CONSTRUCTION OF $2 * \boldsymbol{n}$ CONSECUTIVE \boldsymbol{n}-NIVEN NUMBERS

Brad Wilson
Dept. of Mathematics, SUNY College at Brockport, Brockport, NY 14420
E-mail: bwilson@acsprl.acs.brockport.edu
(Submitted July 1995)

1. INTRODUCTION

Fix a natural number, $n \geq 2$, as our base. For a a natural number, define $s(a)$ to be the sum of the digits of a written in base n. Define $v(a)$ to be the number of digits of a written in base n, i.e., $n^{\nu(a)-1} \leq a<n^{\nu(a)}$. For a and b natural numbers, denote the product of a and b by $a * b$. For a and b natural numbers written in base n, let $a b$ denote the concatenation of a and b, i.e., $a b=$ $a * n^{\nu(b)}+b$. Denote concatenation of k copies of a by a_{k}, i.e.,

$$
a_{k}=a+a * n^{\nu(a)}+a * n^{2 * v(a)}+\cdots+a * n^{(k-1) * v(a)}=a * \frac{n^{k * \nu(a)}-1}{n^{\nu(a)}-1} .
$$

Definition: We say a is an n-Niven number if a is divisible by its base n digital sum, i.e., $s(a) \mid a$.
Example: For $n=11$, we have $15=1 * 11+4 * 1$, so $s(15)=1+4=5$. Since $5 \mid 15,15$ is an $11-$ Niven number.

It is known that there can exist at most $2 * n$ consecutive n-Niven numbers [3]. It is also known that, for $n=10$, there exist sequences of twenty consecutive 10 -Niven numbers (often just called Niven numbers) [2]. In [1], sequences of six consecutive 3-Niven numbers and four consecutive 2 -Niven numbers were constructed. Mimicking a construction of twenty consecutive Niven numbers in [4], we can prove Grundman's conjecture.

Conjecture: For each $n \geq 2$, there exists a sequence of $2 * n$ consecutive n-Niven numbers.
Before giving a constructive proof of this conjecture, we give some notation and results that will give us necessary congruence conditions for a number, α, to be the base n digital sum of the first of $2 * n$ consecutive n-Niven numbers, β.

For any prime p, let $a(p)$ be such that $p^{a(p)} \leq n$ but $p^{a(p)+1}>n$. For any prime p, let $b(p)$ be such that $p^{b(p)} \mid(n-1)$ but $p^{b(p)+1} \chi(n-1)$. Let $\mu=\Pi_{p} p^{a(p)-b(p)}$.

Theorem 1: A sequence of $2 * n$ consecutive n-Niven numbers must begin with a number congruent to $n^{\mu * m}-n$ modulo $n^{\mu * m}$ (but not congruent to $n^{\mu * m+1}-n$ modulo $n^{\mu * m+1}$) for some positive integer m.

Proof: It is shown in [3] that the first of $2 * n$ consecutive n-Niven numbers, β, must be congruent to 0 modulo n. Suppose $\beta \equiv n^{m^{\prime}}-n \bmod n^{m^{\prime}}$ but $\beta \not \equiv n^{m^{\prime}+1}-n \bmod n^{m^{\prime}+1}$. We will show that $\mu \mid m^{\prime}$. It is enough to show $p^{a(p)-b(p)} \mid m^{\prime}$ for all p. Among the n consecutive numbers $s(\beta), s(\beta+1), \ldots, s(\beta+n-1)$, there is a multiple of $p^{a(p)}$. Similarly for $s(\beta+n), s(\beta+n+1), \ldots$, $s(\beta+2 * n-1)$. By the definition of an n-Niven number, this means $p^{a(p)}|s(\beta+i), s(\beta+i)|(\beta+i)$, $p^{a(p)} \mid s(\beta+n+j)$, and $s(\beta+n+j) \mid(\beta+n+j)$ for some i, j in $0,1, \ldots, n-1$. But $s(\beta+i)=S(\beta)+i$
and $s(\beta+n+j)=s(\beta)+n+j-m^{\prime} *(n-1)$. So, $p^{a(p)} \mid(n+j-i)$ and $p^{a(p)} \mid\left(n+j-i-m^{\prime} *(n-1)\right)$, and therefore, $p^{a(p)} \mid m^{\prime} *(n-1)$. Since $p^{b(p)}$ is the highest power of p dividing $n-1$, we obtain $p^{a(p)-b(p)} \mid m^{\prime}$.

Corollary 1: A sequence of $2 * n$ consecutive n-Niven numbers must consist of numbers having at least μ digits written in base n.

Another result of this theorem is to get restrictions on the digital sum, α, of the first of $2 * n$ consecutive n-Niven numbers.
Corollary 2: If $\alpha=s(\beta)$ for β the first of $2 * n$ consecutive n-Niven numbers, then for m as in Theorem 1 and for and

$$
\begin{equation*}
\gamma=\operatorname{lcm}(\alpha, \alpha+1, \ldots, \alpha+n-1) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\gamma^{\prime}=\operatorname{lcm}(\alpha+n-\mu * m *(n-1), \alpha+n+1-\mu * m *(n-1), \ldots, \alpha+2 * n-1-\mu * m *(n-1)) \tag{2}
\end{equation*}
$$

we have $\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right) \mid \mu * m *(n-1)$.
Proof: For β the first of $2 * n$ consecutive n-Niven numbers and for α the base n digital sum of β, since $\beta \equiv 0 \bmod n$, we get

$$
(\alpha+i) \mid(\beta+i) \text { for } i=0,1, \ldots, n-1
$$

and, by Theorem 1, we get

$$
(\alpha+n+j-\mu * m *(n-1)) \mid(\beta+n+j) \text { for } j=0,1, \ldots, n-1
$$

These imply $\beta \equiv \alpha \bmod \gamma$ and $\beta \equiv \alpha-\mu * m *(n-1) \bmod \gamma^{\prime}$. These two congruences are compatible if and only if $\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right) \mid \mu * m *(n-1)$.

Finally, we will need the following three lemmas in our construction.
Lemma 1: For $\delta=\operatorname{lcm}\left(\gamma, \gamma^{\prime}\right)$ there exist positive integer multiples of δ, say $k * \delta$ and $k^{\prime} * \delta$ so that $\operatorname{gcd}\left(s(k * \delta), s\left(k^{\prime} * \delta\right)\right)=n-1$. Further, this is the smallest the greatest common divisor of the digital sums of any two integral multiples of δ can be.

Proof: Since $(n-1) \mid \delta$, we see that $(n-1) \mid k * \delta$ for any $k \in \mathbb{Z}$. Since $n-1$ is one less than our base, $(n-1) \mid s(k * \delta)$, so the smallest the greatest common divisor can be is $n-1$.

Now let $a \mathfrak{a} b 0_{\ell}$ be the base n expansion of δ with a and b nonzero digits and a a block of digits of length ℓ^{\prime}. We can suppose without loss of generality that a ends in a digit other than $n-1$, for if it does end in $n-1$ we can consider $(n+1) * \delta$ in place of δ. Since $\delta<n^{\ell+\ell^{\prime}+2}$, there is a multiple of δ between any two multiples of $n^{\ell+\ell^{\prime}+2}$, so there is some multiple of δ between $(n-1) * n^{\ell+\ell^{\prime}+2}$ and $n^{\ell+\ell^{\prime}+3}$, i.e., some κ so that the base n representation of $\kappa * \delta$ is $(n-1) \mathbf{a}^{\prime}$ with $v\left(\mathfrak{a}^{\prime}\right)=\ell+\ell^{\prime}+2$. Then, for $k=\kappa * n^{\ell+\ell^{\prime}+2}+1$ and $k^{\prime}=\left(n^{\ell+2 * \ell^{\prime}+4}+1\right) * k$, we get $(n-1) \mathfrak{a}^{\prime} a \mathfrak{a} b 0_{\ell}$ as the base n representation of $k * \delta$ and $(n-1) \mathfrak{a}^{\prime} a(\mathbf{a}+1)(b-1) \mathbf{a}^{\prime} a \mathbf{a} b 0_{\ell}$ as the base representation of $k^{\prime} * \delta$. Then we see $s(k * \delta)=n-1+s\left(\mathfrak{a}^{\prime}\right)+s(a)+s(\mathbf{a})+s(b)$, while $s\left(\left(k^{\prime} * \delta\right)\right)=n-1+2 * s\left(\mathbf{a}^{\prime}\right)+$ $2 * s(a)+2 * s(\mathbf{a})+1+2 * s(b)-1$; thus, $s\left(k^{\prime} * \delta\right)=2 * s(k * \delta)-(n-1)$. This means $\operatorname{gcd}(s(k * \delta)$, $\left.s\left(k^{\prime} * \delta\right)\right)=n-1$.

Remark 1: It follows from the proof that we can choose k, k^{\prime} in the lemma with $v(k * \delta) \leq$ $5+2 * \ell+2 * \ell^{\prime}$ and $v\left(k^{\prime} * \delta\right) \leq 9+3 * \ell+4 * \ell^{\prime}$ when $\delta \quad[$ or $(n+1) * \delta$ if a ends in $n-1]$ has
$\ell+\ell^{\prime}+2$ digits in base n. Since ℓ is the number of terminal zeros in δ and ℓ^{\prime} is the number of digits strictly between the first and last nonzero digit of δ, we have

$$
v(k * \delta) \leq 5+2 *\left(\ell+\ell^{\prime}\right) \leq 5+2 *(v(\delta)-1)
$$

Since $\delta<(\alpha+n-1)^{2 * n}$, we have $v(\delta) \leq 2 * n *\left(\log _{n}(\alpha+n-1)+1\right)$.. This inequality leads to

$$
v(k * \delta) \leq 5+2 *\left(2 * n *\left(\log _{n}(\alpha+n-1)+1\right)-1\right) \leq 5+4 * n *\left(\log _{n}(\alpha+n-1)+1\right) .
$$

Similarly,

$$
v(k * \delta) \leq 2 *\left(5+4 *\left(n *\left(\log _{n}(\alpha+n-1)+1\right)\right)\right) .
$$

This comes into play in constructing a "growth condition" in the next section.
Lemma 2: For any positive integer z, if $\alpha \equiv z \bmod \gamma$, then $(n-1) \mid(\alpha-s(z))$.
Proof: This is equivalent to showing $\alpha \equiv s(z) \bmod (n-1)$. We know $z \equiv s(z) \bmod (n-1)$ as $n-1$ is one less than our base. Since $(n-1) \mid \gamma$, we get $z \equiv \alpha \bmod (n-1)$ which, taken with the previous congruence, gives the result.

Lemma 3: For positive integers x, y, z, if $\operatorname{gcd}(x, y) \mid z$ and $z \geq x * y$, then we can express z as a nonnegative linear combination of x and y.

Proof: That we can write z as a linear combination of x and y follows from the extended Euclidean algorithm. To see that we can obtain a nonnegative linear combination, suppose $z=$ $r * x+t * y$. Since $x, y, z>0$, at least one of r and t is positive. If they are both nonnegative, we are done, so suppose without loss of generality that $r<0$. Then $z=z+(y * x-x * y)=(r+y) * x+$ $(t-x) * y$. We can repeat this until we have a nonnegative coefficient on x, so assume without loss of generality that $r+y \geq 0$. If $t-x \geq 0$, then we have a nonnegative linear combination and so are done. This means we are left to consider $r<0, t>0, r+y \geq 0$, and $t-x<0$. However, if $z=r * x+t * y$ with $r<0, x>0$, then $t * y>z$ so that $(t-x) * y>z-x * y \geq 0$ by hypothesis. But $y>0$ and $(t-x) * y \geq 0$ means $t-x \geq 0$, a contradiction.

2. CONSTRUCTION

In this section we shall construct an α that can serve as the digital sum of the first of $2 * n$ consecutive n-Niven numbers. We then use this α to actually construct the first of $2 * n$ consecutive n-Niven numbers, β, with $\alpha=s(\beta)$. We present the construction using the results of the previous section. In that section, we derived congruence restrictions on the digital sum of the first of $2 * n$ consecutive n-Niven numbers (if such a sequence exists). We now use these restrictions to construct such a sequence.

Let $a(p), b(p)$, and μ be as in the previous section. For our construction, we specifically fix $m=\prod_{p \mid n} p$. For p a prime, define $c(p)$ by

$$
p^{c(p)} \mid(\mu * m *(n-1)-i) \text { for some } i=1,2, \ldots, 2 * n-1
$$

and

$$
p^{c(p)+1} \chi(\mu * m *(n-1)-i) \text { for any } i=1,2, \ldots, 2 * n-1 .
$$

To produce an α satisfying $\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right) \mid \mu * m *(n-1)$, we impose the following condition.

Congruence Condition I: For all $p \| n$ with $c(p)>a(p)$, we require

$$
\alpha \equiv 1,2, \ldots, p^{a(p)+1}-n \bmod p^{a(p)+1}
$$

or

$$
\begin{equation*}
\alpha+n-\mu * m *(n-1) \equiv 1,2, \ldots, p^{a(p)+1}-n \bmod p^{a(p)+1} \tag{3}
\end{equation*}
$$

This assures that the "prime to $n^{\prime \prime}$ part of $\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right)$ will divide $\mu *(n-1)$. But, for $p \mid n$, we require stronger conditions in order to have an α for which $\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right) \mid \mu * m *(n-1)$.

Congruence Condition II: For all $p \mid n$, we require both of the following:

$$
\begin{gather*}
\alpha+n-\mu * m *(n-1) \equiv 1,2, \ldots, p^{a(p)+2}-n \bmod p^{a(p)+2} \tag{4}\\
\alpha \equiv p^{a(p)+1}-n \bmod p^{a(p)+1} \tag{5}
\end{gather*}
$$

Remark 2: There exist α simultaneously satisfying these conditions. It is clear we can find an α satisfying Condition I for every p. For Condition II, (5) is equivalent to

$$
\begin{equation*}
\alpha \equiv p^{a(p)+1}-n, 2 * p^{a(p)+1}-n, \ldots, p * p^{a(p)+1}-n \bmod p^{a(p)+2} \tag{6}
\end{equation*}
$$

Then (4) restricts α to one of $p^{a(p)+2}-n$ consecutive residue classes modulo $p^{a(p)+2}$, but at least one of these must also be a solution to (6) since those solutions are spaced every $p^{a(p)+1}$. and $p^{a(p)+1}>n$ implies $p^{a(p)+2}-n>p^{a(p)+1}$.

Finally, as there are infinitely many α satisfying Congruence Conditions I and II, we are free to choose one as large as we like. We choose α large enough to satisfy the following

Growth Condition:

$$
\begin{align*}
\alpha \geq & (n-1) *\left(\mu * m+2 * n *\left(\log _{n}(\alpha+n-1)+1\right)\right) \\
& +(n-1)^{2} * 2 *\left(5+4 * n *\left(\log _{n}(\alpha+n-1)+1\right)\right)^{2} \tag{7}
\end{align*}
$$

Again, it is possible to find such an α because the left-hand side grows linearly while the right-hand side grows logarithmically in α.

Theorem 2: Any α satisfying Congruence Conditions I and II and the Growth Condition is the digital sum of the first of $2 * n$ consecutive n-Niven numbers. In particular, for each $n \geq 2$, there exists a sequence of $2 * n$ consecutive n-Niven numbers.

Proof: We start with an α satisfying Congruence Conditions I and II and the Growth Condition. For $\gamma=\operatorname{lcm}(\alpha, \alpha+1, \ldots, \alpha+n-1)$ and $\gamma^{\prime}=\operatorname{lcm}(\alpha+n-\mu * m *(n-1), \ldots, \alpha+2 * n-1-$ $\mu * m *(n-1))$, we can solve

$$
\begin{equation*}
b \equiv \alpha \bmod \gamma \text { and } b \equiv \alpha-\mu * m *(n-1) \bmod \gamma^{\prime} \tag{8}
\end{equation*}
$$

To see this, note that, for $p \nmid n$, we have $v_{p}(\mu * m *(n-1))=a(p)$ and Congruence Condition \mathbb{I} assures that $v_{p}\left(\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right)\right) \leq a(p)$. For $p \mid n$, we have $v_{p}(\mu * m *(n-1))=a(p)+1$ and, by (5), $v_{p}\left(\operatorname{gcd}\left(\gamma, \gamma^{\prime}\right)\right) \leq a(p)$.

Let b be the least positive solution to (8). Any other solution to (8) differs from the minimal positive one by a multiple of $\delta=\operatorname{lcm}\left(\gamma, \gamma^{\prime}\right)$. We can modify b by adding multiples of δ to create a number, b^{\prime}, so that
but

$$
\begin{align*}
& b^{\prime} \equiv n^{\mu * m}-n \bmod n^{\mu * m} \tag{9}\\
& b^{\prime} \not \equiv n^{\mu * m+1}-n \bmod n^{\mu * m+1} .
\end{align*}
$$

This is possible by Congruence Condition II: For $p \mid n$, Condition II assures that $\alpha \equiv p^{a(p)+1}-n$ $\bmod p^{a(p)+1}$. Since $\mu * m *(n-1) \equiv 0 \bmod p^{a(p)+1}$, we have $\alpha+n-\mu * m *(n-1) \equiv 0 \bmod$ $p^{a(p)+1}$.Now (8) assures $b+n \equiv 0 \bmod p^{a(p)+1}$. By Condition II, $v_{p}(\delta) \leq a(p)+1=v_{p}(\mu * m)$, so

$$
b \equiv n^{\mu * m}-n \bmod \prod_{p \mid n} p^{v_{p}(\delta)} .
$$

This means we can add multiples of δ to b to get b^{\prime} as above.
Our next task is to modify b^{\prime} by concatenating copies of multiples of δ so that we obtain a number, β, with $s(\beta)=\alpha$. Since δ is less than the product of the $2 * n$ numbers $\alpha, \alpha+1, \ldots$, $\alpha+2 * n-1-\mu * m *(n-1)$, the largest of which has $v(\alpha+n-1) \leq \log _{n}(\alpha+n-1)+1$, we get

$$
v(\delta) \leq 2 * n *\left(\log _{n}(\alpha+n-1)+1\right)
$$

Since b was the minimal solution to (8), we have $v(b) \leq v(\delta)$. We created b^{\prime} by adding multiples of δ to b. Keeping track of the digits, we see that

$$
\nu\left(b^{\prime}\right) \leq \mu * m+\nu(\delta)+1
$$

as we modify b to get a terminal 0 with $\mu * m-1$ penultimate ($n-1$)'s. To do this by adding multiples of δ, we will be left with not more than $v(\delta)+1$ digits in front of the penultimate ($n-1$)'s, since we can first choose a multiple of δ less than $n * \delta$ to change the second base n digit (from right) of b to $n-1$ and then choose a multiple of $n * \delta$ less than $n^{2} * \delta$ to change the third base n digit (from right) to $n-1$, and so on. We continue until we add a multiple of $n^{\mu * m-2} * \delta$ less than $n^{\mu * m-1} * \delta$ to change the $\mu * m$ base n digit to $n-1$. A final multiple of $n^{\mu * m-1} * \delta$ may need to be added to assure that the $\mu * m+1$ digit is not $n-1$.

Since each digit can contribute at most $n-1$ to the digital sum, we get

$$
s(\delta) \leq 2 * n *\left(\log _{n}(\alpha+n-1)+1\right) *(n-1)
$$

and

$$
s\left(b^{\prime}\right) \leq\left(\mu * m+2 * n *\left(\log _{n}(\alpha+n-1)+1\right)\right) *(n-1) .
$$

Since $b^{\prime} \equiv b \equiv \alpha \bmod \gamma$, Lemma 2 gives $(n-1) \mid\left(\alpha-s\left(b^{\prime}\right)\right)$. By Lemma 1, there exist k and k^{\prime} so that $\operatorname{gcd}\left(s(k * \delta), s\left(k^{\prime} * \delta\right)\right)=n-1$; thus,

$$
\operatorname{gcd}\left(s(k * \delta), s\left(k^{\prime} * \delta\right)\right) \mid\left(\alpha-s\left(b^{\prime}\right)\right)
$$

Remark 1 says that our k and k^{\prime} may be chosen so that

$$
s(k * \delta) \leq(n-1) *\left(5+2 *\left(2 * n *\left(\log _{(n)}(\alpha+n-1)+1\right)\right)\right)
$$

and

$$
s\left(k^{\prime} * \delta\right) \leq(n-1) * 2 *\left(5+2 *\left(2 * n *\left(\log _{(n)}(\alpha+n-1)+1\right)\right)\right)
$$

These two inequalities and the Growth Condition assure $\alpha-s\left(b^{\prime}\right) \geq s(k * \delta) * s\left(k^{\prime} * \delta\right)$, so we can use Lemma 3 with $z=\alpha-s\left(b^{\prime}\right), x=s(k * \delta)$, and $y=s\left(k^{\prime} * \delta\right)$. We conclude that there are nonnegative integers r and t such that $\alpha-s\left(b^{\prime}\right)=r * s(k * \delta)+t * s\left(k^{\prime} * \delta\right)$. But then

$$
\begin{gathered}
\alpha=r * s(k * \delta)+t * s\left(k^{\prime} * \delta\right)+s\left(b^{\prime}\right), \text { so } \\
\alpha=s\left((k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime}\right) .
\end{gathered}
$$

Using $(k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime} \equiv n^{\mu * m}-n \bmod n^{\mu * m}$, we get
and

$$
\begin{equation*}
\alpha+i=s\left((k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime}+i\right) \tag{10}
\end{equation*}
$$

for $i=0,1, \ldots, n-1$. Since $(k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime} \equiv b \bmod \delta,(8)$ assures
and

$$
\begin{equation*}
(\alpha+i) \mid\left((k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime}+i\right) \tag{11}
\end{equation*}
$$

for all $i=0,1, \ldots, n-1$. By (10), (11), and the definition of an n-Niven number, $(k * \delta)_{r}\left(k^{\prime} * \delta\right)_{t} b^{\prime}$ is the first of $2 * n$ consecutive n-Niven numbers.

Remark 3: We note that we have proved something stronger than the theorem, namely, that there exist infinitely many sequences of $2 * n$ consecutive n-Niven numbers, since there exist infinitely many α satisfying Condition I, Condition II, and the Growth Condition.

3. EXAMPLES

Example 1: For $n=2$ we get $\mu=2, m=2$, and the conditions (3)-(5), (7),

$$
\begin{aligned}
& \alpha \equiv 0,1 \bmod 3 \\
& \alpha \equiv 6 \quad \bmod 8 \\
& \alpha \geq 36033
\end{aligned}
$$

Taking, for example, $\alpha=36046$, we get the base 2 representations:

$$
\begin{gathered}
b=1_{5} 001_{4} 0101_{3} 0010010101_{7} 0_{3} 1011010_{5} 1_{4} 0_{4} 1010_{(2)} \\
\delta=101_{3} 01101101011010110110_{4} 10011010101010_{3} 1_{6} 01001_{4} 00_{(2)}
\end{gathered}
$$

Then, letting $b^{\prime}=b+7 * \delta$, we get the right number of penultimate 1 's:

$$
b^{\prime}=1011001_{3} 001_{3} 00101010_{3} 1101010_{3} 1101101_{5} 0_{3} 1_{5} 01_{3} 0101_{3} 0_{(2)}
$$

We easily see that $s\left(b^{\prime}\right)=37$. Now we want to follow Lemma 1 to get multiples of δ with relatively prime base 2 digital sums. First, we want $\delta^{\prime}=(n+1) * \delta$ as a has a terminal $n-1$. Using δ^{\prime} in place of δ, we get $k=2 * 2^{62}+1$ and $k^{\prime}=\left(2^{122}+1\right) k=2^{185}+2^{122}+2^{63}+1$. Then we see that

$$
\begin{aligned}
k * \delta^{\prime}= & 10_{3} 110010010_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 011010_{3} 10_{3} \\
& 110010010_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 0110100_{(2)}
\end{aligned}
$$

with $s\left(k * \delta^{\prime}\right)=64$ and

$$
\begin{aligned}
k^{\prime} * \delta^{\prime}= & 10_{3} 110010010_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 011010_{3} \\
& 10_{3} 110010010_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 01_{3} 0_{4} \\
& 110010010_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 011010_{3} 10_{3} \\
& 11001000_{4} 10_{4} 10_{3} 10_{3} 1_{3} 001_{9} 0101_{4} 01_{4} 0110100_{(2)}
\end{aligned}
$$

with $s\left(k^{\prime} * \delta^{\prime}\right)=127$. It is easy to see that

$$
\alpha-s\left(b^{\prime}\right)=36009=517 * 64+23 * 127=517 * s\left(k * \delta^{\prime}\right)+23 * s\left(k^{\prime} * \delta^{\prime}\right),
$$

so

$$
s\left(\left(k * \delta^{\prime}\right)_{517}\left(k^{\prime} * \delta^{\prime}\right)_{23} b^{\prime}\right)=36046=\alpha
$$

Thus, $\left(k * \delta^{\prime}\right)_{517}\left(k^{\prime} * \delta^{\prime}\right)_{23} b^{\prime}$ is the base 2 representation of the first number in a sequence of 4 consecutive 2 -Niven numbers.

We note that the Growth Condition, while assuring we can get α as a digital sum, results in large numbers. In practice, much smaller α satisfying Congruence Conditions I and II can be digital sums of $2 * n$ consecutive n-Niven numbers.
Example 2: For $n=2$, we get $\mu=2, m=2$ and the congruence conditions $\alpha \equiv 0,1 \bmod 3$ and $\alpha \equiv 6 \bmod 8 . \alpha=6$ is such an α (although it clearly does not satisfy the Growth Condition). This leads to $b=342=101010110_{(2)}$ and $\delta=420=110100100_{(2)}$. It is easy to see that $\beta=b+$ $14 * \delta=6222$ has base 2 expansion $100001001110_{(2)}$, so $s(\beta)=\alpha$. This means β is the first of a sequence of four consecutive 2 -Niven numbers.

REFERENCES

1. T. Cai. "On 2-Niven Numbers and 3-Niven Numbers." The Fibonacci Quarterly 34.2 (1996): 118-20.
2. C. Cooper \& R. Kennedy. "On Consecutive Niven Numbers." The Fibonacci Quarterly $\mathbf{3 1 . 2}$ (1993):146-51.
3. H. Grundman. "Sequences of Consecutive n-Niven Numbers." The Fibonacci Quarterly 32.2 (1994):174-75.
4. B. Wilson. "Construction of Small Consecutive Niven Numbers." The Fibonacci Quarterly 34.3 (1996):240-43.

AMS Classification Number: 11A63

