
SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS 

Wenpeng Zhang 
Department of Mathematics, The University of Georgia, Athens, GA 30602 

(Submitted January 199 6-Final Revision March 1996) 

1. INTRODUCTION AND RESULTS 

As usual, a second-order linear recurrence sequence U = (Un), w = 0,1,2,..., is defined by 
integers a, b, U0, Ul and by the recursion 

Un+2=bU„+l + aUn (1) 

for n > 0. We suppose that ab ^ 0 and not both U0 and Ul are zero. If a and (3 denote the roots 
of the characteristic polynomial x2 -bx-a of the sequence U and al (3 is not a root of unity, 
then U is called a nondegenerate sequence. In this case, as is well known (see [2]), the terms of 
the sequence Ucan be expressed as Un - pan-qj3n for n = 0,1,2,..., where 

If f/0 = 0, a = * = C/j = 1, then the sequence U is called the Fibonacci sequence, and we shall 
denote it by F = (Fn). 

The various properties of second-order linear recurrence sequences were investigated by 
many authors. For example, Duncan [1] and Kuipers [3] proved that (logi^) is uniformly dis-
tributed mod 1. Robbing [4] studied the Fibonacci numbers of the forms px2 ± 1, px3 ±1, where 
p is a prime. The main purpose of this paper is to study how to calculate the summation of one 
class of second-order linear recurrence sequences, i.e., 

E UaUai...Uak (2) 
a\+a2^—+ak=n 

where the summation is over all w-tuples with positive integer coordinates (a1? a2,...,ak) such that 
al-\-a2 + --+ak =n. 

Regarding (2), it seems that it has not yet been studied; at least this author has not seen 
expressions like (2) before. The problem is interesting because it can help us to find some new 
convolution properties. In this paper we use the generating function of the sequence U and its 
derivative to study the evaluation of (2) and give an interesting identity for any fixed positive inte-
ger k. That is, we shall prove the following two propositions. 

Proposition 1: Let U = (Un) be defined by (1). If U0 - 0, then, for any positive integer k > 2, 
we have 

where gk_x{x) and hk_x{x) are two effectively computable polynomials of degree k-1, their coef-
ficients depending only on a, b, and k. 

Proposition 2: Under the condition of Proposition 1, we have the following identities: 

1997] 225 



SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS 

(i) I UaUh=-^-[b(n-\)Un+2anU^t 
a+b=n D +4a 

(ii) X UaUbUc = U? {[(b3 + 4ab)n2 - (3b3 + 6ab)n + (2b3 - 4ab)] Un_x 
a+b+c=n ZV° + W) 

+ [(b2a + 4a2)n2 - 3b2an + (2b2a - 4a2)] U„_2}; 

(Hi) S UJJbUeUd = UJ {[(b5 + lb3a + I2ba2)n3 

a+b+c+d-n 6 ( * + 4 a ) 
- (6b5 + 30b3a + 24ba2)n2 + (1 lb5 +1 lb3a - 486a2)« 
- (6b5 -30b3a- 366a2)] Un_2 + [(b4a + 6b2a2 + 8 a > 3 

- (6b4a + 24a2b2)n2 + (1 \b4a + 6b2a2 - 32a3)n - (6b4a -36a2b2)] U„_3}. 
Taking U1=a = b = l, then Un=Fn is the Fibonacci sequence, i.e., F0 = 0, F1 = l, F2 = \, 

F3-2, F4 = 3, F5-5, F6 = S, ... . Thus, from Proposition 2, we obtain Corollaries 1 and 2. 

Corollary 1: Let (Fn) be the Fibonacci sequence. Then we have: 

(i) I FaFb^\[(n-l)Fn+2nFn_lln>\; 

(ii) X ^ ^ = ^ [ ( 5 » 2 - 9 « - 2 ) F „ _ 1 + (5» 2 -3»-2)^_ 2 ] ,»>2; 
a+6+c=n 50 

f"7) X W ^ V = T^K 4 " 3 -12»2 - 4» + 12)F„_2 + (3n3 - 6»2 - 3» + 6)/v,_3], « > 3. 

Corollary 2: We have the following congruences: 
fi) (n-l)Fn^2nFn_^0 (mod5),rc>l; 

fii> (5rc2 - 9« - 2)Fn_! + (5rc2 - 3n - 2)Fn_2 = 0 (mod 50), n > 2; 
(III) (4ra3 -12«2 - 4 n + 12)FW_2 + (3n3 -6n2 -3n + 6)Fn_3 = 0 (mod 150), n > 3. 

2. PROOF OF THE PROPOSITIONS 

In this section, we shall give the proof of the propositions. First, we recall some known 
results on the second-order linear recurrence sequences and prove two lemmas that will be used in 
the proof of the propositions. 

Let U - (Un) be a nondegenerate second-order linear recurrence sequence defined by (1). If 
U0 = 0, then the generating function of Uis 

G(x) = xF(x) = f'* 2 = £ U„x", (3) 
l-bx-ax £r0 

where Un = G{n){0)ln\ and G(k\x) denotes the £* derivative of G(x). 
For F(x) = G(x) lx- E^Li Unxn~l, we have the following lemma. 

Lemma 1: If F(x) is defined by (3), then F(x) satisfies: 

$ F2(x) = ̂ - [ F ' ( x ) ( 6 + 2ar) + 4aF(x)]; 
Zr+4a 
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(ii) F\x) = 

(Hi) F\x) = 

ul 
2(b2+4a)2 [F"(x)(b + 2ax)2 + UaF'(x)(b + lax) + 31a2F(x)]; 

[F'"(x)(b + laxy + 30aF"(x)(b + lax)2 

6(b2+4a)3' 
+ HSa2F'(x)(b + lax) + 3 &4a3F(x)]. 

Proof: Using the definition of F(x) and the derivative of the function F(x)(b + 2ax), we get 

[F(x)(b + lax)]' = F'(x)(b + lax) + laF(x) = 'U^b + lax)' 
\-bx- ax2 

Uy(b2 + la + labx + la2x2) _ Ur(b2 + 4a) 
(l-bx-ax2)2 (l-bx-ax2)2 l-bx-ax2 

b2+4a rf/ 

laUx 

Uy 
-F2(x) = laF(x), 

so that 
b2+4a r 2 

U, 
F2(x) = F'(x)(b + lax) + 4aF(x). 

This gives the conclusion (i) of Lemma 1. 
Differentiating in (4), we have 

b2+4a 
U, 

lF(x)F'(x) = F"(x)(b + lax) + 6aF'(x). 

So b2+4a 
Uy 

lF(x)F'(x)(b + lax) = F"(x)(b + lax)2 + 6aF'(x)(b + lax). 

Applying (4) again, we have 

b2+4a 2F(x) b2+4a r 2 

U, 
F2(x)-4aF(x) = F"(x)(b + lax)2 + 6aF'(x)(b + lax). 

Thus, 

l(b2+4a)2
 p3(x) = F,l(x)(b + 2ax)2 +6aF'{x){b + lax) + %a^Ad) F2(x) 

ul 
= F"(x)(b + lax)2 + \4aF'(x)(b + lax) + 31a2F(x). 

Conclusion (ii) of Lemma 1 now follows from (5). 
Similarly, differentiating in (5) and applying (5), we can also obtain 

3!(Z>2+4a)3
 F 4 ( x ) = F„,(xyp + 2axf + 30aF"(x)(b + lax)2 

+ ll%a2F'(x)(b + lax) + 384a3F(x). 

This completes the proof of Lemma 1. 

(4) 

(5) 

Lemma 2: Let k > 2 be an integer. Then there exist k -1 effectively computable positive integers 
c1? c2?..., ck_x such that 
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(*-l)!(^+4a)- pk(x) = F(k-i)(x)(b + ^ - i + C]aF(k-7){x){b + 2ax)k-2 

+ • • • + ck_2ak-2Ff(x)(h + lax) + ck_xak-lF{x\ 

where F^\x) denotes the Ith derivative of F{x). 

Proof: This formula can be obtained via Lemma 1 and induction. 
Now we complete the proof of the propositions. First, we prove Proposition 1. Equating the 

coefficients of xn~k on both sides of (6), we obtain 
(k-l)\(h2+4a)k-1 — 

k-l k-l-i 

jjk-\ La a\ a2 •'' ^ ak 

Substituting Un_m = bUn_m_l +aUn_m_2 (\<m<k-l) repeatedly in the above formula gives 

<*"1)|^t4fl)t"1 £ uauai ...uak = u » ^ + i + U » ) ^ , 
^ 1 ai+a2+ •••+ak=n 

where gk_i(x) and hk_x{x) are two effectively computable polynomials with their coefficients 
depending only on a, b and k. This completes the proof of Proposition 1. 

To prove Proposition 2, comparing the coefficients of xw~2, xn~3, and xn~4 on both sides of 
Lemma 1, we get the following convolution product formulas: 

[jfej1-[£unyW-r)Um+™^; (7) 

u2 1 f 
I uaubuc 2(b2+4af 

= b2(n2 -3n + 2)U„+ ab(4n2 - 6« - 4) U„^ + 4a\n2 -1) U„_2; 

(8) 

and 

(^FCx^H = b\n3 -6n2 + \]n-6)U„+ b2a(6n3 - 24n2 + 6n + 36) [/„_, (9) 
+ ba2(\2n3 - 24M2 - 48« + 36) U„_2 + a\8r? - 32») U„_3. 

Substituting U„ - bUn_x +aU„_2 in (8), we have 
7-2 

E UaUbUc = U* ,2 [((b3 + 4ai)»2 -(3b3 + 6ab)n + (2Z>3 -4a*))£/„_ 
«*£-» 2(6 +4a) 

+ ((*2a+4a2)«2 -3i2a« + (2ft2a-4a2))C/„_2]. 
(10) 

Finally, substituting U„_x = *£/„_2 +alf„_3 and C/„ = Z»C/„_i +aU„_2 = (b2_a)Un_2+abUn_3 in (9), 
we get the identity 
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X UaUhUcUd = Ul [((b5 + lb3a + I2ba2)n3 - (6b5 + 30b3a + 24k* V 

+ (1 lb5 + 1763a - 4$ha2)n - (6b5 - 30b3a - 36ba2)) Un_2 (\ l) 
+ ((b4a + 6b2a2 + Sa3)n3 - (6b4a + 24£2a V 
+ (1 lb4a + 6b2a2 - 32a3)n - (6b4a - 36a2b2)) Un_3]. 

Proposition 2 now follows from (7), (10), and (11). 

ACKNOWLEDGMENT 

The author expresses his gratitude to the anonymous referee for very helpful and detailed 
comments that improved the presentation of this paper. 

REFERENCES 

1. R. I. Duncan. "Application of Uniform Distribution to the Fibonacci Numbers." The Fibo-
nacci Quarterly 5.2 (1967): 137-40. 

2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. London: 
Oxford University Press, 1962. 

3. L. Kuipers. "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution Mod 
1 of the Sequence of the Logarithms of the Fibonacci Numbers." The Fibonacci Quarterly 
7.5 (1969):465-66. 

4. N. Robbins. "Fibonacci Numbers of the Forms px2±l px3±l, Where p is Prime." In 
Applications of Fibonacci Numbers l;77-88. Dordrecht: Kluwer, 1986. 

AMS Classification Numbers: 11B37, 11B39 

LETTER TO THE EDITOR 

Dear Professor Bergum: 
The Fibonacci Quarterly readers will be interested in yet another natural occurrence of the Golden Ratio. 
This occurrence is described in the current issue of The College Mathematics Journal (Vol. 28, No. 3, May 
1997). On page 205, Peter Schumer (schumer@middlebury.edu) of Middlebury College in Middlebury VT 
provides an interesting variant on the classical problem of showing that the rectangle with fixed perimeter 
and maximum area is a square. 
Schumer notes that texts often present this problem as the dilemma of a farmer who has a fixed length of 
fencing and wants to build the most efficient animal pen for grazing. It is a simple calculus problem. The 
problem is complicated somewhat when the farmer has a fixed length of fencing and is using one side of a 
barn for all or part of one side of the animal pen. Schumer provides a neat analysis of the optimum pen 
shape when the length of fencing is some multiple of the length of the barn side used. 
When the length of fencing available is V5 times the length of the side of barn used, the optimum pen 
shape is a golden rectangle. This is a neat result, simply derived, of interest to FQ readers, and which I 
have not seen before. 
Best regards, 
Harvey J. Hindin 
Vice-President, Emerging Technologies Group, Inc. 
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