
DUCCI-PROCESSES OF 4-TUPLES 

Gerd Schoffl* 
Sieboldstr. 5, 97072 Wtirzburg, Germany 

(Submitted February 1996-Final Revision August 1996) 

INTRODUCTION 

The aim of this note is to investigate some properties of special sequences of 4-tuples. These 
sequences were first examined by Wong [7] and are called Ducci-processes. Wong defines them 
as follows ([7], pp. 97, 102): 

The successive iterations of a fenction/are called a Ducci-process if/satisfies the following conditions: 
1. There exists a function g(x, y) whose domain is the set of pairs of nonnegative integers and 

whose range is the set of nonnegative integers. 
2. f(xl9 x2,..., xn) = (g(xl9 x2), g(x2, x3), ..., g(x„_„ xn),g(xn, x,)). 
3. The n entries of fk(xl, x2,..., x j are bounded for all k. The bound depends on the initial 

choiceof Xj,x2,...,xw. 

For g(x, y) = \x-y\we obtain so-called Ducci-sequences of w-tuples and so Ducci-processes 
are generalized Ducci-sequences. Since Ducci-sequences were introduced in the 30s (see Ciam-
berlini & Marengoni [1]), they have been extensively examined (for references, see Meyers [6] or 
Ehrlich [2]). Most studies dealt with the following questions: 

• Does every sequence of n-tuples lead to (0, ..., 0)? 
• How many steps in the sequence of a given ^-tuple are necessary to reach (0, ..., 0) or a 

cycle of /i-tuples? 
• What can be said about the length of the cycles? 
It seems that there have been no further studies about Ducci-processes. Only Engel [3] uses 

them for a computer exercise for school children. He asks them to find properties of cycles of the 
Ducci-processes of 4-tuples for g(x, y) = (x + y) mod m. 

We want to answer the above questions for this Ducci-process of 4-tuples. 

STABILITY 

Before giving an answer to the first question, we need some definitions. Many techniques 
that are applied for studying Ducci-sequences transfer in a quite obvious way to our problem. So 
we will use similar notation to [2] as far as possible. We denote our 4-tuples by (a, b,c,d). 

Definition 1: Let %m be the operator on 4-tuples over Z, which is defined as follows: 

2JW (a, b,c,d) = ((a + h) mod m, (b + c) mod m,(c+d) mod m, (d + a) mod m). 

It is clear from the definition of 9)w that we can choose the entries of the 4-tuples under 
investigation from lLm. As we are always—if not otherwise stated—computing over Hm for some 
m, we will omit "mod m." 

* The author is working on his doctoral thesis at the Universitat Wurzburg and is supported by the Konrad-
Adenauer-Stiftung e. V. 
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Since the number of 4-tuples in Zw is bounded, we reach a cycle of 4-tuples after a finite 
number of applications of 2JW. 

Definition 2: Let A be a given 4-tuple. Then the smallest natural number k satisfying 2J*+iA = 
^k

mA for some I GN is called the life span of A and will be denoted as Xm(A). 
Thus, !£m(A) is the number of applications of 2)w needed to reach the cycle produced by A. 

Definition 3: For a given 4-tuple A, we call the smallest natural number I > 0 satisfying 2)^ ,4 = 
%k

mA for every £ > Xm{A) the length of the cycle generated by A. 
Considering the cycles that are produced by all possible 4-tuples with entries in Zw, we find 

at least one cycle of maximum length. We use £(m) for this maximum length. 

Definition 4: A Ducci-process is called stable if the cycle generated by every 4-tuple contains 
only one 4-tuple, i.e., £(m) = 1 (see [7]). 

Obviously, the first question breaks down into two parts now: 
1. For which m is the Ducci-process produced by 2JW stable? 
2. Which 4-tuples can be in a cycle of length 1? 

The first part has been answered by Wong ([7], 3.(1)). 

Theorem 1: The Ducci-process produced by 2)w is stable if and only if m = 2r for some r sN: 

As with Ducci-sequences, only one 4-tuple can be contained in a trivial cycle, i.e., a cycle of 
length 1. 

Lemma 1: The 4-tuple (0,0,0, 0) is the only 4-tuple contained in a trivial cycle and so a 4-tuple 
A leads to a trivial cycle if and only if ^k

mA = (0,0,0, 0) for some k. 

Proof: Let A - (a, b, c, d) such that %mA = A. Then 

%mA =(a + b,b + c,c + d,d+a)-{a,b,c,d) = A. 

Comparing the first entries, we deduce that b = 0. The other entries show that c = 0, d = 0, and 
a = 0. D 

Thus, every 4-tuple in a Ducci-process produced by 25w leads to (0,0,0,0) if and only if 
m = 2r. 

Theorem 1 also shows that £(m) = 1 if and only if m = 2r. Consequently, for every m that is 
not a power of 2 there are nontrivial cycles, i.e., cycles of length greater than 1. 

CYCLES OF 4-TUPLES 

In order to determine a special 4-tuple that produces a nontrivial cycle for every m ^ 2r, we 
introduce a very helpful symbol. 

Definition 5: Let A = (a, h,c,d). Set S(A) = a + b + c + d (mod m) and call S(A) the sum of A. 
We set AQ = (1, 0, 0, 0) (as with Ducci-sequences, the cyclic permutations of a given «-tuple 

all behave alike so they are not considered separately) and Ak-^mA^. 
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Lemma 2: Ifm*2r for any r, then AQ = (1,0,0,0) leads to a nontrivlal cycle. 

Proof: Let B = {a, b, c, d) and so S(B) = a + b + c + d. Obviously, we have S(Q}mB) = 2S(B) 
and it follows by induction that S(Q)k

mB) = 2kS(B). 
For AQ we get S(AQ) = 1 and so S^AQ) = 2k. But, as m does not equal a power of 2, it 

follows that 2k # 0 mod m for every k sN. Thus, (0, 0, 0,0) cannot be found in the sequence 
produced by AQ. D 

The 4-tuple AQ also gives rise to a cycle of maximum length. 

Theorem 2: The length of the cycle produced by AQ equals £(m) for every m and the length of 
the cycle produced by any 4-tuple divides £(m). 

Proof: We observe that 2}w is a linear operator and that every 4-tuple can be written as a 
linear combination of the cyclic permutations of AQ. Let £ be the length of the cycle produced by 
AQ, k such that 2)* AQ is in the cycle, and B = (a, b,cyd) a given 4-tuple. Then B = a(l, 0,0,0) + 
6(0,1,0,0) + c(0,<0,1,0) + d(0, 0,0,1) and 

<3%kB = aS£*(l, 0,0,0) + &2#*(0,1,0,0) + c2#* (0,0,1,0) + </2C*(0,0,0,1) 
= a9£(l, 0, 0,0) + b%(0,1,0,0) + c24(0,0,1,0) +</9£(0,0, 0,1) = 9£ A 

Thus, the cycle produced by 4) has maximum length and the length of the cycle produced by B 
must divide £(m). • 

Here we have a close relation to the cycles of Ducci-sequences. The w-tuple (1,0,..., 0) pro-
duces a cycle of maximum length in a Ducci-sequence for every n and it is not contained in a cycle 
itself (see [2], Corollary 2). The second statement is also valid for our 4-tuple AQ. 

Lemma 3: The 4-tuple AQ = (1,0,0,0) is not contained in any cycle. 

Proof: Assume that AQ is contained in a cycle. Then there is a B = (a, b, c, d) such that 
2)w B = AQ . Consequently, 

a + b = l9 h + c = 0, c+d = 0, d + a = 0. 
Thus, b~-c,-c = d,d = -a, and b = -a. But then a + b = a-a = 0, which is a contradiction to 
the equation for the first entry. • 

In the next theorem, we use a well-known fact from number theory: Zm = Z ,,©•••© Z , if 
P\ Pr 

Pi '•••'Prr is the decomposition of m into prime numbers, where © denotes the "usual" direct 
sum. 
Theorem 3: Let m = p[l • . . . • /£ . Then ^(m) = lcm{^(p{1),...,^r)} ( l c m denotes the least 
common multiple. 

Proof: We consider a sequence with AQ as the first 4-tuple. There is a &,for every / so that 
2Jj'4) is contained in a cycle. 

Let m = p[1'...-pjr and k be the maximum of {k h,..., A^, &,„}. Then 2>* 4> = (®,b,c,d) 
lies in a cycle over Zm as well as over each of the Z *. Since 2W is linear, we obtain 
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(a, b,c,d) = ((a1? 61? q, dj, ...,(ar,br,cr,dr)). 

Further, 2bm(a,b,c,d) = ( 3 r f ( a i A q , 4 ) , . . . , %(ar ?6r ?cr ,rf r)). Let 5 = 2 ^ 4 , . From the 
above construction, it follows that <2fl

mB = B over Zw for some minimal /i if and only if 2)^5 = B 
over all Z /,. Clearly, /? is the least common multiple of the tip]1) and £(m) = h. D 

Corollary 1: Let m be odd. Then £(2rm) = ^(wi). 

Proof: The proof is obvious since ^(2r) = 1 by Theorem 1. D 

For our further investigation, we have to examine four special 4-tuples more closely. Let 
X,= (1,-1,1,-1), X2 = (\, 1,1,1), * 3 = (1,-1,-1,1), X4 = (l, 1,-1,-1). 

If/? is an odd prime, these 4-tuples are linearly independent over Zp, so every 4-tuple can be 
written as a linear combination of the Xi over ~Lp in exactly one way. Further, the 4-tuples Xi 

have some special properties: 
2 ) ^ = (0,0,0,0), 
%X2=2X2, 
<3)pX3 = X3- X4, 
%2

PX3 = -2X4, 
Jjp .A4 — A3 + A 4 , 

<3)2
pX4 = 2X3. 

We consider Ai = (1,0,0,1) = 9HmA0. Ifm is an odd prime, we can write A1 as 

4 = 2"1((1,1,1,1) + (1, -1,-1,1)) = 2~\X2 + X3). 

By induction, we deduce the following set of equations (the powers of 2 still have to be reduced 
modulo/?): 

l3)fAl =2-\2SkX2 + 24kX3), (1) 
<3)sk+1Al =2-\2sk+lX2 + 24k(X3-X4)), (2) 
3 ^ + 2 4 =2~\28k+2X2-24k+lX4), (3) 
Q)sk+3A1 =2-1(28k+3X2-24k+1(X3 + X4)), (4) 
2i8/+44 =2-\2*k+4X2-24k+2X3), (5) 
2i^+ 54 •= 2-\2sk+5X2 - 24k+2(X3 - X4)\ (6) 
2)8/+64 =2-1(28*+6X2+24t+3X4), (7) 
2>8/+74 =2-1(28fc+7X2+24fc+3(X3 + X4))) (8) 
2)f+1>4 = 2~\2^k^X2 - 24<t+1> X3). (9) 

Since 2 is in the group of units Tm if and only if m is odd, these equations also hold for every 
such m. Ifm is even, the equations cannot be used, as 2 is not a unit in Zm and 2_1 does not exist. 

The above set of equations is the cornerstone of the following proofs. Before fully exploiting 
these equations, we need one more definition. 
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Definition 6: Let m be an odd number. Then we denote the order of 2 in the group of units of 
ZMasOm(2). 

Lemma 4: If in is odd, then 4 is contained in the cycle produced by 4 -

Proof: We use equation (1): 

= 2-\X2 + X3) = A1. D 

Corollary 2: Ifm is odd, then £(m)\Wm(2). 

Theorem 4: For every odd m, Om(2)\£(m). 

Proof: By Theorem 2 and Lemma 4, Ax is in the cycle of maximum length for every odd m. 
Obviously, £ ( 4 ) = 2. Since S(S^W)4) = S(4) = 2 and S(<3)mC) = 2S(C) for every 4-tuple C, it 
follows that 5(3^w)-14) = 1 

On the other hand, using S(<&mQ=2S(C), we can conclude by induction that S^^'1 Ax) = 
2i(m)~lS(Al) = 2Km)\ thus, 2Km) = 1 mod m. Euler's well-known theorem completes the proof. • 

Now we can give a characterization of £(p) for every prime/?. 

TheoremS: Let/? be an odd prime. Then 

£(p) = -

Proof: Corollary 2 shows £(p)\Wp(2). On the other hand, we know from Theorem 4 that 
Op(2)\£(p). Thus, we only have to check 0,(2), 20,(2), and 40,(2) as possible values for £(p). 

1. 4|0,(2), 8|0,(2): We can write 0,(2) = 4(25+1) = Ss+4 for an 5 eN0. Equation (5) 
shows: 

Q}°;{2)Al = 2'\2*S+4X2 -24s+2X3) 

= 2_1(2 p()X2-2~X3) 
= 2-\X2 + X3) = Al. 

Thus, t(p) = 0,(2). Here we have used the fact that (2{°',(W2f = 2°"(2) = 1 mod/? and, since Tp 

is a field, the equation x2 = 1 mod p has the two solutions 1 and - 1 . From the definition of 
0,(2), it follows that 2[°'(2)]/2 = -1 mod p. 

2. 8|0,(2): Assume that £(p) = 0,(2). Since 0,(2) = 8(2^+1), we can use equation (9): 

2£ ' ( 2 ) 4 = 2-\2^s+l)X2 + 24<2s+1>X3) 

= 2" 1 (X 2 -X 3 )*4-

0,(2) : 
20,(2) : 
40,(2) : 
80,(2) : 

4|0,(2), 8|0,(2), 
8|0,(2), 
2|0,(2), 4|0,(2), 
2|0,(2). 
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Using equation (9) again, we can conclude that 25, p Ax - Ax and thus £(p) = 20p(2). 
3. 2\Op(2)9 4/0,(2): We consider 40,(2). Obviously, 8|40,(2) and so, by equation (1), 

3 ? ' ( 2 ) 4 = 2-\240*(2)X2 + 22°*(2)X3) 
= 2~\X2 + X3) = Al. 

Now assume £(p) = 20p{2). Since 0,(2) = 2(25+1), we can use equation (5): 

a2^ ( 2 )4=2-1(22 0" ( 2 )X2-2^( 2 )X3) 
= 2-\X2-X,)±Al. 

So£(p) = 40p(2). 
4. 2\Op(2): Now we can write 40p(2) = 4(2^+1) and, using basically the same calcula-

tions as in the case above, we see that £(m) cannot equal 40p(2) or one of its divisors. • 

Corollary 3: lip is a prime and p = -\ mod 4, then 

(40,(2) : 2,0,(2), 
W' }80,,(2) : 2(0,(2). 

Proof: By Euler's formula, 0 , (2) | (p- l ) . But p-l = -2 mod 4; thus, neither p-l nor 
0,(2) is divisible by 4. D 

Before stating another consequence of Theorem 5, we want to mention an easy way to deter-
mine whether 0,(2) is even or odd. 

Lemma 5: Ifp is a prime and p = -l mod 4, then 0,(2) is odd if and only if (p +1) / 4 is even. 

For further details and the proof, see Lemma 13 in [4]. 

Corollary 4: Let p be a prime. If p = -1 mod 4, then £(p)\4(p-1). If p = 1 mod 4, then 
t(p)\2(p-l). 

Proof: We treat the case p = -l mod 4 first. Obviously, p-1 is even. If 0,(2) is odd, then 
0,(2) p-i ./>-! ~ - and so 80,(2) 8 ^ - . If 0,(2) is even, the result is obvious. 

The proof for p = 1 mod 4 runs along the same lines. D 
Remark: If p = 1 mod 4, then ^(p) is even a divisor of p-1. This can be shown using some 
techniques of Ehrlich [2] and writing 2), as a sum of two operators. 

We have shown that every l{m) can be computed if the decomposition of m into prime 
numbers and £(pr) for pr \m are known. We have determined £(p) [in terms of 0,(2)] but have 
not yet investigated powers of primes. In this case, we can give only a partial solution. 

Theorem6: Let m-pr for some odd prime/?. Then 
1. t{p)\l{m), 
2. t(rri)\f-%p). 
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Proof: 

1. Obviously, 9b%m)Ax = A, and so ^m)Ax = Av Thus, £(p)\£(m). 
2. From Q}£^p)Al = Au we deduce, by induction, that 9bs^p)A1 = Ax for every odd s and, 

consequently, %Cm A = ®?£§p) A = 4 - Thus, £(m)\pr-l£{p). D 

Remark: There are cases in which -£(pr) < pr~l£(p), e.g., for /? = 1093, 

*(p)=EyL = t(p2)-
We will end this section with a final observation. 

Corollary 5: If m is odd, then 4\£(m). 

Proof: From Theorem 5, we deduce that 4\£(p) for every prime/?. Thus, 4\£(pr) by Theo-
rem 6 and 4|^(#f) by Theorem 3. D 

THE LIFE SPAN 

As we have seen above, A$ produces a cycle of maximum length. It also has the highest 
possible life span. 

Lemma 6: Let B be a 4-tuple. Then £m(B) < &m(A)-

Proof: B can be written as a linear combination of the cyclic permutations of A$ (see the 
proof of Theorem 2). If %k

mA = (°> °> °> °) f o r s o m e k> t h e n ^ t c = (°> °> °> °)> w h e r e c i s anY 
cyclic permutation of A0. Thus, <3)k

mB = (0,0,0,0). D 

Therefore, we can limit our investigation to AQ. Before stating our last theorem, we need 
some further notations and a rather technical lemma. 

Notations: Let 2) and *K be the operators on 4-tuples over Z defined by Q)(a,h,c,d) = (a + b, 
b + c,c + d,d + a) and K(a, 6, c, d) - (6, c, d, a). Obviously, 2U = <3bm A mod m for every 4-tuple 
A with entries from Z. If every entry of A is divisible by r GN, we write A = 0 mod r. 

Lemma 7: Let B = (6 - 2, b -1,6, b -1), where * > 3 is odd. Then 2)5 ̂  0 mod 2 and 2)25 = 
2KC, where C = (c - 2, c - 1 , c, c -1) and c is odd. 

Q)2B = 2)(26 - 3,2ft -1,2ft -1,2b - 3) 
= (46-4 ,46-2 ,46-4 ,46-6) 
-2(26-2 ,26-1 ,26-2 ,26-3) 
= 2 ( c - l , c , c - l , c - 2 ) , 

where c = 26 - 1 . • 

Theorem 7: Let m>2,m = 2rk for some r e N 0 and A: an odd natural number. Then 

J1 : r = 0, 
^ ( 4 ) ) = {2r- f2:r>l . 

1997] 275 



DUCCI-PROCESSES OF 4-TUPLES 

Proof: 
• Let r - 0, i.e., m is odd. Lemma 4 shows that Ax = 3)mA0 is in a cycle and Lemma 6 

completes the proof. 
• Let r > 1, i.e., #i is even. As in Theorem 3, we can compute over Z /, © • • • © Zp/S. Since 

2) r^o is in a cycle for every odd prime/?, we have to consider only the case pj* = 2r. 
We compute 9)*4>: 

A-ao,o,o), 
4 = (1,0, 0,1), 
A, =(1,0,1,2), 
4 =(1,1, 3, 3), 
A4 = (2,4,6,4). 

Obviously, only the entries of 4* are all divisible by 2. We can write A4 as 4 = 2 • (3 - 2, 
3 -1,3,3 -1) . Thus, we can apply the preceding lemma, and it follows by induction that 
4 r + 2 = 0 mod 2r and Ak±0 mod 2r for & < 2r + 2. Therefore, 4 = 0 mod 2r if and 
onlyif^>2r + 2and^OT(4)) = 2r + 2. D 
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