DYNAMICS OF THE MÖBIUS MAPPING AND FIBONACCI-LIKE SEQUENCES

I. Jaroszewski and A. K. Kwaśniewski*

Institute of Physics, Warsaw University, Campus Białystok Computer Science Laboratory ul. Przytorowa 2a Pl-15-104 Białystok, Poland *e-mail: kwandr@cksr.ac.białystok.pl (Submitted February 1996–Final Revision May 1996)

Any two numbers ς , $\eta \in \mathbf{R}$ are equivalent ($\varsigma \sim \eta$) if and only if there exists

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(2, \mathbb{Z}) \equiv \{ A \in M_2(\mathbb{Z}); |\det A| = 1 \},$$

such that

$$\varsigma = f_A(\eta) \equiv \frac{a\eta + b}{c\eta + d}.$$

It is well known [4] that the above equivalence relation " \sim " provides us with the following fibration of **R**:

 $B = Base = irrationals \cup \{0\}$

Consider now the dynamical system (\mathbf{R}, f_A) with the specially chosen Möbius mapping $f_A : \mathbf{R} \to \mathbf{R}$; $A \in U(2, \mathbf{Z})$. One sees then that f_A acts along fibers. That is,

$$\forall b \in B : [b] \ni x \to f_A(x) \in [b] \Rightarrow \forall n \in \mathbb{N} : \left\{ f_A^k(x) \right\}_{k=1}^n \subset [b].$$

(Naturally, $f_A^n = f_{A^n}$.)

An example of such dynamics is (\mathbf{R}, f_A) with $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in U(2, \mathbb{Z})$. This was investigated in [3].

In this note, the authors give a concise presentation of the dynamics generated by iteration of the arbitrary Möbius transformation $f_{\hat{A}}$; $\hat{A} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$; det $\hat{A} \equiv -t \neq 0$.

In view of the Cayley-Hamilton theorem, it is enough to consider the matrices of the form $A = \begin{pmatrix} s & t \\ 1 & 0 \end{pmatrix}$, where $s = \operatorname{Tr} \hat{A}$ and $t = -\det \hat{A}$; $\hat{A} \in \operatorname{GL}(2, \mathbb{R})$.

258

Naturally,

$$\hat{A}^{2} = s\hat{A} + t\mathbf{1}; \ \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
$$\hat{A}^{n+1} = H_{n+1}\hat{A} + tH_{n}\mathbf{1}, \tag{1}$$

Hence

where

$$H_{n+2} = sH_{n+1} + tH_n, \ H_0 = 0, H_1 = 1; \ n \in \mathbb{N} \cup \{0\}$$
(2)

and

$$H_n(s,t) \equiv H_n$$

It is also easy to see that when $A = \begin{pmatrix} s & t \\ 1 & 0 \end{pmatrix}$,

$$A^{n} = \begin{pmatrix} H_{n+1} & tH_{n} \\ H_{n} & tH_{n-1} \end{pmatrix}; \quad n \in \mathbb{N}.$$
 (3)

The singular point of the transformation f_A is 0. However, this point is never reached unless one chooses $x_0 \in S_A$ (or $x_0 = 0$) as a starting point, where

$$S_A = \left\{ \boldsymbol{\nu}_n \in \mathbb{R}; \ \boldsymbol{\nu}_n = f_A^{-n}(0); \ n \in \mathbb{N} \right\} \Longrightarrow S_A = \left\{ \boldsymbol{\nu}_n; \ \boldsymbol{\nu}_n = -t \frac{H_n}{H_{n+1}}; \ n \in \mathbb{N} \right\}.$$

Note, however, that for $A \notin U(2, \mathbb{Z})$ the trajectories $\{f_A^n(x); x \notin S_A; n \in \mathbb{N}\}$ run across $[b] \sim \mathbb{W}$ fibers of \mathbb{R} .

It is also useful to note the following. Let us call $(\mathbf{R}, f_{\hat{A}})$ and $(\mathbf{R}, f_{\hat{B}})$ equivalent and write $(\mathbf{R}, f_{\hat{A}}) \sim (\mathbf{R}, f_{\hat{B}})$ if and only if $\exists U \in \mathrm{GL}(2, \mathbf{R})$; $\hat{B} = U^{-1}\hat{A}U$. Then the characteristic points of the dynamical system, that is, the set $S_{\hat{B}}$ (see the definition of S_A), the attracting (stable) fixed point as well as the unstable fixed point of the $(\mathbf{R}, f_{\hat{B}})$ system are just the corresponding characteristic points of $(\mathbf{R}, f_{\hat{A}})$ shifted by f_U Möbius transformation. For example,

$$\begin{pmatrix} \mathbf{R}, f_{\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}} \end{pmatrix} \text{ of [3] is equivalent to} \begin{pmatrix} \mathbf{R}, f_{\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}} \end{pmatrix} \text{ with } U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

As far as these characteristic points of the dynamic system $(\mathbb{R}, f_{\hat{A}})$ are concerned, the overall picture of all dynamics is the same as in [3] under the condition that there are two fixed points of f_A , that is, we have

$$x_{\pm}^{*} = \frac{s \pm \sqrt{s^{2} + 4t}}{2}$$
 where $s^{2} + 4t > 0$ (4)

and

$$\left|\frac{d}{dx}f_A(x)\right|_{x=x_+^*} < 1,\tag{5}$$

$$\left|\frac{d}{dx}f_A(x)\right|_{x=x_{-}^*} > 1.$$
(6)

1997]

259

Conditions (5) and (6) impose calculable restrictions on the s and t parameters. If these are satisfied, then x_{+}^{*} is a stable attracting point. That is, the sequence $x_{n} = f_{A}^{n}(x_{0})$, $x_{0} \notin S_{A}$ converges to x_{+}^{*} (almost regardless of the choice of starting point x_{0}). The x_{-}^{*} is then the unstable fixed point. When $x_{0} \neq x_{-}^{*}$, the sequence x_{n} converges to x_{-}^{*} if and only if $\exists N$; $\forall n > N$; $x_{n} = x_{-}^{*}$. One proves this via a contratio reasoning (see [2]). Explicitly, one has, for any unstable fixed point

$$\forall x_0 \in \mathbf{U}_A; \ x_n \to x_-^*,$$

where

$$\mathbf{u}_{A} = \left\{ \chi_{n}; \ \chi_{n} = f_{A}^{-n}(\mathbf{x}_{-}^{*}) \ n \in \mathbf{N} \right\} \Longrightarrow \mathbf{u}_{A} = \left\{ \chi_{n}; \ \chi_{n} = t \frac{\Xi_{n}}{\Xi_{n+1}} \ n \in \mathbf{N} \right\}, \tag{7}$$

where

$$\Xi_{n=2} = s \cdot \Xi_{n+1} - \Xi_n, \ \Xi_0 = -x_-^*, \ \Xi_1 = 1.$$
(8)

That is, apart from the set S_A another characteristic set \mathbf{u}_A is attributed to the dynamical system (\mathbf{R}, f_A) .

However, conditions (5) and (6) need not be met. For example, f_A ; $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ has only one fixed point $x_{\pm}^* = x_{\pm}^* \equiv x^*$, and

$$\left|\frac{d}{dx}f_A(x^*)\right| = 1.$$

It is easy to see that, for all $x_0, x_0 \notin S_A, f_A^n(x_0) \xrightarrow{n \to \infty} 1$.

However, starting at $x_0 = 1 - \varepsilon$ ($\varepsilon > 0$; ε small) the iterates x_n move away from 1. Hence, x^* is not an attracting fixed point. Note the difference from (6); the argument giving rise to the set \mathbf{u}_A necessitates an inequality $\left|\frac{d}{dx}f_A(x^*)\right| > 1$ for an unstable fixed point (see [2]).

Following [2], one states that, to any single fixed point $x^* = x_+^* = x_-^*$, there corresponds a set $\{f_A; \beta \neq 0\}$ of Möbius maps where

$$A = \begin{pmatrix} x^* & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -x^* \end{pmatrix}; \quad \beta \neq 0.$$

Since s = Tr A = 2 and $t = -\det A = -1$, the above f_A Möbius transformation with $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ is representative of the whole class of equivalent dynamical systems $\{(\mathbf{R}, f_{\hat{A}}); \text{Tr } \hat{A} = 2, \det \hat{A} = 1\}$. (Note that f_A acts along W-fibers of **R**.)

In conclusion, we state that the general features of

$$\left(\mathbf{R}, f_{\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}}\right)$$

dynamics described in [3] are typical for the dynamics (**R**, f_A) when $s^2 + 4t > 0$, where Tr A = s, det A = -t. For $s^2 + 4t > 0$, one has one stable attracting point x_+^* and one unstable repelling point x_-^* , as then

260

[AUG.

$$A \sim \begin{pmatrix} x_+^* & 0\\ 0 & x_-^* \end{pmatrix} \equiv D$$

That is, $(\mathbf{R}, f_A) \sim (\mathbf{R}, f_D)$ and $f_U(0) = x_-^*$, while $f_U(\infty) = x_+^*$;

$$U = \begin{pmatrix} 1 & 1 \\ 1/x_{+}^{*} & 1/x_{-}^{*} \end{pmatrix}.$$

The fixed point x_{-}^{*} is therefore the repelling one even for

$$\left|\frac{d}{dx}f_A(x_-^*)\right| = 1 \Leftrightarrow \left\{s^2 + 4t = 1 \lor 2s^2 = 1 + \sqrt{1 + 16t}\right\}.$$

The general features of the (\mathbf{R}, f_A) dynamical system apart from fixed points consist of two descending sequences of intervals

$$\{[\mu_n, \mu_{n+1}]\}; \ \mu_n = \frac{H_{n+1}}{H_n}; \ \text{and} \ \{[\nu_n, \nu_{n+1}]\}; \ \nu_n = -t\frac{H_n}{H_{n+1}};$$

which, by virtue of (3), converge correspondingly to x_{+}^{*} and $x_{-}^{*} \equiv -t / x_{+}^{*}$.

In this note, we also notice that \mathbf{U}_A , the set of points defined by (7) and (8), is attributed to the (\mathbf{R}, f_A) dynamical system with an unstable fixed point x_-^* .

The detailed behavior of the (\mathbb{R}, f_A) iterative system is then finally established by the following sequence of bijections (for t > 0, s > 0):

$$\begin{aligned} f_{A}: & (v_{2}, 0) \to (-\infty, v_{1}), \\ f_{A}: & (-\infty, v_{1}) \to (0, \infty), \\ f_{A}: & (v_{2n+2}, v_{2n}) \to (v_{2n-1}, v_{2n+1}), \\ f_{A}: & (v_{2n+1}, v_{2n+3}) \to (v_{2n+2}, v_{2n}), \\ f_{A}: & (0, x_{+}^{*}] \to [x_{+}^{*}, \infty), \\ f_{A}: & [x_{+}^{*}, \infty) \to (0, x_{+}^{*}]. \end{aligned}$$

The above shows that any point $x_0 \in \mathbb{R}$ (such that $x_0 \notin \mathbb{U}_A$ and $x_0 \notin S_A$) escapes from any vicinity of x_-^* and runs to x_+^* . This is also illustrated in the figures presented below.

The case of $s^2 + 4t = 0$ is the limit case. Thus, one has

$$x^* = x^*_+ = x^*_- = \frac{s}{2}; \ \mu_n = \frac{s}{2} \left(1 + \frac{1}{n}\right) \to x^*$$

and

$$S_A = \left\{ v_n = -t \frac{H_n}{H_{n+1}} = \frac{s}{2} \cdot \frac{n}{n+1}; \ n \in \mathbb{N} \right\}$$

because the Fibonacci-like sequence $\{H_n\}$ is now given by $H_n = (s/2)^{n-1} \cdot n$; $n \in \mathbb{N}$, and $H_0 = 0$.

As in the case of $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ considered above, we have for all $x_0 \in \mathbb{R}$; $x_0 \notin S_A \cup \{0\}$ $(s^2 + 4t = 0)$:

1997]

261

$$f_A^n(x_0) \xrightarrow{n \to \infty} \frac{s}{2}.$$

One also easily sees from

$$f_A^n(x^* + \varepsilon) = x^* \frac{x^* + (n+1)\varepsilon}{x^* + n\varepsilon}$$

that, for small ε , the first iterates $x_n \equiv f_A^n(x^* + \varepsilon)$ are attracted or repelled, depending on whether x^* and ε are of the same sign or not. The fixed point s/2 is therefore neither attracting nor repelling.

FIGURE 1. Illustration of the General Behavior of the Dynamical System with Two Fixed points (s = 1; t = 20)

FIGURE 2. Magnification of the x_{-}^{*} Neighborhood from Figure 1

[AUG.

DYNAMICS OF THE MÖBIUS MAPPING AND FIBONACCI-LIKE SEQUENCES

FIGURE 3. Illustration of the General Behavior of the Dynamical System with One Fixed Point (s = 2; t = -1)

FIGURE 4. Magnification of the x_{-}^{*} Neighborhood from Figure 3

In the case of $s^2 + 4t = 0$, s > 0, the detailed behavior of the (\mathbf{R}, f_A) iterative system is established again through the following sequence of bijections:

$$\begin{split} f_A \colon & (s/2,\infty) \to (s/2,\infty), \\ f_A \colon & (-\infty,0) \to (s/2,\infty), \\ f_A \colon & (\nu_1,0) \to (-\infty,0), \\ f_A \colon & (\nu_1,\nu_2) \to (0,\nu_1), \\ f_A \coloneqq & (\nu_{n+1},\nu_{n+2}) \to (\nu_n,\nu_{n+1}). \end{split}$$

The cases s = 0 and $s^2 + 4t < 0$ (that is, without *real* fixed points) are easily treated, too (see [2]). In this case, one may encounter also finite periodic orbits (as, for example,

1997]

$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}^6 = 1$$
 or $\begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}^3 = 1$,

etc.) if

$$\exists n \in N; \left(\frac{x_+^*}{x_-^*}\right)^n = 1;$$

otherwise, orbit forms a dense subset of an interval.

The presented investigation also provides one with some general insights that are useful for describing the (\mathscr{C} , f_A) dynamical system, where \mathscr{C} stands for Clifford algebra and f_A is a corresponding Möbius transformation in \mathbb{R}^n (see [1]). There, the Clifford numbers' valued Fibonaccilike sequences play a role similar to that of the $\{H_n\}_0^\infty$ and $\{\Xi_n\}$ sequences in the \mathbb{R} case.

REFERENCES

- 1. L. V. Ahlfors. "Clifford Numbers and Möbius Transformation in \mathbb{R}^n ." In *Clifford Algebras* and *Their Applications in Mathematical Physics*, Nato Asi Series C, **183** (1986):167-75.
- 2. A. F. Beardon. Iteration of Rational Functions. Berlin: Springer-Verlag, 1991.
- 3. P. Bracken. "Dynamics of the Mapping $f(x) = (x+1)^{-1}$." The Fibonacci Quarterly 33.4 (1995):357-58.
- 4. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Clarendon Press, 1979.

AMS Classification Numbers: 11B39, 11A39

Author and Title Index

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the first 30 volumes of *The Fibonacci Quarterly* have been completed by Dr. Charles K. Cook. Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted version of the disk will be \$40.00 plus postage for non-subscribers, while subscribers to *The Fibonacci Quarterly* need only pay \$20.00 plus postage. For additional information, or to order a disk copy of the indices, write to:

PROFESSOR CHARLES K. COOK DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA AT SUMTER 1 LOUISE CIRCLE SUMTER, SC 29150

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook when you place your order and he will try to accommodate you. **DO NOT SEND PAYMENT WITH YOUR ORDER**. You will be billed for the indices and postage by Dr. Cook when he sends you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT index and the AMS Classification of all articles published in *The Fibonacci Quarterly* are completed.

264

AUG.