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1. INTRODUCTION

Fix a natural number, n>2, as our base. For a a natural number, define s(a) to be the sum
of the digits of a written in base n. Define v(a) to be the number of digits of a written in base »,
ie, @1 <a<n”®  Fora and b natural numbers, denote the product of @ and b by a*b. For
a and b natural numbers written in base », let ab denote the concatenation of @ and b, i.e., ab =
axn"® +b. Denote concatenation of k copies of a by a,, i.e.,

nk*v(a) -1

a, =a+a*n”@ +axn**" @ ... @rp¢H@ BARTO
n p—

Definition: We say a is an n-Niven number if a is divisible by its base » digital sum, i.e., s(a)|a.

Example: For n=11, we have 15=1x11+4x1, so s(15)=1+4=5. Since 5|15, 15 is an 11-
Niven number.

It is known that there can exist at most 2*# consecutive n-Niven numbers [3]. It is also
known that, for n =10, there exist sequences of twenty consecutive 10-Niven numbers (often just
called Niven numbers) [2]. In [1], sequences of six consecutive 3-Niven numbers and four con-
secutive 2-Niven numbers were constructed. Mimicking a construction of twenty consecutive
Niven numbers in [4], we can prove Grundman's conjecture.

Conjecture: For each n>2, there exists a sequence of 2xn consecutive #-Niven numbers.

Before giving a constructive proof of this conjecture, we give some notation and results that
will give us necessary congruence conditions for a number, &, to be the base n digital sum of the
first of 2*n consecutive n-Niven numbers, £.

For any prime p, let a(p) be such that p*P) <n but pP+1 >n. For any prime p, let b(p) be
such that p?(P|(n—1) but p?P*f(n-1). Let pu =TI, paP)->/.

Theorem 1: A sequence of 2%n consecutive n-Niven numbers must begin with a number con-
gruent to #**” —n modulo #**” (but not congruent to #**"*'—n modulo »**"*') for some
positive integer m.

Proof: 1t is shown in [3] that the first of 2%n consecutive #-Niven numbers, £, must be
congruent to 0 modulo 7. Suppose f=n" —nmodn™ but B#n™* —nmodn™*'. We will
show that u|m’. It is enough to show pa(P-t(P)|m' for all p. Among the n consecutive numbers
s(B), s(B+1),...,s(B+n-1), there is a multiple of p?(P. Similarly for s(f+n), s(B+n+1),...,
s(f+2xn—1). By the definition of an n-Niven number, this means p*P)|s(8 +i), s(B8+1)|(B+i),
pP|s(B+n+j), and s(B+n+ j)|(f+n+j) forsomei,jin0,1,...,n—1. But s(B+i)=S(B)+i
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and s(B+n+j)=s(P)+n+ j—m'*x(n-1). So, p*P|(n+ j—i) and p*P|(n+ j—i—m'*(n—1)),
and therefore, pa(P|m'+(n—1). Since p’(® is the highest power of p dividing #—1, we obtain
pa(P)‘b(P)lm’ . O

Corollary 1: A sequence of 2xn consecutive n-Niven numbers must consist of numbers having
at least u digits written in base n.

Another result of this theorem is to get restrictions on the digital sum, &, of the first of 2xn
consecutive n-Niven numbers.

Corollary 2: 1If a =s(f) for S the first of 2xn consecutive n-Niven numbers, then for m as in

Theorem 1 and for

y=lem(a,a+1,...,a+n-1) €))

and
v'=lem(a+n—prmx(m-1),a+n+l-pusxmx(n-1),...,a+2*n—1—-puxmx(n-1)), (2)

we have ged(y, y')|uxm*(n—1).

Proof: For f the first of 2+n consecutive n-Niven numbers and for ¢ the base » digital sum
of 3, since #=0 mod n, we get

(a+i)|(f+i)fori=0,1,...,n—1
and, by Theorem 1, we get

(a+n+j—pxmx(m-1)|(B+n+j)forj=0,1,..,n-1.

These imply f=a mody and f=a— pu*m*(n—1) mody’. These two congruences are compat-
ible if and only if gcd(y, ") | u*xm*(n—1). O

Finally, we will need the following three lemmas in our construction.

Lemma 1: For 6 =lcm(y,y’) there exist positive integer multiples of §, say k*J and k'*6 so
that ged(s(k * ), s(k' *5)) = n—1. Further, this is the smallest the greatest common divisor of the
digital sums of any two integral multiples of & can be.

Proof: Since (n—1)|5, we see that (n—1)|k*J for any k €Z. Since n—1 is one less than
our base, (n—1)|s(k* ), so the smallest the greatest common divisor can be is 7—1.

Now let aab0, be the base n expansion of § with a and b nonzero digits and a a block of
digits of length £’. We can suppose without loss of generality that a ends in a digit other than
n—1, for if it does end in n—1 we can consider (n+1)*& in place of §. Since § <n***2 there
is a multiple of & between any two multiples of n**¥*2 so there is some multiple of § between
(n—1)xn****2 and n****3, i.e., some K so that the base n representation of k x5 is (n—1)a’ with
v(a') =L+ +2. Then, for k =x*n***2+1and k' = (n*2**+ + D) x k, we get (n—1)a'aab0; as
the base n representation of k*J and (n—1)a’a(a+1)(b—1)a’aab0, as the base representation of
k'«x5. Then we see s(k*5)=n—1+s(a’)+s(a) + s(a) + s(b), while s((k'*5)) =n—1+2x*s(a’)+
2xs(a)+2*s(a)+1+2%s(b)—1; thus, s(k'*8)=2*s(k*5)— (n—1). This means gcd(s(k *9),
s(k’*x0))=n-10

Remark 1: Tt follows from the proof that we can choose 4, £’ in the lemma with v(k*J) <
542%£+2+0" and v(k'*8)<9+3xL+4x{" when 6 [or (n+1)*d if a ends in n—1] has
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£+£'+2 digits in base n. Since £ is the number of terminal zeros in § and £’ is the number of
digits strictly between the first and last nonzero digit of &, we have

V(k*8) < 5+2(0+07) < 5+2% (V&) - 1).
Since & < (@ +n—1)**", we have V() < 2*n*(log,(a +n—1)+1).. This inequality leads to
v(k*8) < 5+2%(2*nx(log, (@ +n-1)+1)-1) < 5+4xn*(log, (o +n-1)+1).

Similarly,
v(k *38) < 2%(5+4x(n*(log, (@ +n—1)+1))).

This comes into play in constructing a "growth condition" in the next section.
Lemma 2: For any positive integer z, if @ =z mod y, then (n—1)|(a - 5(2)).

Proof: This is equivalent to showing « = s(z) mod (n—1). We know z = s(z) mod (n—1) as
n—1 is one less than our base. Since (n—1)|y, we get z= a mod (n—1) which, taken with the
previous congruence, gives the result. O

Lemma 3: For positive integers x, y, z, if gcd(x, y)|z and z>x*y, then we can express z as a
nonnegative linear combination of x and y.

Proof: That we can write z as a linear combination of x and y follows from the extended
Euclidean algorithm. To see that we can obtain a nonnegative linear combination, suppose z =
rxx+t*y. Since x, y,z> 0, at least one of » and 7 is positive. If they are both nonnegative, we
are done, so suppose without loss of generality that 7 <0. Then z=z+(y*x—x*y)=(r +y)*x+
(t—x)*y. We can repeat this until we have a nonnegative coefficient on x, so assume without
loss of generality that »+y > 0. If r—x >0, then we have a nonnegative linear combination and
so are done. This means we are left to consider » <0,7>0,7+y >0, and #—x <0. However, if
z=rxx+t*y with 7 <0,x >0, then #*xy >z so that (t—x)*y>z—x*y >0 by hypothesis. But
y>0and (f—x)*y >0 means #—x >0, a contradiction. O

2. CONSTRUCTION

In this section we shall construct an o that can serve as the digital sum of the first of 2%n
consecutive n-Niven numbers. We then use this @ to actually construct the first of 2%# con-
secutive n-Niven numbers, £, with a = s(ff). We present the construction using the results of the
previous section. In that section, we derived congruence restrictions on the digital sum of the first
of 2xn consecutive #n-Niven numbers (if such a sequence exists). We now use these restrictions
to construct such a sequence.

Let a(p), b(p), and u be as in the previous section. For our construction, we specifically fix
m=[1,» p. For p a prime, define c(p) by
P°P|(uxmx(n—1)—i) forsomei=12,..., 2%n-1

and
PO (uxmx(n—1)—i) foranyi=12,..,2%n—1.

To produce an « satisfying gcd(y, ¥')|uxmx*(n—1), we impose the following condition.
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Congruence Condition I: For all p|n with c(p)> a(p), we require

a=12,.., p“P*"—pn mod pa»H
or
a+n—pxmr(n-1)=1,2,.., p?»*+ —pmod pa* 3)

This assures that the "prime to " part of ged(y, y') will divide p*(m—1). But, for p|n, we
require stronger conditions in order to have an a for which ged(y, /)| pxm*(n-1).

Congruence Condition II: For all p|n, we require both of the following:
a+n—prmx(n-1)=12, ..., p*P*? —nmod p*P*?, @
a = p*PH —pmod pUPHH, &)

Remark 2: There exist o simultaneously satisfying these conditions. It is clear we can find an
satisfying Condition I for every p. For Condition II, (5) is equivalent to

a=pPri_p 2% piPH_p | px paP—p mod paPi2, 6)

Then (4) restricts o to one of p*P*2 —n consecutive residue classes modulo pa(P*2 but at least
one of these must also be a solution to (6) since those solutions are spaced every p*P*1. and
PP > implies p*(Pr*2 —p > palp)tt,

Finally, as there are infinitely many o satisfying Congruence Conditions I and I, we are free
to choose one as large as we like. We choose a large enough to satisfy the following

Growth Condition:
a>n-D)x(uxm+2xnx(log,(a +n-1)+1))

+(n—1)**2x(5+4xn*(log,(a+n-1)+1)%. @)

Again, it is possible to find such an « because the left-hand side grows linearly while the
right-hand side grows logarithmically in .

Theorem 2: Any o satisfying Congruence Conditions I and IT and the Growth Condition is the
digital sum of the first of 2xn consecutive n-Niven numbers. In particular, for each n>2, there
exists a sequence of 2xn consecutive #-Niven numbers.

Proof: We start with an o satisfying Congruence Conditions I and II and the Growth Con-
dition. For y = lem(a,a+1,...,a+n-1) and y'= lecm(a+n—puxmx(n-1),..., a+2*n—-1-
pxmx(n—1)), we can solve

b=amody and b=a—uxm+(n-1) mody’'. ®)
To see this, note that, for p/n, we have vp(,u*m*(n—l)) =a(p) and Congruence Condition I
assures that v,(ged(y, 7")) <a(p). For p|n, we have v,(uxm*(n-1))=a(p)+1 and, by (5),

vp(ged(y, ¥") <a(p).

Let b be the least positive solution to (8). Any other solution to (8) differs from the minimal
positive one by a multiple of § =lcm(y,y’). We can modify b by adding multiples of § to create
a number, &', so that
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b' =n**" —n mod n#*"
but )

b $ ny*m+l —-n mod n,u*m+1.

This is possible by Congruence Condition II: For p|n, Condition II assures that o = p?(P)*1 —p
mod p*P* Since puxm*(n—-1)=0 mod pP* we have a+n—puxmx(n—-1)=0 mod
p*P*1 Now (8) assures b+n=0 mod p*P+1. By Condition II, v,(5) < a(p) +1=v,(u*m), so

b=n"""—n mod [| p®.
pln
This means we can add multiples of § to b to get b’ as above.
Our next task is to modify 5’ by concatenating copies of multiples of & so that we obtain a
number, S, with s(f)=a. Since § is less than the product of the 2%n numbers a,a+1,...,
a+2xn—1- usxmx*(n-1), the largest of which has v(a +n-1) <log,(a+n-1)+1, we get

v(6) < 2xnx*(log,(a+n—-1)+1).

Since b was the minimal solution to (8), we have v(b) < v(5). We created b’ by adding mul-
tiples of 6 to . Keeping track of the digits, we see that

v(d") < pxm+v(5)+1

as we modify b to get a terminal O with g*m—1 penultimate (n—1)'s. To do this by adding mul-
tiples of &, we will be left with not more than v(5) +1 digits in front of the penultimate (n—1)'s,
since we can first choose a multiple of & less than n*J to change the second base n digit (from
right) of 5 to #—1 and then choose a multiple of 7% & less than #**§ to change the third base »
digit (from right) to #—1, and so on. We continue until we add a multiple of #**™ %3 less than
n**" x5 to change the u*m base n digit to n—1. A final multiple of #**™'*& may need to be
added to assure that the u*xm+1 digit is not n—1.
Since each digit can contribute at most 71 to the digital sum, we get
5(6)<2xnx(log,(a+n-1)+1)x(n-1)
and
s(®) < (uxm+2xnx(log,(a+n—-1)+1))*(n—1).
Since b’ =b=a mod y, Lemma 2 gives (n—1)|(@—s(b’')). By Lemma 1, there exist ¥ and &’ so
that ged(s(k * 8), s(k’' *5)) = n—1; thus,

ged(s(k *6), s(k'*5))|(a - s(6).
Remark 1 says that our k£ and £’ may be chosen so that

s(k*0) < (n—1)*(5+2*(2*n*(log(,,)(a +n-1)+1)))

and
s(k’*5)$(n—1)*2*(5+2*(2*n*(10g(n)(a+n—l)+l))).

These two inequalities and the Growth Condition assure a —s(b’) > s(k %) * s(k’*5), so we can
use Lemma 3 with z=a —s5(§"), x=s(k*6), and y = s(k’*5). We conclude that there are non-
negative integers r and 7 such that o — s(b’) =r*s(k* ) +1*s(k’*5). But then
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a=rxs(kx8)+txs(k'*S5)+s(b"), so
a = s((k*5),(k'*5),b").
Using (k*98),(k'*6),b' =n**" —n mod n**" we get
a+i=s((k*9),(k'*5)b" +i)

and (10)
a+n+i—prmx(m—1)=s((k*5),(k'*5),b' +n+i)

fori=0,1,...,n—1. Since (k*J),(k'*5),b'=bmod &, (8) assures

o @+ 1)|((k#8), (k' 8) b +1) -

(a+n+0)|((k*3),(k'*3),b' +n+i)
foralli=0,1,...,n-1. By (10), (11), and the definition of an n-Niven number, (k *&),(k’'*5),b’

is the first of 2*n consecutive n-Niven numbers. [

Remark 3: We note that we have proved something stronger than the theorem, namely, that
there exist infinitely many sequences of 2*n consecutive n-Niven numbers, since there exist
infinitely many o satisfying Condition I, Condition II, and the Growth Condition.

3. EXAMPLES

Example 1: For n=2 we get u=2,m=2, and the conditions (3)-(5), (7),

a=0,1 mod3,
a=6 mod8,
a >36033.

Taking, for example, @ = 36046, we get the base 2 representations:
b =15001,0101;0010010101,0;101101051,0,1010, ;

0 =101;01101101011010110110,1001101010101051,01001,005.

Then, letting b’ = b+7%J, we get the right number of penultimate 1's:
b’ =1011001,001,00101010,1101010;110110150,1,01;0101,0,,.
We easily see that s(b")=37. Now we want to follow Lemma 1 to get multiples of & with rela-

tively prime base 2 digital sums. First, we want 6’ = (n+1)*J as a has a terminal n—1. Using ¢’
in place of &, we get k =2%2%? +1 and k' = (2" + 1)k = 2" +2'22 + 2% 1+ 1. Then we see that

k*&' = 10,110010010,10,10,10,1,001,0101,01,011010,10,
110010010,10,10;1051;001,0101,01,0110100,,,
with s(k*0")= 64 and

k'8 = 10,110010010,10,10,10,1,001,0101,01,011010,
10,110010010,10,10,10,1,001,0101,01,01,0,
110010010,10,10,10,1,001,0101,01,011010,10,
110010010,10,10,10,1,001,0101,01,0110100,,,

1997} 127



CONSTRUCTION OF 2 *n CONSECUTIVE n-NIVEN NUMBERS

with s(k’*67)=127. It is easy to see that

a—s(b)=36009=517+64+23%127 =517 xs(k x5+ 23x s(k' # 5"),
so
S((k*0")517(k"%5"),3b") =36046 = .

Thus, (k*6")s,,(k’'*8"),5b" is the base 2 representation of the first number in a sequence of 4
consecutive 2-Niven numbers.

We note that the Growth Condition, while assuring we can get o as a digital sum, results in
large numbers. In practice, much smaller o satisfying Congruence Conditions I and II can be
digital sums of 2*n consecutive n-Niven numbers.

Example 2: For n=2, we get u=2,m=2 and the congruence conditions @ =0,1 mod 3 and
a=6 mod 8. a =6 is such an a (although it clearly does not satisfy the Growth Condition).
This leads to b =342 =101010110,) and § =420=110100100,,. It is easy to see that f=b+
14%6 = 6222 has base 2 expansion 100001001110, so s(#)=«. This means S is the first of
a sequence of four consecutive 2-Niven numbers.
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