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PROBLEMS PROPOSED IN THIS ISSUE

H-529 Proposed by Paul S. Bruckman, Highwood, IL
Let p denote the set of Pythagorean triples (a, b, ) such that a*> +b* = ¢*. Find all pairs of
integers m,n> 0 such that (a,b, ¢) =(F,F,, F,,.\Fria, FraFriy) €P-

n> * m+l

H-530 Proposed by Andrej Dujella, University of Zagreb, Croatia

Let k(n) be the period of a sequence of Fibonacci numbers {F} modulo n. Prove that
k(n) < 6n for any positive integer n. Find all positive integers 7 such that k(n) = 6n.
H-531 Proposed by Paul S. Bruckman, Highwood, IL

Consider the sum S =Y #(n)/n?, where #(1)=1 and #(n)= I1,,,a- PO n>1, the
product taken over all prime p dividing »n. Evaluate S and show that it is rational.

SOLUTIONS
Comment by H.-J. Seiffert
Correction: The identity of Problem H-510 should read
I - k~2n+3)/4] H3k12) B+ K
P= 3 (-1ek-2m1 gl ](2k+1)'

ked,

The proposer's solution, however, is correct. The mistake arose in the very last step, when
replacing n by n—1. Indeed, H-510 is the proposer's first (incorrect) version of H-476.

Continued

H-509 Proposed by Paul S. Bruckman, Salmiya, Kuwait
(Vol. 34, no. 2, May 1996)

The continued fractions (base k) are defined as follows:

k k k
[ul,uz,...,un]k:uﬁru T n=12 .., €))
2+t T3t n

where k is an integer # 0 and (#,)72, is an arbitrary sequence of real numbers.
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Given a prime p with (=£) =1 (Legendre symbol) and & # 0 (mod p), let / be the solution of
the congruence

W = —k (mod p), with 0<h <1 p. @)
Suppose a symmetric continued fraction (base k) exists, such that

%:[alaab""anﬂﬁanﬂﬂ N (3)

where the g;'s are integers, n is even, and k|a,, i=2,4,...,n. Then show that integers x and y
exist, with g.c.d.(x, y) =1, given by
x

}‘:[an+l) ""al]k (4)

that satisfy
x*+hky’=p. ©)
Solution by the proposer

Let [u,u,, ..., u,}, = p,/q,,n=1,2,..., define the n'" convergent of the c.f. (base k), assum-
ing that the u's are integers. The p,'s and g,'s satisfy the common recurrence

Z,=Uz, +hz, 5, n=34, ... ©)

Also, p/q=[w], =wu/1 and p,/q, =[w,w,), =w+k/u, = (uu,+k)/u,, which yields the
initial conditions

=, =1 py=up,+k, g, =u, Y
First, we need some results concerning c.f's (base k), which we state as lemmas and prove by
induction.

Lemma 1: Let p,/q, and p,,,/q,,, denote successive convergents of a c.f. (base k). Let
W, = Pyi1 — Purrdn> P=12,.... Then
w, =(—k)". )
Proof: Let §; denote the set of positive integers n satisfying (8). Now w, =u-u, —
(u, +k)-1=—k = (—k)'; hence, 1 €,
Suppose n eSl- Then we get Wnil = Pust9nsz = Pneann1 =~ pn+1(un+2qn+1 + kqn) - (un+2pn+1 +
k0,01 = —k(Ddps1 — Prsdy) = —kw, = —k(—k)" (by the inductive hypothesis), or w,,, = (=k)™!.
Thus, n €S, = (n+1) €S,. The result follows by induction. U

Lemma 2: Let p,/q, =[u,u,,...,u,],, where the u's are integers with k|u, i =2,4,6,..., for
n=1,2,.... Furthermore, suppose the p,'s and g,'s are the integers naturally produced in the c.f.
(base k) expansion, applying the recurrence relation in (6) and the initial conditions in (7). Then,
for all even n,

g.c.d.(p,_p gpy) = kP, ©)
g.c.d.(p,q,) = kF". (10)

Proof: Let S, denote the set of even positive integers » for which (9) and (10) are valid.
Clearly, g.c.d.(p, q,) =1, since ¢, =1. Note that 1 =|k[**. Also, since k|u,, it follows that
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k|(wu, + k). Thus, 1-(uu, /k+1)—uw, / k=1, which implies gc.d.(p,/k,q,/k)=1; hence,
g.c.d.(p,, ¢,) =|k|=k**. We thus see that 2 €5, .

Suppose neS, and p, ;= (k)" p; 1, 4,0 = VG, p, = (0¥ p, q,=(-k)g),
where g.0.d.(z) 1, g51)=g.c.d.(p) g =1. Then we have p,., = u,,,p, +kp,_, = (~)V"pl,,
where p),1 =P~ py_y; similarly, G, =(-k)7"q),,, where ¢, =u,,q,—q; . Therefore,
Pidni1 = Puridn = (CR) (21001 = Pra9n) = (k)" (using Lemma 1), so pig;,,— py.g, =1. Then
g.c.d.(Ply1> ql,y) = 1, which implies g.c.d.(p,,,, q,.,) = |k [?"= k|21 This is the statement of
9) for (n+2).

Again supposing n €5,, let u,,, = —ku,,, (since k|u,,,). Then we get p,., =u, P, +kp, =
(KNt} 3 Py = (~R) RN )y = (=k)3" 5, Where P, =), Dl — py; similarly, g,., =
(~k)*¥q5, Where @y =i —Gh Then pruns = PraaGun = (K" (K" (Dlhns -
Pradrin) = (k)™ (using Lemma 1), S0 p}iq5.s — Doy = 1. Therefore, g.c.d.(pus, @hua) = 1,
which implies g.c.d.(p,,,, q,.,) = k[ =|k[}"*? . This is the statement of (10) for (n+2).
Thus, n €S, = (n+2) €8,. Since 2 €3,, the results follow by induction. O

Lemma 3: If p,/q,=[w,u,,...,u,),, n=1,2,..., then

lu,u, ., w),=q,/q,, and [u,u, ..., ul, =p,/ Py, 1=2,3, ... (1)

Proof: Let §; denote the integers n>2 for which (11) is valid. Note that [u,], =u,/1=
q,/q, and [uy, u), =u, +k/u, = (uu, +k)/u, = p,/ p, [using (7)]. Therefore, 2 €5,.
Su]ppose n ES Then we get [ 1> Y -5 u2]k Uy yy +k/[ . u2]k =Uy +k/(qn /qn—l) =

( +1qn+kqn—1)/qn qn+1/qn [usmg (6)] A]SO [ 1o Uy - - ’ul]k - n+1+k/[ . ul]k - n+1+
k!(p,! p,_y) = WDy + k0, Py = Pyra/ P,- Thus, neS§;=m+1)es;. Slnce 2 €8;, the

result follows by induction. O
Also, we will make use of the following identity:
(a* + kb*)(c* + kd?) = (ac + kbd)? + k(ad - bc)*. (12)
Now suppose p;/q; =[a,, a,, ...,a];, i =1,2,...,n+1, in the sense described in the hypothe-
sis of Lemma 2. Then P :(—k)linpr’n In :(—k)%”qr'“ Pnn = ( k)2 pn+1’ and Dpi1 = ( k)2 qn+1’
where g.c.d.(p}, 4}) = 8.¢.d.(Pu1, Gher) = 1. Moreover, pigh,; ~ phudy = 1. Also, using Lemma
3, [@pts s By =Gpr/ 9, and [a,q, ..., &), = Py / P,- The n' and (n+1)" convergents of the
c.f. (base k) given by (3) are p,/q, and p,,,/q,,,, respectively; the "remainder" of this c.f. is
equal to p,,,/ p,, which assumes the role of u,,,. Thus, the value of the c.f. (base k) in (3) is
given by
(pn+1 /pn)pn+1 + Iq)n — p3+l + kp’f —
= =N/D,
(Post | )1 kG Praidnnr + KP4,

where N = (p.,,)? +k(p,)* and D = pl,.q.., +kp,q, [dividing throughout by the common factor
(=k)"]. Therefore, p/h=N/D. Now set a=p,,,, b=p,, c=q,,,, and d =g, in (12) and let
0 =(q.,,)* +k(q,)*. That identity then becomes

D*+k=NQ. @13)
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Let g=g.c.d.(N,D). We see from (13) that g|k. Since N = pg and g.c.d.(p, k) = 1(by
hypothesis), it follows that g=1, so N = p and D =h. However, we know that [a,,,,...,a], =
DPui1! P, = Phiy/ P, Setting x = p!., and y = p! completes the proof of (4) and (5).

Summary: Given the minimal positive solution of the congruence in (2), we have indicated an
algorithm for generating solutions of (5). This construction involves a special type of c.f. (base

k), as defined by (1). The conditions in (3) might, at first glance, seem unduly restrictive. It may .

be shown, however, that p/h may always be put into the desired c.f. form in (3), provided that
integers x and y exist that satisfy (5). The proof of this assertion is left to the interested reader.

Setting £ =1 in the problem yields Serret's construction (1848), one of several known in the
literature for finding the unique x and y such that p = x? + y?, provided p is a prime with p=1
(mod 4). Also, for k =1, the identity in (12) reduces to an identity attributable to Leonardo of
Pisa (a.k.a. Fibonacci), such identity appearing in his Liber Abaci (1202).

Two examples illustrate the construction's applicability.

Example 1: Let k =3 and p =757. Note that
3\ _(3+4-757)_(3025)_(55)_,
757 757 757 757 '
Hence, the minimal positive solution of the congruence #* = -3 (mod 757) is A=55. Without
disclosing the logic of the following expansion, we may at least verify its accuracy:
757/55=13+42/55=13+3/6,;
6,=55/14=3+13/14=3+3/0;
6,=42/13=0+3/6;;
6,=13/14=0+3/6,;

6,=42/13=3+3/13=3+3/6;;
65:13

Thus, 757/55=[13,3, 0,0, 3, 13],, which is of the desired form, with n=2. Then the solutions of
x? +3y% =757 are found by x/y=[0,3,13];. We find the successive convergents of this c.f::
0/1,3/3, and 39/42. Hence, x/y=39/42=13/14, so x=13 and y =14. As we may verify,
13> +3-14* = 757.

Example 2: Let k =-2 and p=193. Since

(_2_ _(2+193-14)_(2704) _(52* -1

193) \ 193 ) 193 ) (193"

we see that =52 is the minimal positive solution of the congruence 4* =2 (mod 193). We may
expand 193/52 as follows:

193/52=5-67/52=5-2/6;
6,=104/67=2-30/67=2-2/6;
0,=67/15=5-8/15=5-2/6,;
0,=15/4=5-5/4=5-2/6,;
0,=8/5=2-2/5=2-2/6;
6s=5.
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Thus, 193/52=[5,2,5,5,2, 5],, which is of the desired form, with n=2. Therefore, solutions of
x?-2y* =193 are found from x/y=[5,2,5],. This yields the convergents: 5/1, 8/2, and
30/8,s0 x=15and y=4. QE.D.

Searching for Pairs

H-511 Proposed by M. N. Deshpande, Aurangabad, India
(Vol. 34, no. 2, May 1996)

Find all possible pairs of positive integers m and » such that m(m+1) = n(m+n). [Two such
pairsare: m=1Ln=1,m=9,n=6.]
Solution by H.-J. Seiffert, Berlin, Germany

The pairs (m, n) € N* asked for are (m,n) = (Fy,, F,,_,Fy,), where k is a positive integer. It
is easily verified that, for these pairs, the considered equation is indeed satisfied.

Below we will use the well-known result that all solutions (a, b) € N? of the Pell equation
a* —5b* = —4 are given by (@, 5) = (Ly;_;, F54_), ¥ € N. In particular, we have a>b.

Let (m,n) € N? such that m(m+1)=n(m+n). Write m=rp and n=rq, where p,q,r €N
such that gcd(p,q)=1. Then the given equation becomes p(rp+1)=rq(p+q), which shows
that 7 divides p. Letting p=rs, se N, we get s(r2s+1)=q(rs+q). From p=rs, ged(p, q) =1,
and s|q?, it follows that s=1. Now, the resulting equation % +1=g(r +q) may be written as
(2r—q)*-59* =—4. Hence, 2r—q,q) = (Ly;_y, Fyy_;) for some k e N. It readily follows that
r = F,, so that we have (m,n) = (Fy,, Fy_ Fy,).

Also solved by P. Bruckman, L. A. G. Dresel, A. Dujella, C. Georghiou, and the proposer.

FPP's
H-512 Proposed by Paul S. Bruckman, Highwood, IL
(Vol. 34, no. 2, May 1996)
The Fibonacci pseudoprimes (or FPP's) are those composite n with g.c.d.(r, 10) =1 such that
n|F,

" . , Where &, is the Jacobi symbol (). Suppose n=p(p+2), where p and p+2 are "twin
primes." Prove that » is a FPP if and only if p =7 (mod 10).

Solution by Lawrence Somer, Catholic University of America, Washington DC

We first suppose that p=7 (mod 10). Then p+2=9 (mod 10). By quadratic reciprocity,
we see that () = —1and (53;) = 1. Hence, (55355) = (3)(52z) = (-D)(1) = -1. We want to show
that p(p +2)|Fy,21- It is well known that F, |F,, for any positive integer k. Since both p and
p+2 are primes, p{Fp_gp =F,, and p+2 |FP+2_£p+2 =F,,,. Further, since p(p+2)+1=(p+ 1)?,
Fp+1|F(,,+1)2 ,and g.c.d.(p, p+2) =1, we see that p(p+2)|F,,1241-

Now suppose that n=p(p+2) is a FPP. We must have p=1,3,5,7, or 9 (mod 10). If
p=5 (mod 10), then g.c.d.(n,10)#1. If p=3 (mod 10), then p+2=5 (mod 10) and, again,
g.c.d.(n,10)#1. Suppose p=1 (mod 10). Then p+2=3 (mod 10). By quadratic reciprocity,
(£)=1and (37) =—1. Hence, &, =(5pmy) = (3)(57) =D =-1, so n—¢, =p(p+2)+1=
p*+2p+1. Thus, p(p+2)|F,2,5,,. Itis well known that (F,, F) = K, 5, where (a, b) denotes
the g.c.d. of a and b. We note that p|F, e, = F, ;. Now, p*+2p-3=(p-1D(p+3). Hence,
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P\F2upp5. Therefore, pl(F2ig,4, Firigp-3), Which implies that p|F 2,0 240,-3 However,
(P +2p+1, p2+2p—3)|(p2+2p+l) (p*+2p-3)=4, so p|F,=3. Thus, p=3, which is a
contradiction since p=1 (mod 10). Thus, p#1 (mod 10). Now suppose that p =9 (mod 10).
Then p+2=1 (mod 10). By quadratlc remproc:ty, (3) = (53z) =1. Therefore, &, = (5omy) =
(2)(FZz) =M =1, so n—¢,=p(p+2)-1=p*+2p-1. Now, pIF_ = F,1. Thus, as in
our above argument, p|F), +2p 3- Hence, pl{(Figp Frinps) = Fainp pragps). However,
@P*+2p-1, pr+2p-3)|(p* +2p - l)—(p2+2p 3)=2. Thus, p|F, =1, which is a contradic-
tion. Therefore, p # 9 (mod 10); hence, p=7 (mod 10).

Also solved by L. A. G. Dresel, A. Dujella, H.-J. Seiffert, D. Terr, and the proposer.

Sum Product

H-513 Proposed by Paul 8. Bruckman, Highwood, IL
(Vol. 34, no. 4, August 1996)

Define the following quantities:

_ (2n)| (2n+2)!
=1C ')2’ Z ”'(’”1)" nz>:‘)( H* —E) nl((n+ D) (n+2)!

Prove that 42D = B*C.

Solution by the proposer
Clearly, the series defining 4 and B are convergent. Using Stirling's formula, (') ~ 4"(nz)™"2
as n— . Thus, the convergence of the series defming C is comparable to that of the series

Z 1/2(n|)2

n21 h
since the latter series is clearly convergent, so is the series defining C. Also, D is defined by a
series that is comparable to the series
v 4 el
nzl n2 (i’l ')4 ’
and so the series defining D is convergent. Clearly, all quantities are positive quantities.
We recognize the Modified Bessel Functions of integer order, defined as follows:

(1 Z)k . _
L(z)=(}z) ];) AT an entire function of z, n=0,1,2,.... 6))
See, e.g., Handbook of Mathematical Functions, ed. M. Abramowitz & 1. A. Stegun (Sth prtg.,
§9. Washington, D.C.: National Bureau of Standards, 1970). We then see that A= 1, =1,(2)
and B=1, =1,(2). Itis also indicated in this source that the following relation holds:

min o (2K 32)
L(DIL,(2)=(Lz) 1;((" :n’:;?_(:l(";;;k)! , mn=0,12 ... 2

It follows from (2) that C = (/,)* and D = (/})*. Then A*D = B*C = (I,I,)*.
Also Solved by C. Georghiou.

2o o2 &%
L 2
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