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INTRODUCTION

The aim of this note is to investigate some properties of special sequences of 4-tuples. These
sequences were first examined by Wong [7] and are called Ducci-processes. Wong defines them
as follows ([7], pp. 97, 102):

The successive iterations of a function fare called a Ducci-process if f'satisfies the following conditions:

1. There exists a function g(x, y) whose domain is the set of pairs of nonnegative integers and
whose range is the set of nonnegative integers.

2. S %, %)= (g(xp x,), 8%y, X3), ..., (%), %,), 8(x,, x1))~
3. Then eqtﬂes of f*(x,, x,,...,x,) are bounded for all k. The bound depends on the initial
choice of x,, x,, ..., x,.

For g(x, y) = |x —y| we obtain so-called Ducci-sequences of n-tuples and so Ducci-processes
are generalized Ducci-sequences. Since Ducci-sequences were introduced in the 30s (see Ciam-
berlini & Marengoni [1]), they have been extensively examined (for references, see Meyers [6] or
Ehrlich [2]). Most studies dealt with the following questions:

e Does every sequence of n-tuples lead to (0, ..., 0)?

e How many steps in the sequence of a given n-tuple are necessary to reach (0, ..., 0) or a

cycle of n-tuples?

e  What can be said about the length of the cycles?

It seems that there have been no further studies about Ducci-processes. Only Engel [3] uses
them for a computer exercise for school children. He asks them to find properties of cycles of the
Ducci-processes of 4-tuples for g(x, y) = (x + y) mod m.

We want to answer the above questions for this Ducci-process of 4-tuples.

STABILITY

Before giving an answer to the first question, we need some definitions. Many techniques
that are applied for studying Ducci-sequences transfer in a quite obvious way to our problem. So
we will use similar notation to [2] as far as possible. We denote our 4-tuples by (a, b, ¢, d).

Definition 1: Let 9,, be the operator on 4-tuples over Z, which is defined as follows:
9%, (a,b,c,d) = ((a+b)ymodm, (b+c)modm,(c+d)modm, (d +a) modm).

It is clear from the definition of %),, that we can choose the entries of the 4-tuples under
investigation from Z,,. As we are always—if not otherwise stated—computing over Z,, for some
m, we will omit "mod m."

* The author is working on his doctoral thesis at the Universitit Wiirzburg and is supported by the Konrad-
Adenauer-Stiftung e. V.
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Since the number of 4-tuples in Z,, is bounded, we reach a cycle of 4-tuples after a finite
number of applications of 9,,.

Definition 2: Let A be a given 4-tuple. Then the smallest natural number # satisfying @54 =
9 A for some £ eN is called the life span of A and will be denoted as &£,,(A).

Thus, £,,(A) is the number of applications of &, needed to reach the cycle produced by 4.
Definition 3: For a given 4-tuple 4, we call the smallest natural number £ > 0 satisfying @54 =
9 A for every k > &£,,(4) the length of the cycle generated by 4.

Considering the cycles that are produced by all possible 4-tuples with entries in Z,,, we find
at least one cycle of maximum length. We use £(m) for this maximum length.

Definition 4: A Ducci-process is called stable if the cycle generated by every 4-tuple contains
only one 4-tuple, i.e., £(m) =1 (see [7]).
Obviously, the first question breaks down into two parts now:

1. For which m is the Ducci-process produced by 9,, stable?
2.  Which 4-tuples can be in a cycle of length 1?

The first part has been answered by Wong ([7], 3.(1)).
Theorem 1: The Ducci-process produced by 9,, is stable if and only if m =2" for some r eN.

As with Ducci-sequences, only one 4-tuple can be contained in a trivial cycle, i.e., a cycle of
length 1.

Lemma 1: The 4-tuple (0,0, 0, 0) is the only 4-tuple contained in a trivial cycle and so a 4-tuple
A leads to a trivial cycle if and only if 9% 4 = (0,0, 0, 0) for some £.

Proof: Let A=(a,b,c,d) suchthat @,4=A. Then
B,A=(@+b,b+c,c+d,d+a)=(a,b,c,d)=A.

Comparing the first entries, we deduce that 5 =0. The other entries show that ¢c=0, d =0, and
a=0. 0

Thus, every 4-tuple in a Ducci-process produced by 9,, leads to (0,0, 0,0) if and only if
m=2",

Theorem 1 also shows that £(m) =1 if and only if m=2". Consequently, for every m that is
not a power of 2 there are nontrivial cycles, i.e., cycles of length greater than 1.

CYCLES OF 4-TUPLES

In order to determine a special 4-tuple that produces a nontrivial cycle for every m=2", we
introduce a very helpful symbol.

Definition 5: Let A=(a,b,c,d). Set S(4)=a+b+c+d (mod m) and call S(A) the sum of A.

We set 4, =(1,0,0,0) (as with Ducci-sequences, the cyclic permutations of a given n-tuple
all behave alike so they are not considered separately) and 4, = 3 4.
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Lemma 2: 1f m=2" for any r, then 4, =(1,0, 0, 0) leads to a nontrivial cycle.

Proof: Let B=(a,b,c,d) and so S(B) =a+b+c+d. Obviously, we have S(,, B) = 25(B)
and it follows by induction that S(%¥,B) = 2*S(B).

For 4, we get S(4)=1 and so S(@, 4,)=2% But, as m does not equal a power of 2, it

follows that 2% #0 mod m for every k eN. Thus, (0,0,0,0) cannot be found in the sequence
produced by 4,. O

The 4-tuple 4, also gives rise to a cycle of maximum length.

Theorem 2: The length of the cycle produced by 4, equals £(m) for every m and the length of
the cycle produced by any 4-tuple divides £(m).

Proof: We observe that &, is a linear operator and that every 4-tuple can be written as a
linear combination of the cyclic permutations of 4,. Let £ be the length of the cycle produced by
Ay, k such that @ 4, is in the cycle, and B = (a, b, c,d) a given 4-tuple. Then B=a(l, 0,0, 0)+
5(0, 1,0, 0) +¢(0,:0,1,0)+d(0, 0,0, 1) and

QLB = a%t (1,0, 0, 0) + 6T (0, 1,0, 0) +cDE# (0, 0, 1, 0) + dDE*(0, 0,0, 1)
=a% (1,0,0,0)+5F% (0, 1,0,0)+cP* (0,0, 1,0) +d %~ (0,0,0,1) = D¢ B.
Thus, the cycle produced by A4, has maximum length and the length of the cycle produced by B
must divide £(m). O

Here we have a close relation to the cycles of Ducci-sequences. The n-tuple (1,0, ..., 0) pro-
duces a cycle of maximum length in a Ducci-sequence for every » and it is not contained in a cycle
itself (see [2], Corollary 2). The second statement is also valid for our 4-tuple 4,.

Lemma 3: The 4-tuple 4, = (1,0, 0, 0) is not contained in any cycle.

Proof: Assume that A4, is contained in a cycle. Then there is a B=(a,b,c,d) such that
9,,B = 4,. Consequently,
a+b=1 b+c=0, c+d=0,d+a=0.

Thus, b=-c,—~c=d,d =—a, and b=—a. But then a+b=a—-a=0, which is a contradiction to
the equation for the first entry. O

In the next theorem, we use a well-known fact from number theory: Z, = Zp,, - GBZP,, if
pp'-...-plr is the decomposition of m into prime numbers, where @ denotes the "usual" direct

sum.

Theorem 3: Let m=pj -...-pl. Then £(m)=Ilecm{{(p}'),..., 4(p7)} (Icm denotes the least
common multiple.

Proof: We consider a sequence with A4, as the first 4-tuple. There is a k,for every / so that

@% 4, is contained in a cycle.
Let m=p)'-...-p and k be the maximum of {kp:,, woskyy, Ky} Then B 4, =(a,b,c,d)

lies in a cycle over Z,, as well as over each of the Z,,. Since &, is linear, we obtain
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(a: b; ¢, d) = ((ala bln G, dl): EERE) (an br’ Gs dr)) .
D —_— —
ez eZ4, EZ:;,
P
Further, 9,,(a,b,c,d) = (prl., (a,b,0,4),..., B, (a,,b,,c,,d,)). Let B= 9F 4,. From the
above construction, it follows that 9" B = B over Z,, for some minimal % if and only if ¥" B= B
over all ZP;, . Clearly, A is the least common multiple of the £(pf) and ¢(m)=h. O

Corollary 1: Let m be odd. Then £(2"m) = £(m).
Proof: The proof'is obvious since £(2") =1 by Theorem 1. O
For our further investigation, we have to examine four special 4-tuples more closely. Let
Xi=(1,-L,1,-1), X,=(1,LL1, X5=(,-1,-L1), X,=(,,,-1-1).

If p is an odd prime, these 4-tuples are linearly independent over Z,, so every 4-tuple can be
written as a linear combination of the X, over Z, in exactly one way. Further, the 4-tuples X;

have some special properties:
@p XI = (0’ Oa Oa O)s

D, X, =2X,,

D, Xy =X;— X,,
DXy =-2X,,
D, X, =X;+X,,
G X, =2X,

We consider 4, =(1,0,0,1)=%, 4,. If m is an odd prime, we can write 4, as
A=2LL LD +(1,-1,-1,1) = 27X, + Xp).

By induction, we deduce the following set of equations (the powers of 2 still have to be reduced
modulo p):

¥4 =2710Q% X, +2% X)), €))
@(;kHAI - 2—1(28k+1X2 + 24k(X3 _ X4)), (2)
@ikﬂ Al - 2—1(28k+2 Xz _ 94K+l X4), (3)
@E;’k+3Al — 2_1(28k+3X2 —24k+1(X3 + X4)), (4)
@zzcﬂ Al - 2—1(28k+4 X, _ k2 X3)’ (5)
@ik+5‘41 — 2_1(28k+5X2 _ 24k+2 (X3 _ X4)), (6)
gbl;k+6 Al - 2—1(28k+6 X2 + 24k+3 X4), (7)
gbz;k+7A1 - 2—1(28k+7X2 +24k+3(X3 +X4)), (8)
@i;(kﬂ) Al — 2—1(28(k+1))(2 ~24(k+1)X3). (9)

Since 2 is in the group of units Z,, if and only if m is odd, these equations also hold for every
such m. If m is even, the equations cannot be used, as 2 is not a unit in Z,, and 27" does not exist.

The above set of equations is the cornerstone of the following proofs. Before fully exploiting
these equations, we need one more definition.
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Definition 6: Let m be an odd number. Then we denote the order of 2 in the group of units of
Z, as 0,(2).

Lemma 4: If mis odd, then 4 is contained in the cycle produced by 4.
Proof: We use equation (1):

G 4 = 271(25%RD X, 429D x)
— 2—1((20,,,(2))8X2 +(20,,,(2))4X3)
=2 (X, +X;))=4,. O

Corollary 2: If m is odd, then £(m)|80,,(2).

Theorem 4: For every odd m, O,,(2)|£(m).

Proof: By Theorem 2 and Lemma 4, 4, is in the cycle of maximum length for every odd m.
Obviously, S(4)=2. Since S(D“™4)) =8(4,)=2 and S(D,,C) =25(C) for every 4-tuple C, it
follows that S(@714) =1

On the other hand, using S(@, C) =25(C), we can conclude by induction that S(@*™14)) =
2415 4) = 2%™; thus, 2 =1 mod m. Euler's well-known theorem completes the proof. [

Now we can give a characterization of £(p) for every prime p.

Theorem 5: Let p be an odd prime. Then

Op(z) . 4l0p(2)3 810‘0(2)’
=120, © 810,
(P)=140,(2) : 210,(2), 410,(2),

80,(2) : 2/0,(2).

Proof: Corollary 2 shows £(p)|80,(2). On the other hand, we know from Theorem 4 that
0,(2)|4(p). Thus, we only have to check O,(2),20,(2), and 40,(2) as possible values for £(p).
1. 4]0,(2), 8]0,(2): We can write 0,(2) =4(2s+1)=8s+4 for an s €N,. Equation (5)
shows:
@%(2) A= 272%H X, —242 x
=22%Px, - P X))
=27 X, + X;) = 4.
Thus, £(p) = 0,(2). Here we have used the fact that (2% @22 — 2% @ = | mod p and, since Z,
is a field, the equation x*> =1 mod p has the two solutions 1 and —1. From the definition of
0,(2), it follows that 2% @V = _1 mod p.
2. 8|0,(2): Assume that £(p) = 0,(2). Since 0,(2)=8(2s+1), we can use equation (9):

@%(2) Al _ 2—1(28(2s+1) Xz 4+ 4@s+D) Xs)
=274(X, - X;) # 4.

1997] 273



DUCCI-PROCESSES OF 4-TUPLES

Using equation (9) again, we can conclude that Qbf,o"(z)Al = 4, and thus {(p) = 20,(2).
3. 2|0,(2), 40,(2): We consider 40,(2). Obviously, 8/40,(2) and so, by equation (1),
@:OP(Z)AI - 2—1(240p(2) X2 +220p(2)X3)
Now assume £(p) =20,(2). Since O,(2) =2(2s+1), we can use equation (5):

Qbi,o” (2)A1 = 2’1(220’(2) X, - 2% ® X3)
=2M (X, - X;) % 4,
So £(p) =40,(2).
4. 2/0,(2): Now we can write 40,(2) = 4(2s+1) and, using basically the same calcula-
tions as in the case above, we see that £(m) cannot equal 40,(2) or one of its divisors. [

Corollary 3: If p is a prime and p = —1 mod 4, then
40,(2) : 2|0,(2),
=150 @) : 210,2)
b(2) - ,(2).
Proof: By Euler's formula, 0,(2)|(p—1). But p—1=-2 mod 4; thus, neither p—1 nor
0,(2) is divisible by 4. O
Before stating another consequence of Theorem 5, we want to mention an easy way to deter-
mine whether O,(2) is even or odd.
Lemma 5: If pis a prime and p = -1 mod 4, then O,(2) is odd if and only if (p+1)/4 is even.
For further details and the proof, see Lemma 13 in [4].

Corollary 4: Let p be a prime. If p=-1 mod 4, then 4(p)|4(p—1). If p=1 mod 4, then
«p)12(p-1).

Proof: We treat the case p=—1mod 4 first. Obviously, p—1is even. If 0,(2) is odd, then
OP(Z)I pT_l and so 80,(2) 8”7—1. If O,(2) is even, the result is obvious.

The proof for p =1 mod 4 runs along the same lines. [

Remark: 1If p=1 mod 4, then /(p) is even a divisor of p—1. This can be shown using some
techniques of Ehrlich [2] and writing 9, as a sum of two operators.

We have shown that every #(m) can be computed if the decomposition of m into prime
numbers and £(p") for p”|m are known. We have determined /(p) [in terms of O,(2)] but have
not yet investigated powers of primes. In this case, we can give only a partial solution.

Theorem 6: Let m= p" for some odd prime p. Then
L U(p)|tim),
2. Um)|pUp).
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Proof:

1. Obviously, I 4, = A and so QDZ[S’")AI = 4,. Thus, U p)|L(m).

2. From Qbifp)Al = 4;, we deduce, by induction, that Qbssf,(")Al = 4, for every odd s and,
consequently, P 4P 4, = QD’;__I,[}SP) A = 4,. Thus, {(m)|p~U(p). O

Remark: There are cases in which 4(p") < p"Y(p), e.g., for p =1093,

(p) =L =47,
We will end this section with a final observation.
Corollary 5: I m is odd, then 4|¢(m) .
Proof: From Theorem 5, we deduce that 4|{(p) for every prime p. Thus, 4|¢(p") by Theo-
rem 6 and 4|4(m) by Theorem 3. O
THE LIFE SPAN

As we have seen above, 4, produces a cycle of maximum length. It also has the highest
possible life span.

Lemma 6: Let B be a 4-tuple. Then &, (B)< <, (4,).

Proof: B can be written as a linear combination of the cyclic permutations of 4, (see the
proof of Theorem 2). If @* 4, =(0,0,0,0) for some &, then @* C =(0,0,0,0), where C is any
cyclic permutation of 4,. Thus, @* B=(0,0,0,0). O

Therefore, we can limit our investigation to A4,. Before stating our last theorem, we need
some further notations and a rather technical lemma.

Notations: Let @ and ¥ be the operators on 4-tuples over Z defined by %(a, b, c,d)=(a+b,
b+c,c+d,d+a) and #(a,b,c,d)=(b,c,d,a). Obviously, B4 =9, 4 mod m for every 4-tuple
A with entries from Z. If every entry of 4 is divisible by 7 €N, we write 4 =0 mod r.

Lemma 7: Let B=(b-2,b-1,b,b—1), where >3 is odd. Then @B #0 mod 2 and 9°B =
2#C, where C=(c—2,¢—-1,¢,c—1) and c is odd.
Proof:
9B = G(2b—3,2b—1,2b~1,2b-3)

=(4b—4,4b—2,4b—4,4b—6)
=2(2b-2,2b-1,2b-2,2b73)
=2c-1,¢,c-1,¢c-2),

where c=2b-1. O

Theorem 7: Let m>2,m=2"k for some r €N and & an odd natural number. Then

@ (4) = {1 (=0,

2r+2 :r21l
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Proof:

e Letr=0,ie,misodd Lemma 4 shows that 4 =9, 4, is in a cycle and Lemma 6
completes the proof. '

e Letr>1,ie,miseven. Asin Theorem 3, we can compute over Zp;. ®--- EBZP;, . Since
P4, is in a cycle for every odd prime p, we have to consider only the case pi=2".
We compute 9* 4, :

4,=(1,0,0,0),
A=(1,0,0,1),
4,=(1,0,1,2),
A =(1,13,3),
4,=(2,4,6,4).

Obviously, only the entries of 4, are all divisible by 2. We can write 4, as 4, =2-(3-2,
3-1,3,3-1). Thus, we can apply the preceding lemma, and it follows by induction that
4,,,=0 mod 2" and 4, #0 mod 2" for £ <2r+2. Therefore, 4, =0 mod 2" if and
onlyif £>22r+2 and £, (4,) =2r+2. O
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