *n*-Niven numbers, since there exist infinitely many α satisfying Condition I, Condition II, and the Growth Condition.

3. EXAMPLES

Example 1: For n = 2 we get $\mu = 2$, m = 2, and the conditions (3)-(5), (7),

$$\alpha \equiv 0, 1 \mod 3,$$

$$\alpha \equiv 6 \mod 8,$$

$$\alpha \ge 36033.$$

Taking, for example, $\alpha = 36046$, we get the base 2 representations:

 $b = 1_5001_40101_30010010101_70_31011010_51_40_41010_{(2)};$

 $\delta = 101_3 011011010110110110_4 100110101010_{3} 1_6 01001_4 00_{(2)}.$

Then, letting $b' = b + 7 * \delta$, we get the right number of penultimate 1's:

 $b' = 1011001_3001_300101010_31101010_31101101_50_31_501_30101_30_{(2)}.$

We easily see that s(b') = 37. Now we want to follow Lemma 1 to get multiples of δ with relatively prime base 2 digital sums. First, we want $\delta' = (n+1)*\delta$ as a has a terminal n-1. Using δ' in place of δ , we get $k = 2*2^{62} + 1$ and $k' = (2^{122} + 1)k = 2^{185} + 2^{122} + 2^{63} + 1$. Then we see that

 $k * \delta' = 10_3 110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 011010_3 10_3$ 110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 0110100_{(2)}

with $s(k * \delta') = 64$ and

 $k' * \delta' = 10_3 110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 011010_3$ $10_3 110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 01_3 0_4$ $110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 011010_3 10_3$ $110010010_4 10_4 10_3 10_3 1_3 001_9 0101_4 01_4 0110100_{(2)}$

1997]

with $s(k' * \delta') = 127$. It is easy to see that

$$\alpha - s(b') = 36009 = 517 * 64 + 23 * 127 = 517 * s(k * \delta') + 23 * s(k' * \delta')$$

so

$$s((k * \delta')_{517}(k' * \delta')_{23}b') = 36046 = \alpha$$
.

Thus, $(k * \delta')_{517}(k' * \delta')_{23}b'$ is the base 2 representation of the first number in a sequence of 4 consecutive 2-Niven numbers.

We note that the Growth Condition, while assuring we can get α as a digital sum, results in large numbers. In practice, much smaller α satisfying Congruence Conditions I and II can be digital sums of 2*n consecutive *n*-Niven numbers.

Example 2: For n = 2, we get $\mu = 2, m = 2$ and the congruence conditions $\alpha \equiv 0, 1 \mod 3$ and $\alpha \equiv 6 \mod 8$. $\alpha = 6$ is such an α (although it clearly does not satisfy the Growth Condition). This leads to $b = 342 = 101010110_{(2)}$ and $\delta = 420 = 110100100_{(2)}$. It is easy to see that $\beta = b + 14 * \delta = 6222$ has base 2 expansion $100001001110_{(2)}$, so $s(\beta) = \alpha$. This means β is the first of a sequence of four consecutive 2-Niven numbers.

REFERENCES

- 1. T. Cai. "On 2-Niven Numbers and 3-Niven Numbers." *The Fibonacci Quarterly* **34.2** (1996): 118-20.
- C. Cooper & R. Kennedy. "On Consecutive Niven Numbers." The Fibonacci Quarterly 31.2 (1993):146-51.
- 3. H. Grundman. "Sequences of Consecutive *n*-Niven Numbers." *The Fibonacci Quarterly* **32.2** (1994):174-75.
- 4. B. Wilson. "Construction of Small Consecutive Niven Numbers." *The Fibonacci Quarterly* **34.3** (1996):240-43.

AMS Classification Number: 11A63
