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1. RATIONALE 

Two recent papers, [1] and [3], detailed properties of 
(i) a generalization {P}r\x}} of the familiar Morgan-Voyce polynomials Bn(x) and bn(x), and 

(ii) an associated set {Q^(x)} of generalized polynomials. 
Here, we amalgamate these two sets of polynomials into one more embracing class of poly-

nomials (i^r'w)(x)}. 
In fact, 

^ ( x ) = /*>(*) (1.1) 
and 

# ' 2 ) (x ) = #>(*). (1.2) 

Hopefully, the reader will have access to [1], [2], and [3]. However, the following summary 
may be helpful for reference purposes (in our notation): 

T O O = *„+!(*), (1-3) 
P?\x) = B„+1(x), (1.4) 

#2)(*) = <**(*)> 0-5) 
Qf\x) = C„(x), (1.6) 

where C„(x) and cn+l(x) are polynomials related to the Morgan-Voyce polynomials. It may be 
mentioned that the polynomial Cn(x) has already been defined by Swamy in [4], where it has been 
used in the analysis of Ladder networks. Knowledge of the definitions of the Fibonacci polyno-
mials {Fn(x}} and the Lucas polynomials {X„(x)} is assumed. When x - 1, the Fibonacci numbers 
Fn and the Lucas numbers Ln emerge. 

Only the skeletal structure of the simple deductions from the definitions (2.1) and (2.2) ger-
mane to [1] and [3] will be displayed. This procedure follows the patterns in [1] and [3]. 

For internal consistency in my papers, I shall interpret symbolism in [1] in the notation 
adopted in [2] and [3]. Throughout, n > 0 except for the explicitly stated value n = - 1 . 

Much of the material and approach offered in this paper appears to be new. 

Definition 
Define 

with 

2, OUTLINE OF BASIC PROPERTIES OF {rjf'u\x)} 

#•">(*) = (x + 2)E£?\x)-R£?{x) (n>2), (2.1) 

I$>u\x) = u, I$r-u\x) = x + r + u9 (2.2) 
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where r, u are integers. Then 

&»\x) = ±cirfx\ (2.2) 
k=Q 

with 
4r;„u) = l if/fc>l. (2.4) 

Recurrences 
Clearly, from (2.1), $f = I$'u)(0) satisfies the recurrence 

<?=*£&-<£2o i">2), (2.5) 
with 

whence 

co,o ~~ u 

c(fju)=r+u\ 
(2.6) 

uw,o 

Ln,0 

4f=nr + u, (2.7) 

(2.8) 

(2.9) 

= w 

cn,0 = n + u 
4rf=nr + l\ 

Comparison of coefficients of JC in (2.1) reveals the recurrence (n > 2, k > 1) 

Cn,k ~ LCn-\,k ~ Cn-2,k + Cn-l,k-V Vz- 1 U J 

The Coefficients c£*w) 

Table 1 sets out some of the simplest of the coefficients c ^ . For visual convenience in this 
table, we choose u to precede r. 

From Table 1, [1], and [3], one may spot empirically the binomial formula 

<? -("ii-i'Mi^M"^"1) (211) 

•("i'Ha^-fa"') (212) 
by Pascal's Theorem. 

Multiply (2.12) throughout by x* and sum. Accordingly, 

Theorem 1: I§>u\x) = /*">(*) + (*/ - l)Aw(x). 

* " * " « " * ^ ( x ) = W x ) by(1.3X M , (2.13) 
^ 1 >(x) = J5„+1(x) by (1.4), [2], (2.14) 
^2'1}(*) = W * ) by (1.5), [2], (2.15) 
^°,2)(*) = b„+l(*)+*„(*) = C„(x) by [2], (2.16) 
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Furthermore, 
€'°\x) = bn+i(*) - *„W = *B„(x) by [2]. (2.17) 

TABLE 1. The Coefficients c)ft ( » • > « ) 

0 
1 
2 
3 
4 
5 
6 

0 

w 
u+r 
u + 2r 
u + 3r 
u + Ar 
u+5r 
w + 6> 

1 

1 
2 + u + r 
3 + 3w + 4r 
4 + 6w + 10r 
5 + 10w + 20+r 
6 + 15w + 35r 

2 

1 
4+u+r 
lQ + 5u + 6r 
20 + 15w + 21r 
35 + 35w + 56> 

3 

1 
6 + u+r 
21 + 7w + 8r 
56 + 2&/ + 36r 

4 

1 
8 + w+r 
36 + 9w + 10r 

5 6 

1 
10 + w + r 1 

(3.1) 

3. FIBONACCI AND LUCAS NUMBERS 

Substitute x = 1 in Theorem 1. Then, with Fn(\) = Fn and Ln(\) = Z,n, 

^ 'M ) ( l ) = ̂ Wi - ^ i +rF2n + i t f ^ 
= (l+r)F2„+«F2fI_1. 

For example, B$' M) (1) = 21 + 2 lr +1 3M = (1 +r)Fs + uF1, as may be verified quickly in Table 1. 

Special cases: tf<U)m=K . (3.2) 

(3.3) I^1)(l) = F2n+2, 

Also, 

^ 2 > 1 ) ( i ) = ^ + i , 

^ ° ' 0 ) ( i ) = ^ . 

(3.4) 
(3.5) 
(3.6) 

Relationships between the Fibonacci and Lucas numbers, and the Morgan-Voyce polynomials 
when x = 1, are specified in [2]. 

Write 

In [2], it is shown that 

4. CHEBYSHEV POLYNOMIALS 

^ ^ = cost (-4<t<0). 

Bn{x) = U„ x + 2 

Ux) = u„\^-)-uJx+2 

HfWf} 
C„(x) = 2T„ x + 2 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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where Un{x) and Tn(x) are Chebyshev polynomials. 
Empirically, (4.2)-(4.5), taken with (2.13)-(2.16), suggest a more general formula connecting 

R(r'u\x) with the Chebyshev polynomials. 

Theorem 2: #.»>(x) = Un+l[^j + (r + u- 2)Un ( ^ ) - (u - l)U„ [• 

Thus, in particular 

x + 2 

W'l)(x) = Un+iml)Hr -m{*¥) 
and 

]%>V(x) = 2Tn\±±l\+rU, (X + 1 

(4.6) 

(4.7) 

Zeros and orthogonality properties of Bn(x), bn(x), cn{x), and C„(x) may be found in [5], 
[4], and [2]. En passant, the zeros of i^°'0)(jc), say, are, by (2.17), the zeros of xB3(x), namely, 
0 , - 1 , - 2 . 

5. THREE IMPORTANT PROPERTIES 

Roots a(x) = a and B(x) = B of the characteristic equation for (2.1), namely, 

£-(x + 2)X + \ = Q, 

are 

a-

P 

x + 2 + 4x2 +4 

Jt + 2 - V * 2 +4 

(5.1) 

(5.2) 

whence 
aJ3=\ 

a + ]3 = x + 2, (5.3) 

a - /? = Vx2+4x. 

The Binet form for Bn(x) is, by [2], 

an-Bn 
Bn(x) = ?—JLm 

a-p 
Moreover, by [2], 

(x + l)Bn(x)-B„_l(x) = b„+1(x), 

(x + 2)B„(x)-B„„l(x) = Bn+l(x), 

(x + 3)B„(x)-B„_l(x) = c„+1(x), 

(x + 2)B„(x)-2B„_l(x) = C„(x). 

Standard methods involving (2.1) and (2.2) yield the Binet form for B^r,u\x). 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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Theorems: l$r'u)(x) a-fi 
= {x+r + u)Bn{x)-uBn_l{x\ by (5.4). 

Use of Theorem 3 in conjunction with (5.5)-(5.8) returns us to (2.13)-(2.16). Next, we record 
that, from (2.1) and (2.2), 

I&{u) = (u-l)x + u-r, (5.9) 

whence, by (2.13)-(2.16), B0(x) = 0, b0(x) = 1, c0(x) = - 1 , and C_x(x) = x + 2. 
Successive applications of the Binet form (Theorem 3) eventually give, on simplification and 

use of (2.2), (5.4), and (5.9), the Simson formula 

Theorem* ^\x)^\x)-[E!n^u\x)f = (x+r + u)[(u-l)x + u-r]-u2] 
= I$r>u\x)R^u\x) - [i#"'M)(x)]2J 

Familiar techniques produce the generating function (Theorem 5) to complete our trilogy of 
salient features of B^r,u\x). 

Theorems: ±^u){x)y = u-{{u-l)x+u-r}y 
h l-(x + 2)y+? 

_^"\x)-R^\x)y 
\-(x + 2)y+y2 

Special cases of Theorems 4 and 5: 

by (2.2), (5.9). 

0 1 
1 1 
2 1 
0 2 

R^u)(x) 

c„+i(x) 

Cn(x) 

R.H.S. of Th. 4 

- 1 
- ( * + 4) 
x(x + 4) 

Numerator in Th. 5 
1-y 

1 
l+y 

2-(2 + x)y 

Observe that, in the third column, (i) row 1 x row 3 = row 2 x row 4, (ii) row 3 = - ~ 9 

(iii)row4 = (a - /? ) 2 . 

6. RISING DIAGONAL FUNCTIONS 

Imagine, in the mind's eye, a set of parallel upward-slanting diagonal lines in Table 1 that 
delineate the rising diagonal functions 2ft(wr'M)(x) [= $Hn(x) for brevity] defined by 

k=0 

with 
<3l0(x) = r + u, (3l1(x) = x + 2r + u:> 

where the values of the coefficients of xk in (6.1) are given in (2.5)-(2.12). 
Thus, for example, 

(6.1) 

(6.2) 
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^ 4 (x) = c £ 6 M ) + 4 ^ 

as may be checked in Table 1. 
Choosing 9Jl0(x) = r + u involves a slightly subtle point. If one allows negative subscripts of 

2ftw(jc), then the diagonal function SL^x) is not equal merely to u, but to a more complicated 
expression. 

Some intriguing results of a fundamental nature for {2ft̂ 'M)(x)} now emerge. First, we dis-
cover the recurrence relation. For this we need, by (2.11), 

c£r,M) =n+r + u (n even). (6.3) 
2 + 1 ' 2 

Theorem 6: <3ln(x) = 2(3ln_l(x) + (x-l)(3l„_2(x) (n>2). 

Proof: Use (6.1). Sum for each power of x for k - 0,1,2,..., [-^j and simplify according to 
(2.4), (2.7), (2.10), (2.11), and (6.3). Then 

2<3ln_l(x) + (x - m„„2(x) = 2]T cn_kXxk - X ^ V + X<^i-iu**+1 

k=0 k=0 k=0 

: Cn+l,0 + C « , 1 X + ' *' + Cn+l-m,mX + ' ' ' + ' 
w + r + w, n even, 
1 wodd, 

= &„(«). 
Corollary 1: &„(!) = 2n_1 (1 + 2r + «). 

Proof: <3ln(l) = 2<3in_l{\) 
= 229lw_2(l) 

by Th. 6, 
by Th. 6 again, 

= 2"-12ft1(l) by repeated use of Th. 6, 
= 2"-l(l + 2r + u) by (6.2). 

Special cases: Substituting in Corollary 1 the values of r and u appropriate to Bn(x), bn(x), 
c„(x), and C„(x), we obtain the corresponding values for the diagonal functions of these polyno-
mials when x = 1, as stated in the concluding segment of [2]. 

From Theorem 6, the characteristic equation for ?k^,u\x) is £ -2X-(x-t) = 0 with roots 
y{x) = y, S(x) = S expressed by 

so that 
r+s=2, 
yS=l-x, 
r-s=2y[x. 

(6.5) 

In the standard process for the derivation of the generating function of 9l„(x), a fine nuance pre-
sents itself, namely, the recognition that, by (6.2), 

^3{x)-2(3i2(x) = x + 2r + u-2(r + u) = x-u. (6.6) 
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Applying Theorem 6 and (6.4), our treatment creates the following generating function. 
oo 

Theorem 7: J]%(x)yj = {r + u + (x-u)y}[l-(2y + (x-l)y2)]-\ 
7=0 

Straightforward techniques yield the Binet form 

Theorems: &,(*)= { » i ( » ) - * » o ( * ) f r " - f tOO ~ ̂ o(*)}<?" 
y-8 

Finally, by Theorem 8, we derive the Simson formula 

Theorem 9: <3iw+1(x)9l^(x) - <3l2
n(x) = (~lf(x - iy~l{(r + xf - x(r + u)2}. 

It is clear from Theorem 9, or from Corollary 1, that 

2ft„+1(l)^„_1(l) = ^2„(l). (6.7) 

The particular situations for Bn(x\ bn(x\ cn{x), and C„(x) in relation to Theorems 6-9 may 
be readily deduced. 

7, CONCLUDING THOUGHTS 

There does seem to be scope for further developments. One such advance, for instance, 
might be the extension of the theory through negative subscripts of $l^,u\x). Recall (5.9) for 
H = - 1 . 

Another innovation is the consideration of the replacement of x + 2 by x + k (k integer). And 
what of interest might eventuate if k =r? k = ul 

Possibly, some worthwhile differential equations could be hidden among the 57£(„r'M)(x). 
Experience teaches us that this is often the case when exploring diagonal functions. 
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