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1. INTRODUCTION 

In the notation of Horadam [3], write 

Wn = Wn(a,b;p,q), (1.1) 
meaning that 

Wn=pW^-qW^ W0=a, Wx=b, n>2. (1.2) 

The sequence {Wn}™=0 can be extended to negative subscripts using (1.2); we write simply {Wn}. 
We shall be concerned with the sequences 

(Un = W„(0,XP,-l), 
[V„ = Wn(2,P;P,-l), 

where P * 0 is an integer, and 
\un = Wn{0,\;p,\), 
\v„ = W„(2,p;p,l), 

where \p\ > 2 is also an integer. 
For the sequences (1.3) and (1.4), we define A = P2 +4 and D = p2 - 4 , respectively. Tak-

ing a and (5 to be the roots of x2 - Px -1 = 0, we have the well-known expressions (the Binet 
forms) 

Un=^-^- and Vn = an+Pn. (1.5) 
a- p 

Similarly, if y and 8 are the roots of x2 - px +1 = 0, then 

u" = r-zT- and v» = rn+s"- (L6> 
y -o 

According to Dickson ([2], p. 405), Lucas proved that if x mdy are consecutive Fibonacci 
numbers, then (x, y) is a lattice point on one of the hyperbolas 

y2-xy-x2 = ±l, (1.7) 

and Wasteels proved the converse in 1902. Interest in conies whose equations are satisfied by 
pairs of successive terms of linear recursive sequences has been rekindled. See, for example, [1], 
[4], and [5]. Recently McDaniel [6] has provided converses to several of the results of these 
writers. For example, he proved the following. 

Theorem: Let x and y be positive integers. The pair (x, y) is a solution of y2 - Pxy - x2 = ±1 if 
and only if there exists a positive integer n such that x = Un and y - Un+l. 

The object of this paper is to generalize McDaniel's results and to obtain new ones. 
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2. SOME PRELIMINARY RESULTS 

Throughout this paper, m and n denote integers. Also, A and D are as defined in Section 1. 
For the sequences (1.3), we record the following results, each of which can be proved using the 
Binet forms: 

V*-4 = AUl meven, (2.1) 

V*+4 = AU2
m, modd, (2.2) 

UnVm+V„Um = 2Un+m, (2.3) 

uym-vnum=\2U:;;m- (2.4) 

V„Vm + AU„Um = 2V„+m, (2.5) 

[2V 
T_T_ . __ __ \^r n-m, m even ? 
^ m - A t / „ C / m = (2.6) 

y **Vn-m, modd' 
We shall also need the following results: 

Lemma 1: The integer solutions of Ax2 +4 = z2 are precisely the pairs (x, z) = (±U2„, ^V2n). 

Lemma 2: The integer solutions of Ax2 -A-z2 are precisely the pairs (x9 z) = (±U2n+h ± f^„+1). 

These two lemmas constitute the first half of McDaniel's Corollary 1, a well-known result for 
which he provides an alternative proof. 

Lemma 3: If A is square free, the integer solutions of A(x2 -4) = z2 are precisely the pairs 
(x,z) = (±V2n,±AU2n). 

Proof: Since A is square free and A\z2, then A\z. Writing z = AzQ we obtain Az% + 4 = x2, 
and the use of Lemma 1 completes the proof. D 

In a similar manner, using Lemma 2, we can prove 

Lemma 4: If A is square free, the integer solutions of A(x2+4) = z2 are precisely the pairs 
(x,r)-(±F2 w + 1,±AC/2 w + 1). 

Results for the sequences (1.4) which parallel (2. l)-(2.6) are as follows: 

v2
m-4 = Dul (2.7) 

«„vm+v„Mffl = 2ttfl+m, (2.8) 

"„vm-v„Kffl = 2w„_m, (2.9) 

VnVm+DumUn=lvn+m, (210) 

v„vm-Du„um = 2v„_m. (2.11) 

For completion, we state the following lemma, which is the second part of McDaniel's 
Corollary 1. 
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Lemma 5: The integer solutions of Dx2 +4 = z2 are precisely the pairs (x, z) = (±um ± v„). 

Now, using Lemma 5, and following the method of proof of Lemma 3, it is easy to prove 

Lemma 6: If D is square free, the integer solutions of D(x2 -4) = z2 are precisely the pairs 
(x,z) = (±vn,±Dun). 

3. CONICS CHARACTERIZING THE SEQUENCES (1.3) 

We now give a sequence of theorems concerning pairs of conies whose integer points are 
derived from the sequences (1.3). In the proofs we must recall that 

{-a, a < 0. 

Theorem 1: If m is a fixed even integer, then the points with integer coordinates on the conies 
y2 - VmXy + *2±Ul = 0 are precisely the pairs (x, y) = ±(U„, Un+m). 

Proof: Consider first the conic y2 - Vmxy + x2 + U2
m - 0. Regarding this as a quadratic equa-

tion in>>, and making use of (2.1), we obtain 

V x + U VAx2-4 
y 2 

From Lemma 2, integer points can arise only when x = ±U2n+1. Now, using (2.3) and (2.4), 
we see that the integer points are (x, y) = ±(U2n+i, U2n+i+m) together with the points (x, y) = 
±(C/2rt+1, U2n+i-m)9 where n ranges over all integers. Since these sets coincide, we consider only 
the first. 

Proceeding in the same manner, and making use of (2.1), Lemma 1, (2.3), and (2.4), we see 
that the integer points on the conic y2 - Vmxy + x2 - U2

m - 0 are (x, y) = ±(U2n, U2n+m). This com-
pletes the proof. • 

We now state three additional theorems, each of which can be proved using the results of 
Section 2. Since the proofs are similar to the proof of Theorem 1, we refrain from giving them 
here. 

Theorem 2: If m is a fixed odd integer, then the points with integer coordinates on the conies 
/ " Vm^y - x2 ± U2

m = 0 are precisely the pairs (x, y) = ±(Un9 Un+m). 

Theorem 3: If m is a fixed even integer and A is square free, then the points with integer coordi-
nates on the conies y2 - Vmxy + x2± AU^ = 0 are precisely the pairs (x, y) = ±(Vn, Vn+m). 

Theorem 4: If m is a fixed odd integer and A is square free, then the points with integer coordi-
nates on the conies y2 - Vmxy -x2± AU„ = 0 are precisely the pairs (x, y) - ±(Vn, Vn+m). 

We remark that Theorem 2 generalizes McDaniel's Theorem 1, and Theorem 4 generalizes 
McDaniel's Corollary 2. 
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4, CONICS CHARACTERIZING THE SEQUENCES (1.4) 

Next, we state two theorems concerning conies whose integer points are derived from the 
sequences (1.4). Each can be proved by following the method of proof of Theorem 1, while 
making use of the appropriate results from Section 2. 

Theorem 5: If m is any fixed integer, then the points with integer coordinates on the conic 
y1 ~ vmxy + x2-ul = 0 are precisely the pairs (x, y) = ±(um un+m). 

Theorem 6: If m is any fixed integer and D is square free, then the points with integer coordi-
nates on the conic y2 - vmxy + x2 + Du2

m - 0 are precisely the pairs (x, y) = +(vw, vn+m). 

We note that Theorem 5 generalizes McDaniel's Theorem 2, and Theorem 6 generalizes 
McDaniel's Corollary 3. 

5e AN INTERESTING EXAMPLE 

If A is not square free, it is easy to show by substitution, using Binet forms, that the stated 
solutions in Theorems 3 and 4 remain as solutions. The same is true of Theorem 6. However, as 
McDaniel observes, other solutions may occur. He cites the example 

y2-4xy-x2±20 = 0. (5.1) 

The conies (5.1) provide an example of the conies in Theorem 4 where P = 4, m = l, and 
A = 20 = 22.5 is not square free. Now (x, y) = (1,7) is a solution of (5.1), but Vn * 1 for any n. 
Observe, however, that the conies (5.1) may be written as 

y2-L3)cy-x2±5F2 = 0. (5.2) 

This is an instance of Theorem 4 in which P = 1, m - 3, and A = 5 is square free. Hence, the 
solutions are precisely (x, y) - ±(Ln, J^+3). 
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